Crystal structure and raman spectroscopy of synthetic potassium Richterite
- Authors: Limanov E.V.1, Butvina V.G.1, Safonov O.G.1,2, Spivak A.V.1, Kuzmin A.V.1,3, Aranovich L.Y.1,4
-
Affiliations:
- D.S. Korzhinsky Institute of Experimental Mineralogy, Russian Academy of Sciences
- M.V. Lomonosov Moscow State University
- Yu.A. Osipyan Institute of Solid State Physics, Russian Academy of Sciences
- Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry of the Russian Academy of Sciences
- Issue: Vol 519, No 1 (2024)
- Pages: 489-499
- Section: MINERALOGY
- Submitted: 04.06.2025
- Published: 20.12.2024
- URL: https://cijournal.ru/2686-7397/article/view/682434
- DOI: https://doi.org/10.31857/S2686739724110124
- ID: 682434
Cite item
Abstract
The structures of two potassium richterite crystals with crystal chemical formulas (K0.44Na0.32□0.24)Σ=1(Ca1.18Na0.82) were studied by single-crystal X-ray diffraction analysis and Raman spectroscopy (RAMAN)Σ=2Mg5Si8O22OH2 and (K0.83Na0.02□0.15)Σ=1(Ca1.18Na0.89)Σ=2Mg5Si8O22OH2 synthesized at a pressure of 3 GPa and a temperature of 1000°C in the MgSiO3+CaMgSi2O6+K2CO3+Na2CO3+CO2+ +H2O system. The parameters of monoclinic cells are obtained: a=10.0256(5) & 9.9748(11), b=17.9874(7) & 17.9879(16), c=5.2687(3) & 5.2746(6) Å, Vu.c. = 916.17(18) & 918.52(8) Å3, β = 104.520(12)o & 104.821(5)o, sp. gr. С2/m (12), Z = 2. It was found that positions M(1), M(2) and M(3) are inhabited by Mg2+, position M(4) is occupied simultaneously by Ca2+ and Na+. The Na+ cations that are not included in M(4) are located in position A, which also accommodates K+ cations. Raman spectroscopy showed the presence of vacancies in position A in both samples. The structure corresponds to the “ideal” structure of richterite group minerals. The unit cell volumes of the measured crystals are directly proportional to the content of K in position A. Based on the generalization of new and published data, an equation of dependence of Vu.c. fоr amphiboles of the richterite Na(NaCa)Mg5Si8O22(OH)2–K-richterite K(NaCa)Mg5Si8O22(OH)2 series with a low tremolite component on the K content in position A is proposed.
About the authors
E. V. Limanov
D.S. Korzhinsky Institute of Experimental Mineralogy, Russian Academy of Sciences
Author for correspondence.
Email: spivak@iem.ac.ru
Russian Federation, Chernogolovka
V. G. Butvina
D.S. Korzhinsky Institute of Experimental Mineralogy, Russian Academy of Sciences
Email: spivak@iem.ac.ru
Russian Federation, Chernogolovka
O. G. Safonov
D.S. Korzhinsky Institute of Experimental Mineralogy, Russian Academy of Sciences; M.V. Lomonosov Moscow State University
Email: spivak@iem.ac.ru
Russian Federation, Chernogolovka; Moscow
A. V. Spivak
D.S. Korzhinsky Institute of Experimental Mineralogy, Russian Academy of Sciences
Email: spivak@iem.ac.ru
Russian Federation, Chernogolovka
A. V. Kuzmin
D.S. Korzhinsky Institute of Experimental Mineralogy, Russian Academy of Sciences; Yu.A. Osipyan Institute of Solid State Physics, Russian Academy of Sciences
Email: spivak@iem.ac.ru
аcademician of the RAS
Russian Federation, Chernogolovka; ChernogolovkaL. Ya. Aranovich
D.S. Korzhinsky Institute of Experimental Mineralogy, Russian Academy of Sciences; Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry of the Russian Academy of Sciences
Email: spivak@iem.ac.ru
Russian Federation, Chernogolovka; Moscow
References
- Hawthorne F.C., Oberti R., Harlow G.E., Maresch W.V., Martin R.F., Schumacher J.C., Welch M.D. Nomenclature of the amphibole supergroup // Am. Mineral. 2012. V. 97. P. 2031–2048.
- Gottschalk M., Andrut M. Structural and chemical characterization of synthetic (Na,K)-richterite solid solutions by EMP, HRTEM, XRD and OH-valence vibrational spectroscopy // Phys Chem Minerals. 1998. V. 25. P. 101–111.
- Huebner J.H., Papike J.J. Synthesis and crystal chemistry of sodium-potassium richterite, (Na,K)NaCaMg5,Si8O22(OH,F)2: a model for amphiboles // Am. Mineral. 1970. V. 55. P. 1973–1992.
- Dawson J.B., Smith J.V. The MARID (mica-amphibole-rutile-ilmenite-diopside) suite of xenoliths in kimberlite // Geochimica et Cosmochimica Acta. 1977. V. 41. P. 309–323.
- Foley S. High-pressure stability of the fluor- and hydroxyendmembers of pargasite and K-richterite // Geochim Cosmochim Acta. 1991. V. 55. P. 2689–2694.
- Сафонов О.Г., Бутвина В.Г. Реакции – индикаторы активности K и Na в верхней мантии: природные и экспериментальные данные, термодинамическое моделирование // Геохимия. 2016. № 3. С. 893–908.
- Limanov. E.V., Butvina V.G., Safonov O. G., Spivak A. V., Van K. V., Vorobey S. S. Formation of Richterite in the Enstatite-Diopside System in the Presence of K2CO3-Na2CO3-CO2-H2O Fluid: Implications for the Processes of Mantle Metasomatism // Geochem. Int. 2024. V. 62. № 4. P. 356–365.
- Konzett J., Ulmer P. The stability of hydrous potassic phases in lherzolitic mantle – an experimental study to 9.5 GPa in simplified and natural bulk compositions // J. Petrol. 1999. V 40. № 4. P. 629–652.
- Zimmermann R., Gottschalk M., Heinrich W., Franz G. Experimental Na-K distribution between amphiboles and aqueous chloride solutions, and a mixing model along the richterite-K-richterite join // Contrib. Mineral. Petrol. 1997. V. 126. №3. P. 252–264.
- Aoki K. Origin of phlogopite and potassic richterite bearing peridotite xenoliths from South Africa // Contrib. to Mineral. Petrol. 1975. V. 53 №3. P. 145–156.
- Yang H., Konzett J., Prewitt C.T., Fei Y. Single-crystal structure refinement of synthetic M4K-substituted potassic-richterite, K(KCa)Mg5Si8O22(OH)2 // Am. Mineral. 1999. 84:681–684
- CrysAlisPro: 1.171.41.118a. (Rigaku Oxford Diffraction, 2019). CrysAlisPro, Agilent Technologies, Version 1.171.37.33 (release 27.03.2014 CrysAlis171. NET).
- Sheldrick G.M. SHELX97: Program for the solution and refinement of crysta structures. University of Göttingen, Germany, 1997.
- Della Ventura G., Hawthorne F.C., Mihailova B., Sodo A. Raman and FTIR Spectroscopy of Synthetic Amphiboles: I. The OH Librational Bands and the Determination of the OH-F Content of Richterites via Raman Spectroscopy // Can. Mineral. 2021. V. 59. №1. P. 31–41.
- Hawthorne F.C., Della Ventura G. Short-range order in amphiboles / In: Hawthorne FC, Oberti R, Della Ventura G, Mottana A (eds) Amphiboles: crystal chemistry, occurrence and health issues // Reviews in Mineralogy. 2007. V. 67. P. 173–222.
- Robert J.L., Della Ventura G., Thauvin J.L. The infrared OH-streching region of synthetic richterites in the system Na2O-K2O-CaO-MgO-SiO2-H2O-HF // Eur. J. Mineral. 1989. V. 1. P. 203–211.
- Dumanska-Słowik M., Powolny T., Natkaniec-Nowak L., Stankiewicz K. Mineralogical and geochemical implications on the origin of dianite from the alkaline Murun Complex (Eastern Siberia, Russia) // Ore Geol. Rev. 2022. V. 141. P. 1–13.
- Raudsepp M., Della Ventura G., Hawthorne F.C. Data for Synthetic Potassium-Richterite, Nickel-Potassium, Richterite and Cobalt-Potassium-Richterite // Powder Diffraction. 1992. V.7. № 1. P. 52–55.
- Hawthorne F.C., Ventura G.D., Robert J.L., Welch M.D., Raudsepp M., Jenkins D.M. A Rietveld and infrared study of synthetic amphiboles along the potassium-richterite–tremolite join // Am. Mineral. 1997. V. 82. № 7–8. P. 708–716.
- Pawley A.R., Graham C.M., Navrotsky A. Tremolite-richterite amphiboles: synthesis, compositional and structural characterization, and thermochemistry // Am. Mineral. 1993. V. 78. P. 20–26.
Supplementary files
