Application of harmonized elliptic Fourier transform coefficients for comparing the shapes of biological structures (on the example of the attachment organs of monogenea)

Cover Page

Cite item

Full Text

Abstract

Elliptic Fourier transform is a common method of describing the shape of objects by an unique sequence of coefficients that allow comparing the shapes by mathematical methods. However, raw coefficients contain unnecessary data unrelated to the shape, which does not provide a correct comparison. For this reason the coefficients are normalised. This removes some of the superfluous data, but leaves information about mirror symmetry and the order in which the contour vertices are declared, that are encoded in the signs of the coefficients. This also interfere with shape comparison. The paper describes an algorithm for harmonizing the coefficients, leveling the influence of the mentioned information. On the example of attachment organs of monogeneas, the advantages of using harmonized coefficients for comparing the shapes of biological structures are shown.

Full Text

Restricted Access

About the authors

A. M. Lyakh

A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS

Author for correspondence.
Email: me@antonlyakh.ru
Russian Federation, Nakhimov av., 2, Sevastopol, 299011

References

  1. Быховский Б. Е. Моногенетические сосальщики, их система и филогения. М.–Л.: Изд-во АН СССР, 1957. 510 с.
  2. Васильев А. Г., Васильева И. А., Шкурихин А. О. Геометрическая морфометрия: от теории к практике. М.: КМК. 2018. 471 с.
  3. Герасев П. И., Дмитриева Е. В., Пугачев О. Н. Методы изучения моногеней (Plathelminthes, Monogenea) на примере паразитов кефалей (Mugilidae) // Зоол.ж. 2010. Т. 89. № 3. С. 1–15.
  4. Дмитриева Е. В., Лях А. М., Корнийчук Ю. М., Полякова Т. А., Попюк М. П. Электронная коллекция паразитов рыб Мирового океана Института морских биологических исследований им. А. О. Ковалевского // Морской биологический журнал. 2016. Т. 1. № 3. С. 27–31. https:doi.org/10.21072/mbj.01.3.04
  5. Лях А. М. Анализ биологических форм на основе согласованных коэффициентов эллиптического преобразования Фурье // Наука Юга России. 2019. Т. 15. № 4. С. 63–70.
  6. Фурман Я. А., Кревецкий А. В., Передреев А. К., Роженцов А. А., Хафизов Р. Г., Егошина И. Л., Леухин А. Н. Введение в контурный анализ; приложения к обработке изображений и сигналов / Под ред. Я. А. Фурмана. 2 изд., испр. М.: Физматлит. 2003. 592 с.
  7. Bai X., Donoser M., Liu H., Latecki L. J. Efficient shape representation, matching, ranking, and its applications // Pattern Recog. Lett. 2016. V. 83. № 3. P. 241–430. https:doi.org/10.1016/j.patrec.2016.08.007
  8. Baker F. B. Stability of two hierarchical grouping techniques case 1: Sensitivity to data errors // J. Am. Stat. Assoc. 1974. V. 69. № 346. P. 440–445. https:doi.org/10.1080/01621459.1974.10482971
  9. Cervantes E., Rodriguez-Lorenzo J.L., Pozo del D.G., Martin-Gomez J.J., Janousek B., Tocino A., Juan A. Seed silhouettes as geometric objects: new applications of elliptic Fourier transform to seed morphology // Horticulturae. 2022. V. 8. № 10. 974. https:doi.org/10.3390/horticulturae8100974
  10. Crampton J. S. Elliptic Fourier shape analysis of fossil bivalves: some practical considerations // Lethaia. 1995. V. 28. P. 179–186. https:doi.org/10.1111/j.1502-3931.1995.tb01611.x
  11. Diaz G., Zuccarelli A., Pelligra I., Ghiani A. Elliptic Fourier analysis of cell and nuclear shapes // Comput. Biomed. Res. 1989. V. 22. № 5. P. 405–414. https:doi.org/10.1016/0010-4809(89)90034-7
  12. Dhingra R. D., Barnes J. W., Hedman M. M., Radebaugh J. Using elliptical Fourier descriptor analysis (EFDA) to quantify Titan lake morphology // The Astronomical Journal. 2019. V. 158. № 6. P. 1–13. https:doi.org/10.3847/1538-3881/ab4907
  13. Dmitrieva E. V., Gerasev P. I., Pron’kina N. V. Ligophorus llewellyni n. sp. (Monogenea: Ancyrocephalidae) from the redlip mullet Liza haematocheilus (Temminck & Schlegel) introduced into the Black Sea from the Far East // Syst. Parasitol. 2007. V. 67. P. 51–64. https:10.1007/s11230-006-9072-4
  14. Dryden I. L., Mardia K. V. Statistical shape analysis, with application in R. John Willey & Sons, Ltd., 2012. 510 p.
  15. Ferson S., Rohlf J., Koehn R. Measuring shape variation of two-dimensional outlines // Syst. Biol. 1985. V. 34. № 1. P. 59–68. https:doi.org/10.2307/2413345
  16. Henning C. An empirical comparison and characterization of nine popular clustering methods // Adv. Data Anal. Classi. 2022. V. 16. P. 201–209. https:10.1007/s11634-021-00478-z
  17. Kuhl F. P., Giardina C. R. Elliptic Fourier features of a closed contour // Comp. Graph. Image Proc. 1982. V. 18. № 3. 236–258. https:doi.org/10.1016/0146-664X(82)90034-X
  18. Lishchenko F., Jones J. B. Application of shape analyses to recording structures of marine organisms for stock discrimination and taxonomic purposes // Front. Mar. Sci. 2021. V. 8. № 667183. P. 1–26. https:doi.org/10.3389/fmars.2021.667183
  19. Loncaric A. A survey of shape analysis techniques // Pattern Recogn. 1998. V. 31. №. 8. P. 983–1001. https:doi.org/10.1016/S0031-2023(97)00122-2
  20. Lyakh A., Dmitrieva E., Popyuk M. P., Shikhat O., Melnik A. A geometric morphometric approach to the analysis of the shape variability of the haptoral attachment structures of Ligophorus species (Platyhelminthes: Monogenea) // Ecologica Montenegrina. 2017. V. 14. P. 92–101. https:doi.org/10.37828/em.2017.14.10
  21. McLellan T., Endler J. A. The relative success of some methods for measuring and describing the shape of complex objects // Syst. Biol. 1998. V. 47. № 2. P. 264–281. https:doi.org/10.1080/106351598260914
  22. Mitteroecker P., Schaefer K. Thirty years of geometric morphometrics: Achievements, challenges, and the ongoing quest for biological meaningfulness // American Journal of Biological Anthropology. 2022. V. 178. № S74. P. 181–210. https:doi.org/10.1002/ajpa.24531
  23. Neto J. C., Mever G. E., Jones D. D., Samal A. K. Plant species identification using Elliptic Fourier leaf shape analysis // Comput. Electr. Agr. 2006. V. 50. № 2. P. 121–134. https:doi.org/10.1016/j.compag.2005.09.004
  24. Pappas J. L., Kociolek J. P., Stoermer E. F. Quantitative morphometric methods in diatom research // Nova Hedwigia, Beiheft. 2014. V. 143. P. 281–306.
  25. Salili-James A., Mackay A., Rodriguez-Alvarez E., Rodrigues-Perez D., Mannack T., Rawlings T. A., Palmer R. A., Todd J., Riutta T. E., Macinnis-Ng. C., Han Z., Davies M., Thorpe Z., Marsland S., Leroi A. M. Classifying organisms and artefacts by their outline shapes // J. R. Soc. Interface. 2022. V. 19. № 195. P. 1–12. https:doi.org/10.1098/rsif.2022.0493
  26. Scornavacca C., Zickmann F., Huson D. H. Tanglegrams for rooted phylogenetic trees and networks // Bioinformatics. 2011. V. 27. P. i248–i256. https:doi.org/10.1093/bioinformatics/btr210
  27. Shen W., Wang Y., Bai X., Wang H., Latecki L. J. Shape clustering: Common structure discovery // Pattern Recogn. 2013. V. 46. P. 539–550. https:doi.org/10.1016/j.patcog.2012.07.023
  28. Srivastava A., Joshi S. H., Mio W., Liu X. Statistical shape analysis: clustering, learning, and testing // IEEE T. Pattern Anal. 2005. V. 27. № 4. P. 590–602. https:doi.org/10.1109/tpami.2005.86
  29. Suzuki K., Fujiwara H., Ohta T. The evaluation of macroscopic and microscopic textures of sand grains using elliptic Fourier and principal component analysis: Implications for the discrimination of sedimentary environments // Sedimentology. 2015. V. 62. № 4. P. 1184–1197. https:doi.org/10.1111/sed.12183
  30. Tuset V. M., Galimany E., Farres A., Marco-Herrero E., Otero-Ferrer J.L., Lombarte A., Ramon M. Recognising mollusc shell contours with enlarged spines: Wavelet vs Elliptic Fourier analyses // Zoology. 2020. V. 140. 125778. https:doi.org/10.1016/j.zool.2020.125778
  31. Vignon M. Putting in shape – towards a unified approach for the taxonomic description of monogenean haptoral hard parts // Syst. Parasitol. 2011. V. 79. P. 161–174. https:doi.org/10.1007/s11230-011-9303-1
  32. Wishkerman A., Hamilton P. B. Shape outline extraction software (DiaOutline) for elliptic Fourier analysis application in morphometric studies // Appl. Plant Sci. 2018. V. 6. № 12. e01204. https:doi.org/10.1002%2Faps3.1204
  33. Yang H.-P., Ma C.-S., Wen H., Zhan Q.-B., Wang X.-L. (2015) A tool for developing an automatic insect identification system based on wing outlines // Sci. Rep. 2015. V. 5. № 12786. https:doi.org/10.1038/srep12786

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Contours of the attachment organs of monogenes. The fill indicates the order of traversing the vertices of the contours (orientation of the contours): The points of a shaded contour go counterclockwise, and those of an unpainted one go clockwise.

Download (89KB)
3. Fig. 2. Contours of the attachment organs of species of the genus Ligophorus used in the work. The contours are aligned vertically and adjusted to the same size using the normalization procedure, and using the matching algorithm described in the article, they are geometrically consistent with each other.

Download (207KB)
4. Fig. 3. The values of 60 coefficients of the first 15 harmonics describing the shape of the four attachment hooks. It can be seen that with an increase in the harmonic number, the values of the normalized EPF coefficients decrease rapidly.

Download (68KB)
5. Fig. 4. Rules for replacing signs and the action of matching operators: a – Ø – zero operator that does not affect the contour, • – operator for shifting the starting point of the contour to the opposite part, ϲ – operator for inverting the direction of traversal, ― and | – mirror reflection operators relative to the horizontal and vertical axes; b – rules for replacing signs the rule is written for the first two harmonics (eight coefficients), but it should be applied for each pair of harmonics, starting with the first; the following notation is used in the recording: × – inversion of the sign, × – the sign remains the same; c, d – masks for searching for operators corresponding to the sign difference of the matched contours, with vertical (c) and horizontal (d) alignment of contours; e – the result of the action of operators on contours.

Download (173KB)
6. Fig. 5. Comparison using tanglegrams and the Baker gamma association index (the number in the middle of the tanglegram) of dendrograms constructed using normalized EPF coefficients of three sets of contours – A, B and C.

Download (455KB)
7. Fig. 6. The matching algorithm automatically transformed chaotically arranged contours into ordered ones. In rare cases, the position of some contours (circled in red) differed from the rest, but this did not prevent using their numerical descriptions to compare shapes.

Download (411KB)
8. Fig. 7. Comparison of dendrograms constructed according to agreed (cont.) and absolute (abs.) the values of the coefficients; the numbers show the values of the Baker gamma Association index.

Download (183KB)
9. Fig. 8. The average shapes (black) of the attachment structures of representatives of five species of the genus Ligophorus (dark red), constructed by averaging the values of the agreed EPF coefficients.

Download (168KB)
10. Fig. 9. A tree of medium shapes of monogenean attachment hooks, which can be used to identify shapes. Only two levels of the tree are shown. At the first level of the hierarchy, the average forms are constructed by averaging the agreed EPF coefficients belonging to one cluster; at the second level, by averaging the coefficients belonging to neighboring clusters.e

Download (258KB)

Copyright (c) 2024 Russian Academy of Sciences