Heavy metals-resistant PGPR strains of Pseudomonas sp. stimulating the growth of alfalfa under cadmium stress

Cover Page

Cite item

Full Text

Abstract

Three bacteria strains of Pseudomonas sp. resistant to heavy metals were isolated from the chemically contaminated soil. According to the results on the nucleotide sequences of the 16S rRNA and rpoD genes, strain Pseudomonas sp. 17 НМ was identified as Pseudomonas capeferrum, and the strains of Pseudomonas sp. 65 НМ и 67 НМ were most closely related to the type strain of Pseudomonas silesiensis и Pseudomonas umsongensis, respectively. It has been shown that strains of Pseudomonas sp. 17 НМ, 65 НМ, 67 НМ are characterized by different levels of resistance of heavy metals: maximum tolerance concentration (MTC) of zinc was 1 mМ for all strains, cadmium 1, 1.5, 1 mМ, lead 5, 5, 4 mМ, nickel 7, 9, 7 mМ, respectively. All pseudomonad strains can form biofilms and have the properties of PGPR bacteria. Treatment of alfalfa seeds (Medicago sativa L.) with strains Pseudomonas sp. 17 НМ, 65 НМ, 67 НМ under cadmium stress led to an increase in the dry weight of alfalfa seedling up to 40 % and the content of chlorophyll a and b in the leaves by 25-33% relative to the control.

Full Text

Restricted Access

About the authors

O. V. Chubukova

Institute of Biochemistry and Genetics—Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences

Author for correspondence.
Email: chubukova@bk.ru
Russian Federation, st. Prospect Oktyabrya, 71, Ufa, 450054

L. R. Khakimova

Institute of Biochemistry and Genetics—Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences

Email: chubukova@bk.ru
Russian Federation, st. Prospect Oktyabrya, 71, Ufa, 450054

R. T. Matnyazov

Institute of Biochemistry and Genetics—Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences

Email: chubukova@bk.ru
Russian Federation, st. Prospect Oktyabrya, 71, Ufa, 450054

Z. R. Vershinina

Institute of Biochemistry and Genetics—Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences; Federal State Budgetary Educational Institution of Higher Education “Ufa State Petroleum Technological University”

Email: chubukova@bk.ru
Russian Federation, st. Prospect Oktyabrya, 71, Ufa, 450054; st. Kosmonavtov, 1, Ufa, 450000

References

  1. Баймиев Ан.Х., Ямиданов Р. С., Матниязов Р. Т., Благова Д. К., Баймиев Ал.Х., Чемерис А. В. Получение флуоресцентно меченных штаммов клубеньковых бактерий дикорастущих бобовых для их детекции in vivo и in vitro // Мол. биология. 2011. № 6. С. 984–991.
  2. Хакимова Л. Р., Чубукова О. В., Мурясова А. Р., Симороз Е. В., Чумакова А. К., Вершинина З. Р. Влияние Pseudomonas spp. на растения люцерны Medicago sativa при ингибирующем действии солей кадмия // Таврический вестник аграрной науки. 2022. № 2. С. 155–163.
  3. Чубукова О. В., Хакимова Л. Р., Акимова Е. С., Вершинина З. Р. Филогения и свойства новых штаммов Pseudomonas sp. из ризосферы бобовых растений Южного Урала //Микробиология. 2022. № 5. С. 537–546.
  4. Akinbowale O. L., Peng H., Grant P., Barton M. D. Antibiotic and heavy metal resistance in motile aeromonads and pseudomonads from rainbow trout (Oncorhynchus mykiss) farms in Australia // Int. J. Antimicrob. Agents. 2007. V. 30. P. 177–182. https://doi.org/10.1016/j.ijantimicag.2007.03.012
  5. Berendsen R. L., van Verk M. C., Stringlis I. A., Zamioudis C., Tommassen J., Pieterse C. M., Bakker P. A. Unearthing the genomes of plant-beneficial Pseudomonas model strains WCS358, WCS374 and WCS417 // BMC Genomics. 2015. V. 16. P. 539. https://doi.org/10.1186/s12864-015-1632-z.
  6. Chen B., Luo S., Wu Y., Ye J., Wang Q., Xu X., Pan F., Khan K. Y., Feng Y., Yang X. The effects of the endophytic bacterium Pseudomonas fluorescens Sasm05 and IAA on the plant growth and cadmium uptake of Sedum alfredii Hance // Front Microbiol. 2017. V. 8. P. 2538. https://doi.org/10.3389/fmicb.2017.02538
  7. Choudhury S., Chatterjee A. Microbial application in remediation of heavy metals: an overview // Arch. Microbiol. 2022. V. 204. P. 268. https://doi.org/10.1007/s00203-022-02874-1
  8. Desoky E. S.M., Merwad A. R. M., Semida W. M., Ibrahim S. A., El-Saadony M. T., Rady M. M. Heavy metals-resistant bacteria (HM-RB): Potential bioremediators of heavy metals-stressed Spinacia oleracea plant //Ecotoxicol. Environ. Saf. // 2020. V. 198. P. 110685. https://doi.org/10.1016/j.ecoenv.2020.110685
  9. Ghnaya T., Mnassri M., Ghabriche R., Wali M., Poschenrieder C., Lutts S, Abdelly C. Nodulation by Sinorhizobium meliloti originated from a mining soil alleviates Cd toxicity and increases Cd-phytoextraction in Medicago sativa L. // Front. Plant 2015. V. 6. P. 863. https://doi: 10.3389/fpls.2015.0086
  10. Girard L., Lood C., Rokni-Zadh H., van Noort V., Lavigne R., De Mot R. Reliable identification of environmental Pseudomonas isolates using the rpoD gene // Microorganisms. 2020. V. 8. P. 1166. https://doi.org/10.3390/microorganisms8081166
  11. Gu Y., Ma Y. N., Wang J., Xia Z., Wei H. L. Genomic insights into a plant growth-promoting Pseudomonas koreensis strain with cyclic lipopeptide-mediated antifungal activity // Microbiology. 2020. V. 9. e1092. https://doi.org/10.1002/mbo3.1092
  12. Jócsák I., Knolmajer B., Szarvas M., Rabnecz G., Pál-Fám F. Literature review on the effects of heavy metal stress and alleviating possibilities through exogenously applied agents in Alfalfa (Medicago sativa L.) // Plants (Basel). 2022. V.11. P. 2161. https://doi.org/10.3390/plants11162161
  13. Khakimova L., Chubukova O., Vershinina Z., Maslennikova D. Effects of Pseudomonas sp. OBA 2.4.1 on growth and tolerance to cadmium stress in Pisum sativum L. // BioTech (Basel). 2023. V. 12. P. 5. https://doi: 10.3390/biotech12010005.
  14. Kaminski M. A., Furmanczyk E. M., Sobczak A., Dziembowski A., Lipinski L. Pseudomonas silesiensis sp. nov. strain A3T isolated from a biological pesticide sewage treatment plant and analysis of the complete genome sequence // Syst. Appl. Microbiol. 2018. V. 41. P. 13–22. https://doi.org/10.1016/j.syapm.2017.09.002
  15. Khanna K., Jamwal V. L., Gandhi S. G., Ohri P., Bhardwaj R. Metal resistant PGPR lowered Cd uptake and expression of metal transporter genes with improved growth and photosynthetic pigments in Lycopersicon esculentum under metal toxicity // Scientific reports. 2019. V. 9. 5855. https://doi.org/10.1038/s41598-019-41899-3
  16. Lalucat J., Mulet M., Gomila M., García-Valdés E. Genomics in bacterial taxonomy: impact on the genus Pseudomonas // Genes (Basel). 2020. V. 11. P. 139. https://doi.org/10.3390/genes11020139
  17. Li D., Xu X., Yu H., Han X. Characterization of Pb2+ biosorption by psychrotrophic strain Pseudomonas sp. I3 isolated from permafrost soil of Mohe wetland in Northeast China // J. Environ. Manage. 2017. V. 196. P. 8–15. https://doi: 10.1016/j.jenvman.2017.02.076
  18. Maslennikova D., Nasyrova K., Chubukova O., Akimova E., Baymiev A., Blagova D., Ibragimov A., Lastochkina O. Effects of Rhizobium leguminosarum Thy2 on the growth and tolerance to cadmium stress of wheat plants // Life (Basel). 2022. V. 12. P. 1675. https://doi.org/10.3390/life12101675
  19. Mtengai K., Ramasamy S., Msimuko P., Mzula A., Mwega E. D. Existence of a novel heavy metal-tolerant Pseudomonas aeruginosa strain Zambia SZK-17 Kabwe 1: the potential bioremediation agent in the heavy metal-contaminated area // Environ. Monit. Assess. 2022. V. 194. P. 887. https://doi: 10.1007/s10661-022-10565-z
  20. Mulet M., Bennasar A., Lalucat J., Garcia-Valdes E. An rpoD-based PCR procedure for the identification of Pseudomonas species and for their detection in environmental samples // Mol. Cell Probes. 2009. V. 23. P. 140–147. https://doi.org/10.1016/j.mcp.2009.02.001
  21. Mulet M., Lalucat J., García-Valdés E. DNA sequence-based analysis of the Pseudomonas species // Environ. Microbiol. 2010. V. 12. P. 1513–1530. https://doi.org/10.1111/j.1462-2920.2010.02181.x
  22. Manzoor M., Abid R., Rathinasabapathi B., De Oliveira L. M., da Silva E., Deng F., Rensing C., Arshad M., Gul I., Xian P, Ma L. Q. Metal tolerance of arsenic-resistant bacteria and their ability to promote plant growth of Pteris vittata in Pb-contaminated soil // Sci Total Environ. 2019. V. 660. P. 18–24. https://doi: 10.1016/j.scitotenv.2019.01.013
  23. Narancic T., Salvador, M., Hughes, G. M., Beagan, N., Abdulmutalib, U., Kenny, S. T., Jimenez, J. I. Genome analysis of the metabolically versatile Pseudomonas umsongensis GO16: the genetic basis for PET monomer upcycling into polyhydroxyalkanoates // Microb. Biotechnol. 2021. V. 14. P. 2463–2480. https://doi.org/10.1111/1751-7915.13712
  24. Pande V., Pandey S. C., Sati D., Bhatt P., Samant M. Microbial interventions in bioremediation of heavy metal contaminants in agroecosystem // Front. Microbiol. 2022. V. 6. P. 824084. https://doi.org/10.3389/fmicb.2022.824084
  25. Patel J. S., Patel P. C., Kalia K. Isolation and characterization of nickel uptake by nickel resistant bacterial isolate (NiRBI) // Biomed. Environ. Sci. 2006. V. 19 P. 297–301.
  26. Raklami A., Meddich A., Oufdou K., Baslam M. Plants-microorganisms-based bioremediation for heavy metal cleanup: recent developments, phytoremediation techniques, regulation mechanisms, and molecular responses // Int. J. Mol. Sci. 2022. V. 23. P. 5031. https://doi.org/10.3390/ijms23095031
  27. Saif S., Khan M. S. Assessment of heavy metals toxicity on plant growth promoting rhizobacteria and seedling characteristics of Pseudomonas putida SFB3 inoculated greengram // Acta Scientific Agriculture. 2017. V. 1. P. 47-56.
  28. Singh P., Singh R. K., Zhou Y., Wang J., Jiang Y., Shen N., Jiang M. Unlocking the strength of plant growth promoting Pseudomonas in improving crop productivity in normal and challenging environments: a review // J. Plant Interac. 2022. V. 17. P. 220–238. https://doi.org/10.1080/17429145.2022.2029963
  29. Sambrook J., Fritsch E., Maniatis T. Molecular Cloning: a Laboratory Manual. N.Y.: Cold Spring Harbor Lab. Press, 1989. 1626 p.
  30. Wang Y., Narayanan M., Shi X., Chen X., Li Z., Natarajan D., Ma Y. Plant growth-promoting bacteria in metal-contaminated soil: Current perspectives on remediation mechanisms // Front. Microbiol. 2022. V. 13. P. 966226. https://doi: 10.3389/fmicb.2022.966226

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Phylogenetic tree of bacteria constructed based on comparative analysis of 16S rRNA gene sequences. The numbers show the statistical reliability of the branching order determined using bootstrap analysis (the values ​​of the bootstrap analysis indicator from 70% are shown). The horizontal axis shows the weight of this alignment, expressed as the number of nucleotide substitutions (×100). The nucleotide sequence of the 16S rRNA gene of E. coli ATCC 11775T was used as an outgroup.

Download (539KB)
3. Fig. 2. Phylogenetic tree of bacteria constructed based on comparative analysis of rpoD gene sequences. The numbers show the statistical significance of the branching order determined using bootstrap analysis (the values ​​of the bootstrap analysis indicator from 70% are shown). The horizontal axis shows the weight of this alignment, expressed as the number of nucleotide substitutions (×100). The nucleotide sequence of the rpoD gene of E. coli ATCC 11775T was used as an outgroup.

Download (484KB)
4. Fig. 3. Biofilms formed by Pseudomonas sp. strains on the plate surface after 7 days of cultivation: a – Pseudomonas sp. 17 HM, LB medium; b – Pseudomonas sp. 65 HM, YM medium; c – Pseudomonas sp. 67 HM, MH medium.

Download (183KB)
5. Fig. 4. Formation of biofilms on the surface of alfalfa seedling roots after 24 hours of co-cultivation: a – Pseudomonas sp. 17 HM; b – Pseudomonas sp. 65 HM; c – Pseudomonas sp. 67 HM.

Download (265KB)
6. Fig. 5. Dynamics of inorganic phosphate mobilization by Pseudomonas sp. strains: 1 – 17 HM; 2 – 67 HM; 3 – 65 HM. The abscissa axis shows the day on which the phosphate mobilization area was measured; the ordinate axis shows the area of ​​phosphate mobilization zones in mm².

Download (62KB)
7. Fig. 6. Effect of Pseudomonas sp. strains on dry biomass of alfalfa plants (ordinate axis: change in dry biomass of plants in g under normal conditions (a) and under cadmium stress (b). Designations of Pseudomonas sp. strains (1–4): 1 – control; 2 – 17 HM; 3 – 65 HM; 4 – 67 HM.

Download (140KB)

Copyright (c) 2024 Russian Academy of Sciences