Homeotic DUX4 genes shape dynamic inter-chromosomal contacts with nucleoli in human cells

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Nucleoli shape inter-chromosomal contacts with genes controlling differentiation and cancer genesis. DUX4 genes specify transcription factor possessing two homeodomains. Previously, using Circular Chromosome Conformation Capture (4С) approach on population of cells, it was demonstrated that DUX4 gene clusters form frequent contacts with nucleoli. It was found also that these contacts are almost completely abolished after heat shock treatment. 4C approach as all ligation-mediated methods is capable to detect rather close interactions between chromatin loops in nuclei. In order to independently confirm the formation and the frequency of the contacts in single cells we used FISH approach. Here, we show that DUX genes in single cells form stable contacts in all tested HEK293T cells. The contacts after heat shock treatment reversibly retreat up to 1–3 μm distance. We conclude that inter-chromosomal contacts shaping by nucleoli are dynamic and stable providing both the initiation and maintenance of a differentiated state.

Full Text

Restricted Access

About the authors

Е. S. Klushevskaya

Engelhardt Institute of Molecular Biology Russian Academy of Sciences

Email: tchurikov@eimb.ru
Russian Federation, Moscow

I. R. Alembekov

Engelhardt Institute of Molecular Biology Russian Academy of Sciences

Email: tchurikov@eimb.ru
Russian Federation, Moscow

Yu. V. Kravatsky

Engelhardt Institute of Molecular Biology Russian Academy of Sciences

Email: tchurikov@eimb.ru
Russian Federation, Moscow

N. А. Tchurikov

Engelhardt Institute of Molecular Biology Russian Academy of Sciences

Author for correspondence.
Email: tchurikov@eimb.ru
Russian Federation, Moscow

References

  1. Savic N., Bär D., Leone S., Frommel S.C., Weber F.A., Vollenweider E., Ferrari E., Ziegler U., Kaech A., Shakhova O., Cinelli P., Santoro R. lncRNA maturation to initiate heterochromatin formation in the nucleolus is required for exit from pluripotency in ESCs // Cell Stem Cell. 2014. Vol. 15. № 6. P. 720–734.
  2. Tchurikov N.A., Fedoseeva D.M., Sosin D.V., Snezhkina A.V., Melnikova N.V., Kudryavtseva A.V., Kravatsky Y.V., Kretova O.V. Hot spots of DNA double-strand breaks and genomic contacts of human rDNA units are involved in epigenetic regulation // J. Mol. Cell Biol. 2015. Vol. 7. № 4. P. 366–382.
  3. Tchurikov N.A., Kravatsky Y.V. The Role of rDNA Clusters in Global Epigenetic Gene Regulation // Front. Genet. 2021. Vol. 12. P. 730633.
  4. Kobayashi T. Ribosomal RNA gene repeats, their stability and cellular senescence // Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2014. Vol. 90. № 4. P. 119–129.
  5. Feng S., Desotell A., Ross A., Jovanovic M., Manley J.L. A nucleolar long “non-coding” RNA encodes a novel protein that functions in response to stress // PNAS. 2023. Vol. 120. № 9. P. e2221109120.
  6. Tchurikov N.A., Fedoseeva D.M., Klushevskaya E.S., Slovohotov I.Y., Chechetkin V.R., Kravatsky Y.V., Kretova O.V. rDNA clusters make contact with genes that are involved in differentiation and cancer and change contacts after heat shock treatment // Cells. 2019. Vol. 8. № 11. P. 1393.
  7. Diesch J., Bywater M.J., Sanij E., Cameron D.P., Schierding W., Brajanovski N., Son J., Sornkom J., Hein N., Evers M., Pearson R.B., McArthur G.A., Ganley A.R.D., O’Sullivan J.M., Hannan R.D., Poortinga G. Changes in long-range rDNA-genomic interactions associate with altered RNA polymerase II gene programs during malignant transformation // Commun. Biol. 2019. Vol. 2. P. 39.
  8. Tchurikov N.A., Klushevskaya E.S., Alembekov I.R., Kretova A.N., Chechetkin V.R., Kravatskaya G.I., Kravatsky Y.V. Induction of the Erythroid Differentiation of K562 Cells Is Coupled with Changes in the Inter-Chromosomal Contacts of rDNA Clusters // International Journal of Molecular Sciences. 2023. Vol. 24. № 12. P. 9842.
  9. Tchurikov N.A., Klushevskaya E.S., Kravatsky Y.V., Kravatskaya G.I., Fedoseeva D.M., Kretova O.V. Interchromosomal Contacts of rDNA Clusters with DUX Genes in Human Chromosome 4 Are Very Sensitive to Heat Shock Treatment // Dokl. Biochem. Biophys. 2020. Vol. 490. № 1. P. 50–53.
  10. Bystricky K., Heun P., Gehlen L., Langowski J., Gasser S.M. Long-range compaction and flexibility of interphase chromatin in budding yeast analyzed by high-resolution imaging techniques. PNAS. 2004. Vol. 101. № 47. P. 16495–16500.
  11. Maden B.E., Dent C.L., Farrell T.E., Garde J., McCallum F.S., Wakeman J.A. Clones of human ribosomal DNA containing the complete 18 S-rRNA and 28 S-rRNA genes. Characterization, a detailed map of the human ribosomal transcription unit and diversity among clones // Biochem. J. 1987. Vol. 246. № 2. P. 519–527.
  12. Nakamura R.M. Overview and Principles of In-Situ Hybridization // Clinical Biochemistry. 1990. V. 23. № 4. P. 255–259.
  13. Bolte S., Cordelières F.P. A guided tour into subcellular colocalization analysis in light microscopy // Journal of Microscopy. 2006. Vol. 224. № 3. P. 213–232.
  14. Schaap M., Lemmers R.J., Maassen R., van der Vliet P.J., Hoogerheide L.F., van Dijk H.K., Basturk N., de Knijff P., van der Maarel S.M. Genome-wide analysis of macrosatellite repeat copy number variation in worldwide populations: Evidence for differences and commonalities in size distributions and size restrictions // BMC Genomics 2013. 14:143.
  15. Lemmers R.J.L.F., van der Vliet P.J., Vreijling J.P., Henderson D., van der Stoep N., Voermans N., van Engelen B., Baas F., Sacconi S., Tawil R., van der Maarel S.M. Cis D4Z4 repeat duplications associated with facioscapulohumeral muscular dystrophy type 2 // Human Molecular Genetics. 2018. Vol. 27. № 20. P. 3488–3497.
  16. Kretova O.V., Fedoseeva D.M., Kravatsky Y.V., Alembekov I.R., Slovohotov I.Y., Tchurikov N.A. Homeotic DUX4 Genes that Control Human Embryonic Development at the Two-Cell Stage are Surrounded by Regions Contacting with rDNA Gene clusters // Molecular Biology. 2019. Т. 53. № 2. С. 237–241.
  17. Чуриков Н.А., Клушевская Е.С., Кравацкий Ю.В., Кравацкая Г.И., Федосеева Д.М. Меж-хромосомные контакты генов рРНК в трех линиях клеток человека связаны с сайленсингом генов, контролирующих морфогенез // ДАН. Науки о жизни. 2021. Т.496. № 1. C. 70–74.
  18. Percharde M., Lin C.J., Yin Y., Guan J., Peixoto G.A., Bulut-Karslioglu A., Biechele S., Huang B., Shen X., Ramalho-Santos M. A LINE1-nucleolin partnership regulates early development and ESC identity // Cell. 2018. Vol. 174. № 2. P. 391–405.e19.
  19. Hnisz D., Abraham B.J., Lee T.I., Lau A., Saint-Andre V., Sigova A.A., Hoke H.A., Young R.A. Super-enhancers in the control of cell identity and disease // Cell. 2013. Vol. 155. № 4. P. 934–947.
  20. Shrinivas K., Sabari B.R., Coffey E.L., Klein I.A., Boija A., Zamudio A.V., Schuijers J., Hannett N.M., Sharp P.A.,Young R.A., Chakraborty A.K. Enhancer Features that Drive Formation of Transcriptional Condensates // Mol Cell. 2019. Vol. 75. № 3. P. 549–561.e7.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. A physical map of the subtelomeric region of chr4 and the contact points of rRNA genes identified using the 4C method in the HEK293T cell line (coordinates in the IGB genomic browser are given for the hg19 version of the human genome). The blue color shows the contact points of the rRNA genes. The DUX genes are indicated in green. The red rectangle indicates a 5511 bp DNA region that was developed using long PCR and used for FISH.

Download (162KB)
3. Fig. 2. FISH results. a – experiments with the original cells. b – experiments with cells after heat shock. White shows the axis when scanning fluorescence signals passing through the center of the nucleoli. b – Core scan profile without heat shock. g – core scan profile after heat shock. The DUX signal (Alexa-5) is shown in red, and the rDNA signal (Alexa-3) is green. The distances in microns are shown horizontally.

Download (153KB)
4. Fig. 3. Diagrams showing the number of DUX probe hybridization foci per nucleus in the initial cells and in cells after heat shock (a) and % of DUX sample hybridization foci in nuclei as they move away from the center of the nucleolus (b). HS – experiments with initial cells. HS+ – experiments with cells after heat shock. 100 cells were used for the analysis. p-value < 0.05.

Download (87KB)

Note

Presented by Academician of the RAS P. G. Georgiev


Copyright (c) 2024 Russian Academy of Sciences