Histilogical aspects of long-term culture in vitro of Lavandula angustifolia Mill. morphogenic calluses
- Authors: Kruglova N.N.1,2, Seldimirova O.A.2, Zinatullina A.E.1,2, Yegorova N.А.1
-
Affiliations:
- Research Institute of Agriculture of Crimea
- UFRC RAS
- Issue: No 1 (2025)
- Pages: 5-15
- Section: DEVELOPMENTAL BIOLOGY
- URL: https://cijournal.ru/1026-3470/article/view/682144
- DOI: https://doi.org/10.31857/S1026347025010019
- ID: 682144
Cite item
Full Text
Abstract
Histological events occurring in morphogenic calluses of Lavandula angustifolia Mill. are described for the first time during long-term (2–5 passages) in vitro culture. In the calluses of passage 2, buds and leaves of normal structure (the de novo organogenesis pathway), as well as somatic embryos of normal structure originating from the bud epidermis cells (the somatic embryogenesis in vitro pathway) were revealed. As the calluses were cultivated further, its normal morphogenetic potential was gradually lost. If only the buds were characterized by the normal structure in the calluses of passage 3, and the leaves had an abnormal structure, then the buds of mainly abnormal structure were noted in the calluses of passage 4, and only structurally degenerated tissues were noted in the calluses of passage 5. The question about reducing the properties of pluri- and totipotency of callus cells as they were cultured in vitro discussed. The histological data obtained can be used in choosing the duration of callus culture in vitro to obtain full-fledged regenerants of this valuable essential oil and medicinal plant in various cell biotechnologies.
Full Text

About the authors
N. N. Kruglova
Research Institute of Agriculture of Crimea; UFRC RAS
Author for correspondence.
Email: kruglova@anrb.ru
Ufa Institute of biology – subdivision of the UFRC RAS
Russian Federation, Kievskaya str., 150, Simferopol, 295043; pr. Oktyabrya, 69, Ufa, 450054O. A. Seldimirova
UFRC RAS
Email: kruglova@anrb.ru
Ufa Institute of biology
Russian Federation, pr. Oktyabrya, 69, Ufa, 450054A. E. Zinatullina
Research Institute of Agriculture of Crimea; UFRC RAS
Email: kruglova@anrb.ru
Ufa Institute of biology – subdivision of the UFRC RAS
Russian Federation, Kievskaya str., 150, Simferopol, 295043; pr. Oktyabrya, 69, Ufa, 450054N. А. Yegorova
Research Institute of Agriculture of Crimea
Email: kruglova@anrb.ru
Russian Federation, Kievskaya str., 150, Simferopol, 295043
References
- Батыгина Т. Б. Биология развития растений. Симфония жизни. СПб.: Изд-во ДЕАН, 2014. 712 с.
- Зинатуллина А. Е. Формирование морфогенетических очагов как основа гемморизогенеза in vitro в зародышевых каллусах пшеницы // Экобиотех. 2023. Т. 6. № 2. С. 81–90. doi: 10.31163/2618-964X-2023-6-2-81-90.
- Егорова Н. А. Биотехнология эфиромасличных растений: создание новых форм и микроразмножение in vitro. Симферополь: ИД “Автограф”, 2021. 315 с.
- Калинин Ф. Л., Сарнацкая В. В., Полищук В. Е. Методы культуры тканей в физиологии и биохимии. Киев: Наукова думка, 1980. 468 с.
- Круглова Н. Н. Продолжительность культивирования in vitro зародышевых каллусов пшеницы влияет на проявление их морфогенетического и регенерационного потенциала // Экобиотех. 2022. Т. 5. № 3. С. 98–108. doi: 10.31163/2618-964X-2022-5-3-98-108.
- Круглова Н. Н., Зинатуллина А. Е., Егорова Н. А. Морфогенез in vitro в каллусах лаванды узколистной Lavandula angustifolia Mill.: гистологические аспекты // Изв. РАН. Сер. биол. 2024. № 3. В печати.
- Паштецкий В. С., Невкрытая Н. В., Мишнев А. В., Назаренко Л. Г. Эфиромасличная отрасль Крыма. Вчера, сегодня, завтра. Симферополь: ИТ “Ариал”, 2018. 320 с.
- Световой микроскоп как инструмент в биотехнологии растений / Н. Н. Круглова, О. В. Егорова, О. А. Сельдимирова, Д. Ю. Зайцев, А. Е. Зинатуллина. Уфа: Гилем, 2013. 128 с.
- Al-Tai A.A.R., Mohammed A. A. Production of Lavender (Lavandula Angustifolia) Plants from Somatic Embryos Developed from its Seedlings Leaf Callus // Raf. J. Sci. 2022. V. 31. P. 12–19. doi: 10.33899/RJS.2022.176073.
- Babanina S. S., Yegorova N. A., Stavtseva I. V., Abdurashitov S. F. Genetic Stability of Lavender (Lavandula angustifolia Mill.) Plants Obtained during Long-Term Clonal Micropropagation // Russ. Agricult. Sci. 2023. V. 49. P. 132–139. doi: 10.3103/S1068367423020027.
- Bekalu Z. E., Panting M., Holme I. B., Brinch-Pedersen H. Opportunities and Challenges of In Vitro Tissue Culture Systems in the Era of Crop Genome Editing // Int. J. Mol. Sci. 2023. V. 24. Article number: 11920. doi: 10.3390/ijms241511920.
- Bidabadi S. S., Jain S. M. Cellular, Molecular, and Physiological Aspects of In Vitro Plant Regeneration // Plants. 2020. V. 9. Article number: 702. doi: 10.3390/plants9060702.
- Bustillo-Avendano E., Ibanez S., Sanz O., Sousa Barros J. A., Gude I., Perianez-Rodriguez J., Micol J. L., Del Pozo J. C., Moreno-Risueno M.A., Perez-Perez J. M. Regulation of Hormonal Control, Cell Reprogramming, and Patterning during De Novo Root Organogenesis // Plant Physiol. 2018. V. 176. P. 1709–1727. doi: 10.1104/pp.17.00980.
- Capron A., Chatfield S., Provart N., Berleth T. Embryogenesis: Pattern Formation from a Single Cell // The Arabidopsis Book. 2009. V. 7. Article number: e0126. doi: 10.1199/tab.0126.
- Cosic T., Raspor M. The Role of Auxin and Cytokinin Signalling Components in de novo Shoot Organogenesis // Aftab T. (ed.). Auxins, Cytokinins, and Gibberellins Signalling in Plants. Signalling and Communication in Plants. Springer: Cham, 2022. P. 47–75. doi: 10.1007/978-3-031-05427-3_3.
- De Oliveira T. R., Balfagon D., Sousa K. R., Aragao V. P.M., de Oliveira L. F., Floh E. I.S., Silveira V., Gomes-Cadenas A., Catarina C. S. Long-Term Subculture Affects Rooting Competence via Changes in the Hormones and Protein Profiles in Cedrela Fissilis Vell. (Meliaceae) Shoots // Plant Cell Tiss. Organ Cult. 2021. Preprint. doi: 10.21203/rs.3.rs-689426/v1.
- Devasigamani L., Devarajan R., Loganathan R., Rafath H., Padman M., Giridhar L., Kuppan N. Lavandula angustifolia L. plants regeneration from in vitro leaf explants-derived callus as conservation strategy // Biotecn. Veg. 2020. V. 20. P. 75–82.
- Feher A. Callus, Dedifferentiation, Totipotency, Somatic Embryogenesis: What These Terms Mean in the Era of Molecular Plant Biology? // Front. Plant Sci. 2019. V. 26. Article number: 536. doi: 10.3389/fpls.2019.00536.
- Feher A. A Common Molecular Signature Indicates the Pre-Meristematic State of Plant Calli // Int. J. Mol. Sci. 2023. V. 24. Article number: 13122. doi: 10.3390/ijms241713122.
- Feher A., Bernula D., Gemes K. The Many Ways of Somatic Embryo Initiation // Loyola-Vargas V., Ochoa-Alejo N. (eds). Somatic Embryogenesis: Fundamental Aspects and Applications. Springer: Cham, 2016. P. 23–37. doi: 10.1007/978-3-319-33705-0_3.
- Graner E. M., Calderan-Meneghetti E., Leone G. F., de Almeida C. V., de Almeida M. Long-term in vitro culture affects phenotypic plasticity of Neoregelia johannis plants // Plant Cell Tiss. Organ Cult. 2019. V. 137. P. 511–524. doi: 10.1007/s11240-019-01586-7.
- Haensch K. T. Thidiazuron-induced morphogenetic response in petiole cultures of Pelargonium x hortorum and Pelargonium x domesticum and its histological analysis // Plant Cell Rep. 2004. V. 23. P. 211–217. doi: 10.1007/s00299-004-0844-5.
- Ikeuchi M., Favero D. S., Sakamoto Y., Iwase A., Coleman D., Rymen B., Sugimoto K. Molecular Mechanisms of Plant Regeneration // Annu. Rev. Plant Biol. 2019. V. 70. P. 377–406. doi: 10.1146/annurev-arplant-050718-100434.
- Ikeuchi M., Iwase A., Ito T., Tanaka H., Favero D. S., Kawamura A., Sakamoto S., Wakazaki M., Tameshige T., Fujii H., Hashimoto N., Suzuki T., Hotta K., Toyooka K., Mitsuda N., Sugimoto K. Wound-inducible WUSEL-RELEATED HOMEOBOX 13 is required for callus growth and organ reconnection // Plant Physiol. 2022. V. 188. P. 425–441. doi: 10.1093/plphys/kiab510.
- Kruglova N. N., Titova G. E., Seldimirova O. A. Callusogenesis as an in vitro Morphogenesis Pathway in Сereals // Russ. J. Dev. Biol. 2018. V. 49. P. 245–259. doi: 10.1134/S106236041805003X.
- Kruglova N. N., Titova G. E., Seldimirova O. A., Zinatullina A. E. Cytophysiological features of the Cereal-based Experimental System “Embryo In Vivo – Callus In Vitro” // Russ. J. Dev. Biol. 2021. V. 52. P. 199–214. doi: 10.1134/S1062360421040044.
- Kruglova N. N., Titova G. E., Zinatullina A. E. Critical Stages of Cereal Embryogenesis: Theoretical and Practical Significance // Russ. J. Dev. Biol. 2022. V. 53. P. 405–420. doi: 10.1134/S1062360422060042.
- Kruglova N., Zinatullina A., Yegorova N. Histological Approach to the Study of Morphogenesis in Callus Cultures In Vitro: A Review // Int. J. Plant Biol. 2023. V. 14. P. 533–545. doi: 10.3390/ijpb14020042.
- Ku S. S., Woo Y.-A., Shin M. J., Jie E. Y., Kim H. R., Kim H.-S., Cho H. S., Jeong W.-J., Lee M-S., Min S. R., Kim S. W. Efficient Plant Regeneration System from Leaf Explant Cultures of Daphne genkwa via Somatic Embryogenesis // Plants. 2023. V. 12. Article number: 2175. doi: 10.3390/plants12112175.
- Kulus D., Tymoszuk A. Advancements in In Vitro Technology: A Comprehensive Exploration of Micropropagated Plants // Horticulturae. 2024. V. 10. Article number: 88. doi: 10.3390/horticulturae10010088.
- Lee K., Kim J. H., Park O. S., Jung Y. J., Seo P. Ectopic expression of WOX5 promoters cytokinin signaling and de novo shoot regeneration // Plant Cell Rep. 2022. V. 41. P. 2415–2422. doi: 10.1007/s00299-022-02932-4.
- Liu S., Zhao J., Liu Y., Li N., Wang Z., Wang X., Liu X., Jiang L., Liu B., Fu X., Li X., Li L. High Chromosomal Stability and Immortalized Totipotency Characterize Long-Term Tissue Cultures of Chinese Ginseng (Panax ginseng) // Genes. 2021. V. 12. Article number: 514. doi: 10.3390/genes12040514.
- Long Y., Yang Y., Pan G., Shen Y. New Insights Into Tissue Culture Plant-Regeneration Mechanisms // Front. Plant Sci. 2022. V. 13. Article number: 926752. doi: 10.3389/fpls.2022.926752.
- Lu H., Xu P., Hu K., Xiao Q., Wen J., Yi B., Ma C., Tu J., Fu T., Shen J. Transcriptome profiling reveals cytokinin promoted callus regeneration in Brassica juncea // Plant Cell Tiss. Organ Cult. 2020. V. 141. P. 191–206. doi: 10.1007/s11240-020-01779-5.
- Mamgain J., Mujib A., Ejaz B., Gulzar B., Malik M. Q., Syeed R. Flow cytometry and start codon targeted (SCoT) genetic fidelity assessment of regenerated plantlets in Tylophora indica (Burm.f.) Merrill // Plant Cell Tiss. Organ Cult. 2022. V. 150. P. 129–140. doi: 10.1007/s11240-022-02254-z.
- Mithila J., Hall J. C., Victor J. M.R., Saxena P. K. Thidiazuron induces shoot organogenesis at low concentrations and somatic embryogenesis at high concentrations on leaf and petiole explants of African violet (Saintpaulia ionantha Wendl.) // Plant Cell Rep. 2003. V. 21. P. 408–414. doi: 10.1007/s00299-002-0544-y.
- Müller-Xing R., Xing Q. The plant stem-cell niche and pluripotency: 15 years of an epigenetic perspective // Front. Plant Sci. 2022. V. 13. Article number: 1018559. doi: 10.3389/fpls.2022.1018559.
- Murashige Т., Skoog F. A revised medium for rapid growth and bioassays with tobacco cultures // Physiol. Plant. 1962. V. 15. P. 473–497. doi: 10.1111/j.1399-3054.1962.tb08052.x.
- Pasternak T. P., Steinmacher D. Plant Growth Regulation in Cell and Tissue Culture In Vitro // Plants. 2024. V. 13. Article number: 327. doi: 10.3390/plants13020327.
- Peng X., Sun M. X. The suspensor as a model system to study the mechanism of cell fate specification during early embryogenesis // Plant Reprod. 2018. V. 31. P. 59–65. doi: 10.1007/s00497-018-0326-5.
- Rezaei H., Mirzaie-Asl A., Abdollahi M. R., Tohidfar M. Enhancing petunia tissue culture efficiency with machine learning; A pathway to improved callogenesis // PLoS One. 2023. V. 18. Article number: e0293754. doi: 10.1371/journal.pone.0293754.
- Salehi B., Mnayer D., Özçelik B., Altin G., Kasapoğlu K. N., Daskaya-Dikmen C., Sharifi-Rad M., Selamoglu Z., Acharya K., Sen S., Matthews K. R., Fokou P. V.T., Sharopov F., Setzer W. N., Martorell M., Sharifi-Rad J. Plants of the Genus Lavandula: From Farm to Pharmacy // Nat. Prod. Comm. 2018. V. 13. P. 1385–1402. doi: 10.1177/1934578X1801301037.
- Salinas-Patino V. A., Espinoza-Mellado M. R., Hernandez-Pimentel M. V., García-Pineda M., Montes-Villafan S., Rodríguez-Dorantes A. Phytohormones Action on Fouquieria splendens Callogenesis and Organogenesis Processes // Int. J. Agricult. Innov. Res. 2018. V. 7. P. 2319–1473.
- Shin J., Bae S., Seo P. J. De novo shoot organogenesis during plant regeneration // J. Exp. Bot. 2020. V. 71. P. 63–72. doi: 10.1093/jxb/erz395.
- Su Y. H., Tang L. P., Zhao X. Y., Zhang X. S. Plant cell totipotency: Insights into cellular reprogramming // J. Integr. Plant Biol. 2021. V. 63. P. 228–243. doi: 10.1111/jipb.12972.
- Syeed R., Mujib A., Malik M. Q., Gulzar B., Zafar N., Mamgain J., Ejaz B. Direct somatic embryogenesis and flow cytometric assessment of ploidy stability in regenerants of Caladium × hortulanum ‘Fancy’ // J. Appl. Genetics. 2022. V. 63. P. 199–211. doi: 10.1007/s13353-021-00663-y.
- Wan Q., Zhai N., Xie D., Liu W., Xu L. WOX11: The founder of plant organ regeneration // Cell Regen. 2023. V. 12. Article number: 1. doi: 10.1186/s13619-022-00140-9.
- Yegorova N. A., Mitrofanova I. V., Brailko V. A., Grebennikova O. A., Paliya A. E., Stavtseva I. V. Morphogenetic, Physiological, and Biochemical Features of Lavandula angustifolia at Long-Term Micropropagation In Vitro // Russ. J. Plant Physiol. 2019. V. 66. P. 326–334. OI: 10.1134/S1021443719010060.
- Zhai N., Xu L. Pluripotency acquisition in the middle cell layer of callus is required for organ regeneration // Nat. Plants. 2021. V. 7. P. 1453–1460. doi: 10.1038/s41477-021-01015-8.
Supplementary files
