OXYGEN ISOTOPE SYSTEM OF LEUCOGRANITES OF THE OMSUKCHAN TROUGH (NE RUSSIA): CONDITIONS AND MECHANISMS OF WATER-ROCK INTERACTION
- Authors: Dubinina Е.О.1, Filimonova L.G.1, Avdeenko A.S.1, Chizhova Y.N.1, Kossova S.A.1, Zhilicheva О.М.1, Aranovich L.Y.1
-
Affiliations:
- Institute of Geology of the Ore Deposits, Petrography, Mineralogy and Geochemistry, Russian Academy of Sciences
- Issue: Vol 508, No 2 (2023)
- Pages: 203-210
- Section: GEOCHEMISTRY
- Submitted: 30.01.2025
- Published: 01.02.2023
- URL: https://cijournal.ru/2686-7397/article/view/649723
- DOI: https://doi.org/10.31857/S2686739722602046
- EDN: https://elibrary.ru/SVLUDS
- ID: 649723
Cite item
Abstract
The oxygen isotopic composition of minerals (Qtz, Zrn, Kfs) and bulk samples of Late Cretaceous porphyritic leucogranites of the Omsukchan trough, which are associated with the formation of tin and Sn-polymetallic mineralization, was studied. The δ18O values of bulk samples of leucogranites decrease from +9.7‰ (outside the Dukat ore field) to 10.6‰ (within the ore field), and the light isotope characteristics are mainly an attribute of feldspars and correspond to isotope exchange with meteoric fluid (δ18О = –15‰), over a wide range of T at limited fluid-to-rock ratios (W/R from 0.9–1.6 to 0.3–0.1). Unlike feldspars, the δ18O values of quartz and zircon are partially changed, in the former, probably, by the diffusion mechanism, and in the later, by the dissolution-precipitation one.
About the authors
Е. О. Dubinina
Institute of Geology of the Ore Deposits, Petrography, Mineralogy and Geochemistry, Russian Academy of Sciences
Author for correspondence.
Email: elenadelta@gmail.com
Russian, Moscow
L. G. Filimonova
Institute of Geology of the Ore Deposits, Petrography, Mineralogy and Geochemistry, Russian Academy of Sciences
Email: elenadelta@gmail.com
Russian, Moscow
A. S. Avdeenko
Institute of Geology of the Ore Deposits, Petrography, Mineralogy and Geochemistry, Russian Academy of Sciences
Email: elenadelta@gmail.com
Russian, Moscow
Yu. N. Chizhova
Institute of Geology of the Ore Deposits, Petrography, Mineralogy and Geochemistry, Russian Academy of Sciences
Email: elenadelta@gmail.com
Russian, Moscow
S. A. Kossova
Institute of Geology of the Ore Deposits, Petrography, Mineralogy and Geochemistry, Russian Academy of Sciences
Email: elenadelta@gmail.com
Russian, Moscow
О. М. Zhilicheva
Institute of Geology of the Ore Deposits, Petrography, Mineralogy and Geochemistry, Russian Academy of Sciences
Email: elenadelta@gmail.com
Russian, Moscow
L. Ya. Aranovich
Institute of Geology of the Ore Deposits, Petrography, Mineralogy and Geochemistry, Russian Academy of Sciences
Email: elenadelta@gmail.com
Russian, Moscow
References
- Farver J.R. Oxygen and Hydrogen Diffusion in Minerals // Rev. Mineral. Geochem. 2010. V. 72. P. 447–507.
- Harris C., Faure K., Diamond R.E., Scheepers R. Oxygen and hydrogen isotope geochemistry of S-and I-type granitoids: the Cape Granite suite, South Africa // Chemical Geology. 1997. V. 143 P. 95–114.
- Jenkin G.R.T., Farrow C.M., Fallic A.E., Higgins D. Oxygen isotope exchange and closure temperatures in cooling rocks // Journal of Metamorphic Geology. 1994. V. 12. P. 221–215.
- Watson E.B., Cherniak D.J. Oxygen diffusion in zircon // Earth and Planetary Science Letters. 1997. V. 148. P. 527–544.
- Chen W.T., Zhou M.-F. Hydrothermal alteration of magmatic zircon related to NaCl-rich brines: diffusion-reaction and dissolution-precipitation processes // American Journal of Science. 2017. V. 317. P. 177–215.
- Аранович Л.Я., Бортников Н.С., Зингер Т.Ф. и др. Морфология и элементы-примеси циркона из океанической литосферы осевой зоны САХ (6°–13°с.ш.): свидетельства особенностей магматической кристаллизации и постмагматических преобразований // Петрология. 2017. Т. 25. № 4. С. 335–361.
- Константинов М.М., Наталенко В.Е., Калинин А.И. и др. Золотосеребряное месторождение Дукат. М.: Недра, 1998. 202 с.
- Банникова Л.А. Органическое вещество в гидротермальном рудообразовании. М: Наука, 1990. 207 с.
- Дубинина Е.О., Филимонова Л.Г., Коссова С.А. Изотопные (δ34S, δ13C, δ18O) характеристики вкрапленной минерализации магматических пород Дукатского рудного поля (Северо-Восток России) // Геология рудных месторождений. 2019. Т. 61. № 1. С. 39–51.
- Стружков С.Ф., Константинов М.М. Металлогения золота и серебра Охотско-Чукотского вулканогенного пояса. М.: Научный мир, 2005. 318 с.
- Акинин В.В., Биндеман И. Н. Вариации изотопного состава кислорода в магмах Охотско Чукотского вулканогенного пояса // ДАН. 2021. Т. 499. № 1. С. 26–32.
- Котляр И.Н., Русакова Т.Б., Гагиева А.М. Буюндино-Сугойская рудоконцентрирующая площадь: уникальный металлогенический ареал Северо-Востока России // Тихоокеанская геология. 2004. Т. 23. № 1. С. 3–19.
- Valley J.W. Oxygen isotopes in zircon. In: Hanchar, J.M., Hoskin, P.W. O. (Eds.), Zircon. / Reviews in Mineralogy and Geochemistry. 2003. V. 53. P. 343–385.
- Wei C.-S., Zi-Fu Zhao, Spicuzza M.J. Zircon oxygen isotopic constraint on the sources of late Mesozoic A-type granites in eastern China // Chemical Geology. 2008. V. 250. P. 1–15.
- Taylor H.P., Sheppard S.M-F. Igneous rocks: I. Processes of isotopic fractionation and isotope systematics// Reviews in Mineralogy and Geochemistry. 1986. V. 16. P. 227–272.
- Челноков Г.А., Брагин И.В., Харитонова Н.А. Новые изотопно-геохимические данные по Таватумским термальным водам (Магаданская область) // Тихоокеанская геология. 2021. Т. 40. № 5. С. 104–114.
- Dennis P.F. Oxygen self-diffusion in quartz under hydrothermal conditions // Journal of Geophysical Research. 1984. V. 89. P. 4047–4057.
- Zhao Zi-Fu, Yong-Fei Zheng. Calculation of oxygen isotope fractionation in magmatic rocks // Chemical Geology. 2003. V. 193. P. 59–80.
- Vho A., Lanari P., Rubatto D. An internally-consistent database for oxygen isotope fractionation between minerals // Journal of Petrology. 2020. https://doi.org/10.1093/petrology.egaa001
- Zheng Y.F., Gong B., Zhao Z.F., Wu Y.B., Chen F.K. Zircon U-Pb age and O isotope evidence for Neoproterozoic low-18O magmatism during Supercontinental rifting in South China: implications for the snowball Earth event // American Journal of Science. 2008. V. 308. P. 484–516.
Supplementary files
