Combined effect of basic antiherpetic drugs with a new inhibitor of the terminase complex of herpes simplex virus type 1 in Vero cell culture

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

More than 90% of the world’s population are carriers of herpes simplex virus type 1 (HSV-1). The infection manifests itself in the formation of blisters and ulcers on the face or genitals, and can cause blindness, encephalitis, and generalized infection. All modern first- and second-line antiherpetic drugs selectively inhibit viral DNA-polymerase. The purine-benzoxazine conjugate LAS-131 [(S)-4-[6-(purin-6-yl)aminohexanoyl]-7,8-difluoro-3,4-dihydro-3-methyl-2H-[1,4]benzoxazine], which we described earlier, uses the large subunit of the HSV-1 terminase complex as a biotarget and selectively inhibits its reproduction in vitro. For the first time, we have obtained fundamentally new results on the combined effect of LAS-131 on human herpesvirus infection with practically significant antiviral compounds – nucleoside analogues (acyclovir [ACV], penciclovir [PCV], ganciclovir [GCV], brivudine [BVDU], iododeoxyuridine [IDU], adenine arabinoside [Ara-A], as well as a nucleoside phosphonate analogue (cidofovir [CDV]) and a pirophosphate analogue (foscarnet [FOS]). Using a inhibition assay of cytopathic effect (CPE) induced by a virus, it was shown that when combined with LAS-131, the concentrations of the compounds in combinations providing inhibition of HSV-1-induced CPE by 50%, decreased by 2 times (additive effect, FOS) or more (synergistic effect, ACV, PCV, GCV, IDU, BVDU, Ara-A, CDV). Reducing the concentrations of agents creates non-permissive conditions for the reproduction of HSV-1 and opens up new real possibilities for controlling human herpesvirus infection.

Full Text

Restricted Access

About the authors

V. L. Andronona

FSBI “National Research Center for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya” of the Ministry of Health of Russia

Author for correspondence.
Email: andronova.vl@yandex.ru
Russian Federation, Moscow

G. A. Galegov

FSBI “National Research Center for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya” of the Ministry of Health of Russia

Email: andronova.vl@yandex.ru
Russian Federation, Moscow

O. А. Vozdvizhenskaya

FSBIN “I.Ya. Postovky Institute of Organic Synthesis”, Ural Branch of the Russian Academy of Sciences

Email: andronova.vl@yandex.ru
Russian Federation, Ekaterinburg

G. L. Levit

FSBIN “I.Ya. Postovky Institute of Organic Synthesis”, Ural Branch of the Russian Academy of Sciences

Email: andronova.vl@yandex.ru
Russian Federation, Ekaterinburg

V. P. Krasnov

FSBIN “I.Ya. Postovky Institute of Organic Synthesis”, Ural Branch of the Russian Academy of Sciences

Email: andronova.vl@yandex.ru
Russian Federation, Ekaterinburg

V. N. Charushin

FSBIN “I.Ya. Postovky Institute of Organic Synthesis”, Ural Branch of the Russian Academy of Sciences

Email: andronova.vl@yandex.ru

Academician of the RAS

Russian Federation, Ekaterinburg

References

  1. James C., Harfouche M., Turner K.M., et al. Herpes simplex virus: global infection prevalence and incidence estimates, 2016 // Bulletin of the World Health Organ. 2020, Vol. 98, № 5, P. 315–329.
  2. Das D., Hong J. Chapter 12. Herpesvirus Polymerase Inhibitors. In: Gupta, S.P., editor. Viral Polymerases: Structures, Functions and Roles as Antiviral Drug Targets London: Academic Press; 2019.P. 333–356.
  3. Garikapati S., Nguyen M. Foscarnet [Internet]. Treasure Island (FL): Stat Pearls Publishing; 2023.
  4. Drug Monograph Cidofovir [Internet]. Elsevier: Content from Elsevier’s drug information, 2023.
  5. Андронова В.Л. Современная этиотропная химиотерапия герпесвирусных инфекций: достижения, новые тенденции и перспективы. Альфагерпесвирусы (часть II) // Вопросы вирусологии. 2018. Т. 63, № 4. С.149–159.
  6. Birkmann A., Zimmermann H. HSV antivirals – current and future treatment options // Current Opinion in Virology // 2016. Vol. 18. P. 9–13.
  7. Menéndez-Arias L., Delgado R. Update and latest advances in antiretroviral therapy // Trends in Pharmacological Sciences. 2022, Vol. 43, № 1. P. 16–29.
  8. Sarrazin C. The importance of resistance to direct antiviral drugs in HCV infection in clinical practice // Journal of Hepatology. 2016. Vol. 64, № 2. P. 486–504.
  9. Jones J.C., Yen H.-L., Adams P., et al. Influenza antivirals and their role in pandemic preparedness // Antiviral Research. 2023. Vol. 210. P. 105499.
  10. Beigel J.H., Bao Y., Beeler J., et al. Oseltamivir, amantadine, and ribavirin combination antiviral therapy versus oseltamivir monotherapy for the treatment of influenza: a multicentre, double-blind, randomised phase 2 trial // The Lancet Infection Diseases. 2017. Vol. 17, № 12. P. 1255–1265.
  11. Sagnier S., Poli M., Debruxelles S., et al. High-dose acyclovir combined with foscavir (foscarnet) in the management of severe herpes simplex virus meningoencephalitis // Revue Neurologique (Paris). 2017. Vol. 173, № 4. P. 240–242.
  12. Krasnov V.P., Musiyak V.V., Vozdvizhenskaya O.A., et al. N-[ω-(Purin-6-yl)aminoalkanoyl] derivatives of chiral heterocyclic amines as promising anti-herpesvirus agents // European Journal of Organic Chemistry. 2019. Vol. 2019. Issue 30. P. 4811–4821.
  13. Krasnov V.P., Andronova V.L., Belyavsky A.V., et al. Large Subunit of the Human Herpes Simplex Virus Terminase as a Promising Target in Design of Anti-Herpesvirus Agents // Molecules. 2023. Vol. 28, № 21. P. 7375.
  14. Yang Y., Yang P., Wang N., et al. Architecture of the herpesvirus genome-packaging complex and implications for DNA translocation // Protein &Cell. 2020. Vol. 11. № 5. P. 339–351.
  15. Превимис (Previmis) [Internet]. Справочник лекарственных средств Vidal.
  16. Maruhoreceives manufacturing and marketing approval for a partial change of the indication and dosage/administration for anti-herpes virus agent “Amenalief Tab. 200 mg” for the treatment of recurrent Herpes Simplex in Japan [Internet]. Maruho: News Release 2023.02.24.
  17. Shiraki K., Yasumoto S., Toyama N., et al. Amenamevir, a Helicase-Primase Inhibitor, for the Optimal Treatment of Herpes Zoster // Viruses. 2021. Vol. 13. № 8. P. 1547.
  18. Андронова В.Л., Ясько М.В., Куханова М.К., и др. Исследование подавления репродукции вируса простого герпеса с лекарственной устойчивостью сочетанием фосфита ациклогуанозина с некоторыми противогерпетическими препаратами // Вопросы вирусологии. 2014. Т. 59, № 6. С. 32–35.
  19. Poole C.L., James S.H. Antiviral Therapies for Herpesviruses: Current Agents and New Directions // Clinical Therapeutics. 2018. Vol. 40, № 8. P. 1282–1298.
  20. Van Roon E.N., Flikweert S., Le Comte M., et al. Clinical Relevance of Drug-Drug Interactions: A structured assessment procedure // Drug Safety Journal. 2005. Vol. 28, № 12. P. 1131–1139.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences