Synthesis of novel composite sorbents based on titanium, calcium and magnesium phosphates

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Heterogonous and mechanochemical synthesis of new materials based on titanium, calcium and magnesium phosphates have been developed for the first time. Final products demonstrate high sorption efficiency towards heavy metal cations and radionuclides. The combined action of the components ensures high sorption capacity towards different cations within a wide pH range. The optimal conditions of the processes providing the obtaining of composite products with given phase composition have been established. Using solid precursors and phosphorus-containing agents taken in a stoichiometric ratio, and mild hydrothermal conditions make it possible to reduce liquid waste to a minimum level. During the first step of synthesis both precipitation of titanium phosphate and formation of ammonium phosphate which is the precursor for the second step occur. The latter is the formation of calcium and magnesium phosphates. Thus, the synthesis proceeds in accordance with the principles of green chemistry.

Full Text

Restricted Access

About the authors

N. V. Mudruk

Tananaev Institute of Chemistry – Subdivision of the Federal Research Centre “Kola Science Centre of the Russian Academy of Sciences” Science Centre of the Russian Academy of Sciences (ICT KSC RAS)

Author for correspondence.
Email: n.mudruk@ksc.ru
Russian Federation, 184209 Apatity

M. V. Maslova

Tananaev Institute of Chemistry – Subdivision of the Federal Research Centre “Kola Science Centre of the Russian Academy of Sciences” Science Centre of the Russian Academy of Sciences (ICT KSC RAS)

Email: n.mudruk@ksc.ru
Russian Federation, 184209 Apatity

A. I. Nikolaev

Tananaev Institute of Chemistry – Subdivision of the Federal Research Centre “Kola Science Centre of the Russian Academy of Sciences” Science Centre of the Russian Academy of Sciences (ICT KSC RAS)

Email: n.mudruk@ksc.ru

Corresponding Member of the RAS

Russian Federation, 184209 Apatity

References

  1. Robinson J.L., Brudnicki P., Lu H.H. // Comprehensive Biomaterials II. 2017. V. 1. P. 460–477. https://doi .org/10.1016/B978-0-12-803581-8.09345-0
  2. Yang J., Li Q., Li J., Yang J., Zhang R., Niinomi M., Nakano T. // J. Mater. Eng. Perform. 2023. V. 32. P. 6151–6159. https://doi .org/10.1007/s11665-022-07541-6
  3. Kumar K., Das A., Prasad S.B. // Proc. Inst. Mech. Eng. Part H: J. Eng. Med. 2023. V. 237 № 4. P. 502–516. https://doi .org/10.1177/09544119231158837
  4. Barinov S.M. // Russ. Chem. Rev. 2010. V. 79. № 1. P. 13–29. https://doi .org/10.1070/RC2010v079n01ABEH004098
  5. Li P., Hu Y., Lu D., Wu J., Lv Y. // Micromachines. 2023. V. 14. № 3. P. 639. https://doi .org/10.3390/mi14030639
  6. Yadav A.A., Hunge Y.M., Dhodamani A.G., Kang S.-W. // Catalysts. 2023. V. 13. № 4. P. 716. https://doi .org/10.3390/catal13040716
  7. Barpanda P., Chotard J.-N., Delacourt Ch., Reynard M., Filinchuk Ya., Armand M., Deschamps M., Tarascon J.-M. // Angew. Chemie Int. Ed. 2011. V. 50. № 11. P. 2526–2531. https://doi .org/10.1002/anie.201006331
  8. Kadoshnikov V.M., Melnychenko T.I., Arkhipenko O.M., Tutskyi D.H., Komarov V.O., Bulavin L.A., Zabulonov Y.L. // C-J. Carbon Res. 2023. V. 9. № 2. P. 39. https://doi.org/10.3390/c9020039
  9. Ryfa A., Żmuda R., Mandrela S., Białecki R., Adamczyk W., Nowak M., Lelek Ł., Bandoła D., Pichura M., Płonka J., Wdowin M. // Fuel. 2023. V. 333. 126470. https://doi.org/10.1016/j.fuel.2022.126470
  10. Tokarčíková M., Seidlerová J., Motyka O., Šafaříková M. // Ecol. Chem. Eng. S. 2019. V. 26. № 4. P. 743–757. https://doi .org/10.1515/eces-2019-0052
  11. Alhendal A., Almoaeen R.A., Rashad M., Husain A., Mouffouk F., Ahmad Z. // RSC Adv. 2022. V. 12. № 28. P. 18077–18083. https://doi .org/10.1039/D2RA02659G
  12. Ma M., Wang L., Lu X., Wang Sh., Guo Y., Liang X. // J. Chromatogr. A. 2023. V. 1691. 463814. https://doi .org/10.1016/j.chroma.2023.463814
  13. Maslova M., Mudruk N., Ivanets A., Shashkova I., Kitikova N. // Environ. Sci. Pollut. Res. 2020. V. 27 № 4. P. 3933–3949. https://doi .org/10.1007/s11356-019-06949-3
  14. McMaster S.A., Ram R., Faris N., Pownceby M.I. // J. Hazard. Mater. 2018. V. 360. P. 257–269. https://doi .org/10.1016/j.jhazmat.2018.08.037
  15. Vinokurov S.E., Kulikova S.A., Myasoedov B.F. // Materials. 2018. V. 11. № 6. P. 976. https://doi .org/10.3390/ma11060976
  16. Maslova M.V., Rusanova-Naydenova D., Naydenov V., Antzutkin O.N., Gerasimova L.G. // J. Non. Cryst. Solids. 2012. V. 358. P. 2943–2950. https://doi .org/10.1016/j.jnoncrysol.2012.06.033
  17. Mahaulpatha W.M.B.H., Jayaweera P.M., Palliyaguru L. // Proc. Int. For. Environ. Symp. 2022. V. 26. 139. https://doi .org/10.31357/fesympo.v26.5757
  18. Bortun A., Jaimez E., Llavona R., Garcia J.R., Rodriguez J. // Mater. Res. Bull. 1995. V. 30 № 4. P. 413–420. https://doi .org/10.1016/0025-5408(95)00019-4
  19. Barbé C.J., Mitchell D.R.G., Drabarek E., Bartlett J.R., Woolfrey J.L., Luca V. // MRS Proc. 2000. V. 628. P. 73. https://doi .org/10.1557/PROC-628-CC7.3
  20. Trublet M., Maslova M.V., Rusanova D., Antzutkin O.N. // RSC Adv. 2017. V. 7. № 4. P. 1989–2001. https://doi.org/10.1039/C6RA25410A
  21. Maslova M.V., Ivanenko V.I., Yanicheva N.Y., Mudruk N.V. // Int. J. Mol. Sci. 2020. V. 21. № 2. P. 447. https://doi .org/10.3390/ijms21020447
  22. Maslova M.V., Ivanenko V.I., Gerasimova L.G., Ryzhuk N.L. // Russ. J. Inorg. Chem. 2018. V. 63. № 9. P.1141–1148. https://doi .org/10.1134/S0036023618090115
  23. Maslova M., Ivanenko V., Yanicheva N., Gerasimova L. // J. Water Process Eng. 2020. V. 35. 101233. https://doi .org/10.1016/j.jwpe.2020.101233
  24. Maslova M.V., Ivanenko V.I., Gerasimova L.G., Nikolaev A.I. // Dokl. Chem. 2021. V. 499. № 2. P. 163–167. https://doi .org/10.1134/S0012500821080024
  25. Ivanets A.I., Kitikova N.V., Shashkova I.L., Oleksiienko O.V., Levchuk I., Sillanpää M. // J. Water Process Eng. 2016. V. 9. P. 246–253. https://doi .org/10.1016/j.jwpe.2016.01.005
  26. Chen Y.N., Liu C., Guo L., Nie J.X., Li C. // Clean Technol. Environ. Policy. 2018. V. 20. № 10. P. 2375–2380. https://doi .org/10.1007/s10098-018-1607-2
  27. Ayers R., Hannigan N., Vollmer N., Unuvar C. // Int. J. Self-Propag. High-Temp. Synth. 2011. V. 20. P. 6–14. https://doi .org/10.3103/S1061386211010031
  28. Gerasimova L.G., Maslova M.V., Shchukina E.S. // Theor. Found. Chem. Eng. 2009. V. 43. № 4. P. 464–467. https://doi .org/10.1134/s0040579509040186
  29. Maslova M., Ivanenko V., Gerasimova L., Larsson A.-C., Antzutkin O.N. // J. Mater. Sci. 2021. V. 56. № 16. P. 9929–9950. https://doi .org/10.1007/s10853-021-05876-4
  30. Маслова М.В., Мудрук Н.В., Герасимова Л.Г., Иванец А.И. Способ получения сорбента на основе доломита. Патент РФ 2711635. 2020.
  31. Mudruk N., Maslova M. // Int. J. Mol. Sci. 2023. V. 24. № 9. P. 7903. https://doi .org/10.3390/ijms24097903
  32. Маслова М.В., Мудрук Н.В., Герасимова Л.Г., Кузьмич Ю.В. Способ получения сорбента на основе доломита. Патент РФ 2743359. 2021.
  33. Maslova M., Mudruk N., Ivanets A., Shashkova I., Kitikova N. // J. Water Process Eng. 2020. V. 40. P. 101830.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Diffractograms of samples of titanium phosphates TR: dried at 60 °C (1), calcined at 850 °C (2).

Download (181KB)
3. Fig. 2. Diffractograms of samples of Ca–Mg CMR phosphates dried at 60 °C: after treatment with a 10% solution H3PO4 (1), after treatment with 1M NH4H2PO4 (2) solution.

Download (166KB)
4. Fig. 3. Diffractograms of Ti composite phosphate– Ca–Mg TSMR: dried at 60 °C (1), calcined at 850 °C (2).

Download (224KB)
5. Fig. 4. Diffractogram of a composite phosphate product obtained as a result of mechanochemical synthesis.

Download (249KB)
6. Fig. 5. The sorption efficiency of Cs+, Sr2+ and Co2+ on the obtained samples of Ti (1) phosphate, Ca–Mg (2) phosphate, Ti-Ca–Mg (3) composite phosphate at pH 2 (a) and pH 7 (b).

Download (261KB)
7. Fig. 6. Sorption capacities of the obtained samples of Ti phosphate (1), Ca–Mg phosphate (2), Ti–Ca–Mg composite phosphate (3).

Download (181KB)

Copyright (c) 2024 Russian Academy of Sciences