Calcium-activated chloride channels. Role of potassium ions

Cover Page

Cite item

Full Text

Abstract

Using the patch-clamp method in the whole-cell configuration, it was shownthat external potassium ions play an important role in the regulation of calcium-activated chloride currents. A clear dependence of the amplitude of chloride currents on changes in the concentration of external potassium is shown. Changes in concentration of sodium, magnesium and calcium ions from membrane outside have no so significant effect, like outside potassium ions. The effect of potassium on the amplitudes of chloride currents is significantly greater than the effect it has on other cell ionic currents — sodium, potassium, cation. There is reason to believe that a change in the amplitudes of chloride currents contributes to the pathophysiological processes characteristic of hypokalemia and hyperkalemia.

Full Text

Restricted Access

About the authors

V. L. Zamoysky

Institute of Physiologically Active Compounds of the Russian Academy of Sciences

Author for correspondence.
Email: vzam@yandex.ru
Russian Federation, Chernogolovka

A. V. Gabrelian

Institute of Physiologically Active Compounds of the Russian Academy of Sciences

Email: vzam@yandex.ru
Russian Federation, Chernogolovka

V. V. Grigoriev

Institute of Physiologically Active Compounds of the Russian Academy of Sciences

Email: vzam@yandex.ru
Russian Federation, Chernogolovka

References

  1. Вихарева Е.А., Замойский В.Л., Григорьев В.В., Бачурин C.O. Кальций-активируемые хлорные токи в мембране клеток Пуркинье мозжечка крыс // ДАН. 2015. Т. 465, С. 372—374. DOI: 10.7868/ S0869565215330282.
  2. Вихарева Е.А., Замойский В.Л., Григорьев В.В. Модификация кальций-зависимых хлорных токов в нейронах Пуркинье мозжечка крыс // БЭБМ. 2016. T. 162, C. 672—677. doi: 10.1007/s10517-017-3694-1.
  3. Гелетюк В.И., Казаченко В.Н. Одиночный калий-зависимый Cl-канал в нейронах моллюска: множественность состояний проводимости. // ДАН. 1983. Т. 268. № 5. С. 1245—1247.
  4. Григорьев В.В. Кальций-активируемые хлорные каналы: структура, свойства, роль в физиологических и патологических процессах // Биомедицинская химия. 2021. Т. 67. № 1. С 17—33. doi: 10.18097/PBMC20216701017.
  5. Замойский В.Л., Григорьев В.В. Ключевая роль ионов хлора в регуляции быстрых натриевых токов в нейронах крыс // ДАН. 2017. Т. 477. № 4. С. 493—495. doi: 10.7868/S0869565217340229
  6. Замойский В.Л., Бовина Е.А., Бачурин С.О., Григорьев В.В. Роль ионов калия в регуляции кальций-активируемых хлорных каналов. ДАН. 2021. Т. 500. С. 470—473. doi: 10.31857/S2686738921050334.
  7. Bregestovski P.D., Printseva O.Y., Serebryakov V., Stinnakre J., Turmin A., Zamoyski V. Comparison of Ca2+-dependent K+ channels in the membrane of smooth muscle cells isolated from adult and foetal human aorta // Pflugers Archiv. 1988. V. 413. P. 8—13.
  8. Crottès D., Jan L.Y. The multifaceted role of TMEM16A in cancer // Cell Calcium. 2019. V. 82:102050.doi: 10.1016/j.ceca.2019.06.004.
  9. Guo S., Chen Y., Pang C., Wang X., Qi J., Mo L., Zhang H., An H., Zhan Y. Ginsenoside Rb1, a novel activator of the TMEM16A chloride channel, augments the contraction of guinea pig ileum // Pflugers Archiv. 2017. V. 469. P. 681—692. doi: 10.1007/s00424-017-1934-x.
  10. Hamill O.P., Marty A., Neher E., Sakmann B., Sigworth F.J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches // Pflugers Arch. 1981. V. 391, P. 85—100. doi: 10.1007/BF00656997.
  11. Huang W.C., Xiao S., Huang F., Harfe B.D., Jan Y.N., Jan L.Y. Calcium-activated chloride channels (CaCCs) regulate action potential and synaptic response in hippocampal neurons // Neuron. 2012. V. 12. № 74(1). P. 179—192. doi: 10.1016/j.neuron.2012.01.033.
  12. Ji Q., Guo S., Wang X., Pang C., Zhan Y., Chen Y., An H. Recent advances in MEM16A: Structure, function, and disease // J Cell Physiol. 2019. V. 234. P. 7856—7873. doi: 10.1002/jcp.27865.
  13. Kamaleddin M.A. Molecular, biophysical, and pharmacological properties of calcium-activated chloride channels // J. Cell Physiol., 2018. V. 233. P. 787—798. doi: 10.1002/jcp.25823.
  14. Kaneda M., Nakamura H., Akaike N. Mechanical and enzymatic isolation of mammalian CNS neurons // Neurosci. Res. 1988. V. 5. P. 299—315. DOI: 10.1016/ 0168-0102(88)90032-6.
  15. Kunzelmann K., Tian Y., Martins J.R., Faria D., Kongsuphol P., Ousingsawat J., Thevenod F., Roussa E., Rock J., Schreiber R. Anoctamins // Pflugers Arch. 2011. V. 462. P. 195—208. doi: 10.1007/s00424-011-0975-9.
  16. Wang B., Li C., Huai R., Qu Z. Overexpression of ANO1/ TMEM16A, an arterial Ca2+‐activated Cl‐channel, contributes to spontaneous hypertension // Journal of Molecular and Cellular Cardiology. 2015. V. 82. C.22—32. doi: 10.1016/j.yjmcc. 2015.02.020.
  17. Yu K., Whitlock J.M., Lee K., Ortlund E.A., Cui Y.Y., Hartzell H.C. Identification of a lipid scrambling domain in ANO6/TMEM16F // Elife. 2015. 4: e06901. doi: 10.7554/eLife.06901.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. a - series of depolarising pulses applied to the cell, from the fixation potential (-70 mV), in 10 mV steps, to +30 mV at the membrane, in whole-cell configuration; b - recorded response of cell currents to depolarising pulses; c - currents appearing at the end of depolarising pulses

Download (108KB)
3. Fig. 2. Effect of different potassium concentrations in the outer solution on the amplitude of chlorine currents. The intra-pipette solution contains 120 mM potassium. Fixation potential (-70 mV). a - integral cell response in solution with [K+]nar. = 0 mM (n= 9); b - response in solution with [K+]nar. = 5 mM (n= 20); c - response in solution with [K+]nar. = 9 mM (n= 7); d - response in solution with [K+]nar. = 15 mM (n= 4); e - plots of volt-ampere characteristics plotted for CAHT at different values of [K+]nar. On the abscissa axis - current value in nanoamperes, on the ordinate axis - membrane potential in millivolts. Squares - [K+]nar. = 0 mM, circles - [K+]nat. = 5 mM, triangles - [K+]nat. = 9 mM, inverted triangles - [K+]nar. = 15 mM

Download (112KB)
4. Fig. 3. Effect of different potassium concentrations in the external solution on the amplitude of inward and outward currents in Purkinje neurons. a - plot of the dependence of the amplitude of fast sodium currents on [K+]nar. = 0 mM (circles), [K+]nar. = 5 mM (squares) and [K+]nar. = 9 mM (triangles). VPR with potassium; b, plot of the dependence of the amplitude of fast sodium currents on [K+]nar. = 0 mM (circles), [K+]nar. = 5 mM (squares) and [K+]nar. = 9 mM (triangles). VPR with caesium; c, plot of the dependence of the amplitude of the maximum outgoing current on [K+]nar. = 0 mM (circles), [K+]nar. = 5 mM (squares) and [K+]nar. = 9 mM (triangles). VPR with potassium; d, plot of the dependence of the amplitude of the maximum outgoing current on [K+]nar. = 0 mM (circles), [K+]nar. = 5 mM (squares) and [K+]nar. = 9 mM (triangles). VPR with caesium

Download (189KB)
5. Fig. 4. Effect of different potassium concentrations in the external solution on the amplitude of chlorine currents; VPR contains 120 mM caesium. a - whole-cell currents at [K+]nar. = 0 mM; b - whole-cell currents at [K+]nar. = 5 mM; c - whole-cell currents at [K+]nar. = 9 mM; d - whole cell currents at [K+]nar. = 15 mM; e - plot of volt-ampere characteristics of CAHT at [K+]nar. = 0 mM (circles); at [K+]nar. = 5 mM (squares); at [K+]nar. = 9 mM (triangles); at [K+]nar. = 15 mM (rhombuses)

Download (127KB)
6. Fig. 5. Effect of external solution cations on the amplitude of CACT. a - effect of sodium ions (black squares - 140 mM sodium outside, black circles - 0 mM sodium outside) WRP with caesium; b - different concentration of magnesium ions (squares - 2 mM, circles - 5 mM, triangles - 9 mM) WRP with caesium; c - external calcium (squares - 2 mM, circles - 5 mM) WRP with potassium

Download (162KB)
7. Fig. 6. CACT amplitudes. a - at different potassium ion concentrations on the outer side (circles - [K+]nar. = 0 mM, squares - [K+]nar. = 5 mM, triangles - [K+]nar. = 15 mM); b - at different concentrations of caesium ions from the outer side (circles - [Cs+]nar. = 5 mM, squares - [Cs+]nar. = 9 mM, triangles - [Cs+]nar. = 15 mM)

Download (119KB)
8. Fig. 7. Effects of low (a) and high (b) concentrations of potassium ions on the outside of the membrane of a single cell. A1 - [K+]nar. = 0 mM, A2 - [K+]nar. = 1 mM, A3 - [K+]nar. = 2 mM, A4 - [K+]nar. = 3 mM, A5 - [K+]nar. = 5mM; B1 - [K+]nat. = 5mM, B2 - [K+]nat. = 9mM, B3 - [K+]nat. = 15 mM, B4 - [K+]nat. = 24 mM

Download (224KB)

Copyright (c) 2024 Russian Academy of Sciences