Plants of various monocot families differ in nitrogen and phosphorus content in leaves

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The content of N and P in the leaves of the following five families of monocots was studied: Poaceae, Cyperaceae, Orchidaceae, Iridaceae, Amaryllidaceae. It was found that species of different families of monocots had different N and P content and ratio in their leaves. N content was low in Iridaceae and high in Amaryllidaceae. P content was the lowest in Cyperaceae and Poaceae and the highest in Amaryllidaceae and Iridaceae. The minimum N/P ratio was in Iridaceae, the maximum in Poaceae. Thus, the content of N and P and their ratio is specific in different families of monocots.

Толық мәтін

Рұқсат жабық

Авторлар туралы

А. Betekhtina

Ural Federal University

Хат алмасуға жауапты Автор.
Email: A.A.Betekhtina@urfu.ru
Ресей, Ekaterinburg

N. Reutova

Ural Federal University

Email: A.A.Betekhtina@urfu.ru
Ресей, Ekaterinburg

D. Veselkin

Institute of Plant and Animal Ecology, Ural Branch of the Russian Academy of Sciences

Email: A.A.Betekhtina@urfu.ru
Ресей, Ekaterinburg

Әдебиет тізімі

  1. Elser J.J. et al. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems // Ecology letters. 2007. Т. 10. №. 12. С. 1135–1142.
  2. Bui E.N., Henderson B.L. C: N: P stoichiometry in Australian soils with respect to vegetation and environmental factors // Plant and soil. 2013. Т. 373. С. 553–568.
  3. Awasthi P., Laxmi A. Root Architectural Plasticity in Changing Nutrient Availability // Rhizobiology: Molecular Physiology of Plant Roots. 2021. С. 25–37.
  4. He M. et al. Leaf nitrogen and phosphorus of temperate desert plants in response to climate and soil nutrient availability // Scientific Reports. 2014. Т. 4. №. 1. С. 6932. 1.
  5. Зубкова Е.В., Стаменов М.Н., Припутина И.В., Грабовский В.И. Использование методов фитоиндикации для оценки связи содержания азота в растениях с условиями их произрастания (на примере лесов Южного Подмосквья) // Ботанический журнал. 2023. Т. 108. №10. С. 896–913.
  6. Güsewell S.N. P ratios in terrestrial plants: variation and functional significance // New phytologist. – 2004. Т. 164. №. 2. С. 243–266. https://doi.org/10.1111/j.1469-8137.2004.01192.x
  7. Бетехтина А.А. и др. За 50 лет зарастания отвала золы содержание азота и фосфора изменилось в эмбриоземе, но не изменилось в растениях // Экология. 2023. №. 4. С. 281–290.
  8. Онипченко В.Г. и др. Химический состав листьев растений как функциональный признак формирования альпийских растительных сообществ // Экология. 2023. №. 6. С. 407–415.
  9. Chapin F.S. et al. Plant responses to multiple environmental factors // Bioscience. 1987. Т. 37. №1. С. 49–57.
  10. Konoplenko M.A., Güsewell S., Veselkin D.V. Taxonomic and ecological patterns in root traits of Carex (Cyperaceae) // Plant and Soil. 2017. Т. 420. С. 37–48.
  11. Lambers H. Phosphorus acquisition and utilization in plants // Annual Review of Plant Biology. 2022. Т. 73. С. 17–42.
  12. van Der Heijden M.G.A. et al. Mycorrhizal ecology and evolution: the past, the present, and the future // New phytologist. 2015. Т. 205. №4. С. 1406–1423.
  13. Betekhtina A.A., Tukova D.E., Veselkin D.V. Root structure syndromes of four families of monocots in the Middle Urals // Plant Diversity. 2023.
  14. Minasiewicz J. et al. Stoichiometry of carbon, nitrogen and phosphorus is closely linked to trophic modes in orchids // BMC Plant Biology. 2023. Т. 23. №. 1. С. 422.
  15. Wang Z. et al. Divergent nitrogen and phosphorus allocation strategies in terrestrial plant leaves and fine roots: A global meta-analysis // Journal of Ecology. 2022. Т. 110. №. 11. С. 2745–2758.
  16. Postma J.A., Lynch J.P. Root cortical aerenchyma enhances the growth of maize on soils with suboptimal availability of nitrogen, phosphorus, and potassium // Plant physiology. 2011. Т. 156. №3. С. 1190–1201.
  17. Gahoonia T.S., Nielsen N.E. Barley genotypes with long root hairs sustain high grain yields in low-P field // Plant and Soil. 2004. Т. 262. С. 55–62.
  18. Roumet C. et al. Root structure–function relationships in 74 species: evidence of a root economics spectrum related to carbon economy // New Phytologist. 2016. Т. 210. №3. С. 815–826.
  19. Yang X. et al. How arbuscular mycorrhizal fungi drives herbaceous plants’ C: N: P stoichiometry? A meta-analysis // Science of The Total Environment. 2023. Т. 862. С. 160807.
  20. Макаров М.И. Роль микоризы в трансформации соединений азота в почве и в азотном питании растений (обзор) // Почвоведение. 2019. №2. С. 220–233.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Distribution of monocotyledonous family species (● – Amaryllidaceae; ● – Cyperaceae; ● – Iridaceae; ● – Orchidacea; ● – Poaceae) in the space defined by the content of N and P in the leaves. A single red arrow marks the point characterizing the N and P content in Avena sativa leaves on cultivated soil without additional fertilization. The range of N and P content in the leaves of this species when grown on additionally fertilized soil is shown by horizontal and vertical scales. A double red arrow marks the point characterizing the content of N and P in the leaves of Miscanthus sacchariflorus.

Жүктеу (98KB)

Ескертпе

Presented by Academician of the RAS V.N. Bolshakov


© Russian Academy of Sciences, 2024