In vitro and in vivo biodegradation of silk fabric scaffolds

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

This study investigates the biodegradation of natural silk scaffolds made from gauze and satin fabrics under in vitro and in vivo conditions. Experiments were conducted using phosphate-buffered saline and Fenton’s reagent to model degradation. The samples demonstrated high stability under physiological conditions’ model and exhibited varying degradation rates under oxidative stress. In vivo studies on rats revealed good biocompatibility of the scaffolds and a gradual reduction in inflammatory responses. These findings highlight the potential of silk scaffolds for use in various areas of regenerative medicine.

Texto integral

Acesso é fechado

Sobre autores

I. Agapov

Academician V.I. Shumakov Federal Research Center of Transplantology and Artificial Organs, Ministry of Health of the Russian Federation

Autor responsável pela correspondência
Email: igor.agapov@gmail.com
Rússia, Moscow

E. Podbolotova

Academician V.I. Shumakov Federal Research Center of Transplantology and Artificial Organs, Ministry of Health of the Russian Federation; Moscow Institute of Physics and Technology

Email: igor.agapov@gmail.com
Rússia, Moscow; Dolgoprudny

E. Nemets

Academician V.I. Shumakov Federal Research Center of Transplantology and Artificial Organs, Ministry of Health of the Russian Federation

Email: igor.agapov@gmail.com
Rússia, Moscow

L. Kirsanova

Academician V.I. Shumakov Federal Research Center of Transplantology and Artificial Organs, Ministry of Health of the Russian Federation

Email: igor.agapov@gmail.com
Rússia, Moscow

N. Grudinin

Academician V.I. Shumakov Federal Research Center of Transplantology and Artificial Organs, Ministry of Health of the Russian Federation

Email: igor.agapov@gmail.com
Rússia, Moscow

A. Pashutin

Academician V.I. Shumakov Federal Research Center of Transplantology and Artificial Organs, Ministry of Health of the Russian Federation; Moscow Institute of Physics and Technology

Email: igor.agapov@gmail.com
Rússia, Moscow; Dolgoprudny

O. Agapova

Academician V.I. Shumakov Federal Research Center of Transplantology and Artificial Organs, Ministry of Health of the Russian Federation

Email: igor.agapov@gmail.com
Rússia, Moscow

A. Efimov

Academician V.I. Shumakov Federal Research Center of Transplantology and Artificial Organs, Ministry of Health of the Russian Federation

Email: igor.agapov@gmail.com
Rússia, Moscow

Yu. Basok

Academician V.I. Shumakov Federal Research Center of Transplantology and Artificial Organs, Ministry of Health of the Russian Federation

Email: igor.agapov@gmail.com
Rússia, Moscow

A. Lyundup

Рeoples’ Friendship University of Russia

Email: igor.agapov@gmail.com
Rússia, Moscow

S. Gautier

Academician V.I. Shumakov Federal Research Center of Transplantology and Artificial Organs, Ministry of Health of the Russian Federation; Sechenov University

Email: igor.agapov@gmail.com

Academician of the RAS

Rússia, Moscow; Moscow

Bibliografia

  1. Котлярова М.С., Архипова А.Ю., Мойсенович А.М., и др. Биорезорбируемые скаффолды на основе фиброина для регенерации костной ткани // Вестник Московского университета. Серия 16. Биология. 2017. № 4. С. 228–228.
  2. Котлярова М.С., Солдатенко А.С., Архипова А.Ю., и др. Фотоотверждаемые пленки на основе фиброина и желатина для регенерации кожных покровов // Вестник Московского университета. Серия 16. Биология. 2020. С. 23–30.
  3. Bai S., Zhang W., Lu Q., et al. Silk nanofiber hydrogels with tunable modulus to regulate nerve stem cell fate // J. Mater. Chem. B. 2014. Vol. 2, No. 38. P. 6590–6600.
  4. Dinis T.M., Elia R., Vidal G., et al. 3D multi-channel bi-functionalized silk electrospun conduits for peripheral nerve regeneration // J. Mech. Behav. Biomed. Mater. 2015. Vol. 41. P. 43–55. doi: 10.1016/j.jmbbm.2014.09.029. Epub 2014 Oct 13.
  5. Settembrini A., Buongiovanni G., Settembrini P., et al. In-vivo evaluation of silk fibroin small-diameter vascular grafts: State of art of preclinical studies and animal models // Frontiers in Surgery. 2023. Vol. 10.
  6. Vepari C., Kaplan D.L. Silk as a biomaterial // Prog. Polym. Sci. 2007. Vol. 32, No. 8-9. P. 991–1007. doi: 10.1016/j.progpolymsci.2007.05.013.
  7. Cao Y., Wang B. Biodegradation of silk biomaterials // Int. J. Mol. Sci. 2009. Vol. 10. P. 1514–1524.
  8. Сафонова Л.А., Боброва М.М., Ефимов А.Е., и др. Биодеградируемые материалы на основе тканей из натурального шелка как перспективные скаффолды для тканевой инженерии и регенеративной медицины // Вестник трансплантологии и искусственных органов. 2020. Т. 22, № 4. С. 105–114.
  9. Агапов И.И., Агапова О.И., Ефимов А.Е., и др. Способ получения биодеградируемых скаффолдов на основе тканей из натурального шелка // Патент на изобретение RU 2653428 С1. 08.05.2018.
  10. Muranov K.O. Fenton reaction in vivo and in vitro. Possibilities and limitations // Biochemistry (Mosc). 2024. Vol. 89, Suppl 1. P. S112–S126. doi: 10.1134/S0006297924140074.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Samples obtained during the study (5×): A – satin, G – gas; the numbers indicate the degree of material processing: 0 and 80%, respectively.

Baixar (221KB)
3. Fig. 2. Histological picture of samples on days 4, 14 and 56 of implantation (200×). Hematoxylin and eosin staining. a – A80 on day 4, b – A80 on day 14, c – A80 on day 56, d – G80 on day 4, d – G80 on day 14, e – G80 on day 56.

Baixar (751KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025