Magnetoelectric Properties of Cylindrical Ferromagnetic Particles

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

In the framework of the phenomenological approach, we obtained a non-uniform vortex distribution of magnetization and the associated non-uniform electric polarization in small magnetic particles in the shape of cylinders. The microscopic mechanism of this connection between magnetization and polarization is due to spin-orbit interaction. Within the framework of the phenomenological approach, the emergence of an inhomogeneous magnetic state and the associated appearance of inhomogeneous electric polarization in the volume of small magnetic particles have been studied. The specific form for magnetization and polarization is determined by the shape and size of the cylindrical particles. Using the free energy expression for magnetization, we obtained a nonuniform distribution of magnetization in the form of three-dimensional magnetic vortices. A vortex state occurs only for cylinders with a radius greater than a certain critical value, and for particles with a smaller radius a uniform magnetic state arises. In a vortex state, non-uniform electric polarization occurs, directed in the form of rays from the cylinder axis. The region of existence of such inhomogeneous states has been determined. The change in local electric polarization of small magnetic particles in an external magnetic field is considered. An expression for the magnetoelectric susceptibility is obtained.

Sobre autores

Т. Shaposhnikova

Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of RAS

Autor responsável pela correspondência
Email: t_shap@kfti.knc.ru
Rússia, Kazan, 420029

R. Mamin

Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of RAS

Email: mamin@kfti.knc.ru
Rússia, Kazan, 420029

Bibliografia

  1. Hehn M., Ounadjela K., Bucher J-P et al. // Science. 1996. V. 272. No. 5269. P. 1782. https://doi.org/10.1126/science.272.5269.1782
  2. Cowburn R.P., Koltsov D.K., Adeyeye A.O., Welland M. E., and Tricker D. M. // Phys. Rev. Lett. 1999. V. 83. No. 5. P. 1042. https://doi.org/10.1103/PhysRevLett.83.1042
  3. Stapper Jr. C.H. // J. Appl. Phys. 1969. V. 40. No. 2. P. 798. https://doi.org/10.1063/1.1657466
  4. Usov N.A., Nesmeyanov M.S. // Scientific Reports. 2020. V. 10. Art. No. 10173. https://doi.org/10.1038/s41598-020-67173-5
  5. Peixoto L., Magalhaes R., Navas D. et al. // Appl. Phys. Rev. 2020. V. 7. Art. No. 011310. https://doi.org/10.1063/1.5121702
  6. Sergienko I.A., Dagotto E. // Phys. Rev. B. 2006. V. 73, № 9, P. 094434. https://doi.org/ 10.1103/PhysRevB.73.094434
  7. Cheong S.-W., Mostovoy M. // Nat. Mater. 2007. V. 6. № 1, P. 13. https://doi.org/ 10.1038/nmat1804
  8. Roßler U. K., Bogdanov A. N., Pfleiderer C. // Nature. 2006. V. 442. P. 17. https://doi.org/10.1038/nature05056
  9. Levanyuk A.P., Blinc R. // Phys. Rev. Lett. 2013. V. 111. No. 9. Art. No. 097601. https://doi.org/10.1103/PhysRevLett.111.097601
  10. Hill N.A. // J. Phys. Chem. B. 2000. V. 104. No. 29. P. 6694. https://doi.org/10.1021/jp000114x
  11. Khanh N.D., Abe N., Sagayama H., Nakao A., Hanashima T., Kiyanagi R., Tokunaga Y., Arima T. // Phys. Rev. B. 2016. V. 93. № 7. P. 075117. https://doi.org/10.1103/PhysRevB.93.075117
  12. Ma C., Zhang X., Xia J., Ezawa M., Jiang W., Ono T., Piramanayagam S. N., Morisako A., Zhou Y., Liu X. // Nano Lett. 2019. V. 19, P. 353. https://doi.org/ 10.1021/acs.nanolett.8b03983
  13. Zheng F., Rybakov F.N., Borisov A.B., Song D., Wang S., Li Zi-An, Du H., Kiselev N.S., Caron J., Kovacs A., Tian M., Zhang Y., Brugel S., Dunin-Borkowski R.E. // Nature Nanotechnology. 2018. V. 13. P. 451. https://doi.org/10.1038/s41565-018-0093-3
  14. Гуревич Л. Э., Филиппов Д. А. // Физика твердого тела. 1986. Т. 28. № 9. С. 2696.
  15. Zhang X., Zhou Y., Song K.M., Park T.-E., Xia J., Ezawa M., Liu X., Zhao W., Zhao G., Woo S. // J. Phys.: Condens. Matter. 2020. V. 32. P. 143001. https://doi.org/10.1088/1361-648X/ab5488
  16. Mostovoy M. // Phys. Rev. Lett. 2006. V. 96. № 6. P. 067601. https://doi.org/10.1103/PhysRevLett.96.067601.
  17. Логгинов А.С., Мешков Г.А., Николаев А.В., Пятаков А.П. // Письма в ЖЭТФ. 2007. Т. 86. № 2. С. 124; (Logginov A.S., Meshkov G.A., Nikolaev A.V., Pyatakov A.P. // JETP Letters. 2007. V. 86. No. 2. P. 115). https://doi.org/10.1134/S0021364007140093
  18. Levanyuk A.P., Blinc R. // Phys. Rev. Lett. 2013. V. 111. No. 9. Art. No. 097601. https://doi.org/10.1103/PhysRevLett.111.097601
  19. Дзялошинский И.Е. // ЖЭТФ. 1960. Т. 37. № 3. С. 881; Dzyaloshinskii I.E. // JETP. 1960. V. 10. No. 3. P. 628.
  20. Moriya T. // Phys. Rev. 1960. V. 120. No. 1. P. 91. https://doi.org/10.1103/PhysRev.120.91
  21. Звездин А.К., Пятаков А.П. // УФН. 2009. Т. 179. № 8. С. 897. https://doi.org/10.3367/UFNr.0179.200908i.0897
  22. Пятаков А.П., Звездин А.К. // УФН. 2012. Т. 182. № 6. С. 593. https://doi.org/10.3367/UFNr.0182.201206b.0593
  23. Pyatakov A.P., Sergeev A.S., Mikailzade F.A., Zvezdin A.K. // JMMM. 2015. V. 383. P. 255. https://doi.org/ 10.1016/j.jmmm.2014.11.035
  24. Шапошникова Т.С., Мамин Р.Ф. // Поверхность. Рентгеновские, синхротронные и нейтронные исследования. 2021. № 12. С. 31. https://doi.org/10.31857/S1028096021120190; (Shaposhnikova T.C., Mamin R.F. // J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 2021. V. 15. № 6. P. 1282). https://doi.org/10.1134/S1027451021060434
  25. Шапошникова Т.С., Мамин Р.Ф. // Изв. РАН. Сер. физ. 2024. Т. 88. № 5; (Shaposhnikova T.C., Mamin R.F. // Bull. Russ. Acad. Sci. Phys. 2024. V. 88. No. 5. P. 783. https://doi.org/10.1134/S1062873824706597
  26. Ландау Л.Д., Лифшиц Е.М. Электродинамика сплошных сред. Москва: Наука, 1982, 620 с.
  27. Sato M., Ishii Y. // J. Appl. Phys. 1989. V. 66. P. 983. https://doi.org/10.1063/1.343481

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025