In vitro and in vivo biodegradation of silk fabric scaffolds

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This study investigates the biodegradation of natural silk scaffolds made from gauze and satin fabrics under in vitro and in vivo conditions. Experiments were conducted using phosphate-buffered saline and Fenton’s reagent to model degradation. The samples demonstrated high stability under physiological conditions’ model and exhibited varying degradation rates under oxidative stress. In vivo studies on rats revealed good biocompatibility of the scaffolds and a gradual reduction in inflammatory responses. These findings highlight the potential of silk scaffolds for use in various areas of regenerative medicine.

Full Text

Restricted Access

About the authors

I. I. Agapov

Academician V.I. Shumakov Federal Research Center of Transplantology and Artificial Organs, Ministry of Health of the Russian Federation

Author for correspondence.
Email: igor.agapov@gmail.com
Russian Federation, Moscow

E. I. Podbolotova

Academician V.I. Shumakov Federal Research Center of Transplantology and Artificial Organs, Ministry of Health of the Russian Federation; Moscow Institute of Physics and Technology

Email: igor.agapov@gmail.com
Russian Federation, Moscow; Dolgoprudny

E. A. Nemets

Academician V.I. Shumakov Federal Research Center of Transplantology and Artificial Organs, Ministry of Health of the Russian Federation

Email: igor.agapov@gmail.com
Russian Federation, Moscow

L. A. Kirsanova

Academician V.I. Shumakov Federal Research Center of Transplantology and Artificial Organs, Ministry of Health of the Russian Federation

Email: igor.agapov@gmail.com
Russian Federation, Moscow

N. V. Grudinin

Academician V.I. Shumakov Federal Research Center of Transplantology and Artificial Organs, Ministry of Health of the Russian Federation

Email: igor.agapov@gmail.com
Russian Federation, Moscow

A. R. Pashutin

Academician V.I. Shumakov Federal Research Center of Transplantology and Artificial Organs, Ministry of Health of the Russian Federation; Moscow Institute of Physics and Technology

Email: igor.agapov@gmail.com
Russian Federation, Moscow; Dolgoprudny

O. I. Agapova

Academician V.I. Shumakov Federal Research Center of Transplantology and Artificial Organs, Ministry of Health of the Russian Federation

Email: igor.agapov@gmail.com
Russian Federation, Moscow

A. E. Efimov

Academician V.I. Shumakov Federal Research Center of Transplantology and Artificial Organs, Ministry of Health of the Russian Federation

Email: igor.agapov@gmail.com
Russian Federation, Moscow

Yu. B. Basok

Academician V.I. Shumakov Federal Research Center of Transplantology and Artificial Organs, Ministry of Health of the Russian Federation

Email: igor.agapov@gmail.com
Russian Federation, Moscow

A. V. Lyundup

Рeoples’ Friendship University of Russia

Email: igor.agapov@gmail.com
Russian Federation, Moscow

S. V. Gautier

Academician V.I. Shumakov Federal Research Center of Transplantology and Artificial Organs, Ministry of Health of the Russian Federation; Sechenov University

Email: igor.agapov@gmail.com

Academician of the RAS

Russian Federation, Moscow; Moscow

References

  1. Котлярова М.С., Архипова А.Ю., Мойсенович А.М., и др. Биорезорбируемые скаффолды на основе фиброина для регенерации костной ткани // Вестник Московского университета. Серия 16. Биология. 2017. № 4. С. 228–228.
  2. Котлярова М.С., Солдатенко А.С., Архипова А.Ю., и др. Фотоотверждаемые пленки на основе фиброина и желатина для регенерации кожных покровов // Вестник Московского университета. Серия 16. Биология. 2020. С. 23–30.
  3. Bai S., Zhang W., Lu Q., et al. Silk nanofiber hydrogels with tunable modulus to regulate nerve stem cell fate // J. Mater. Chem. B. 2014. Vol. 2, No. 38. P. 6590–6600.
  4. Dinis T.M., Elia R., Vidal G., et al. 3D multi-channel bi-functionalized silk electrospun conduits for peripheral nerve regeneration // J. Mech. Behav. Biomed. Mater. 2015. Vol. 41. P. 43–55. doi: 10.1016/j.jmbbm.2014.09.029. Epub 2014 Oct 13.
  5. Settembrini A., Buongiovanni G., Settembrini P., et al. In-vivo evaluation of silk fibroin small-diameter vascular grafts: State of art of preclinical studies and animal models // Frontiers in Surgery. 2023. Vol. 10.
  6. Vepari C., Kaplan D.L. Silk as a biomaterial // Prog. Polym. Sci. 2007. Vol. 32, No. 8-9. P. 991–1007. doi: 10.1016/j.progpolymsci.2007.05.013.
  7. Cao Y., Wang B. Biodegradation of silk biomaterials // Int. J. Mol. Sci. 2009. Vol. 10. P. 1514–1524.
  8. Сафонова Л.А., Боброва М.М., Ефимов А.Е., и др. Биодеградируемые материалы на основе тканей из натурального шелка как перспективные скаффолды для тканевой инженерии и регенеративной медицины // Вестник трансплантологии и искусственных органов. 2020. Т. 22, № 4. С. 105–114.
  9. Агапов И.И., Агапова О.И., Ефимов А.Е., и др. Способ получения биодеградируемых скаффолдов на основе тканей из натурального шелка // Патент на изобретение RU 2653428 С1. 08.05.2018.
  10. Muranov K.O. Fenton reaction in vivo and in vitro. Possibilities and limitations // Biochemistry (Mosc). 2024. Vol. 89, Suppl 1. P. S112–S126. doi: 10.1134/S0006297924140074.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Samples obtained during the study (5×): A – satin, G – gas; the numbers indicate the degree of material processing: 0 and 80%, respectively.

Download (221KB)
3. Fig. 2. Histological picture of samples on days 4, 14 and 56 of implantation (200×). Hematoxylin and eosin staining. a – A80 on day 4, b – A80 on day 14, c – A80 on day 56, d – G80 on day 4, d – G80 on day 14, e – G80 on day 56.

Download (751KB)

Copyright (c) 2025 Russian Academy of Sciences