The Effects of Curcumin on Brain-Derived Neurotrophic Factor Expression in Neurodegenerative Disorders


Цитировать

Полный текст

Аннотация

:Brain-Derived Neurotrophic Factor (BDNF) is a crucial molecule implicated in plastic modifications related to learning and memory. The expression of BDNF is highly regulated, which can lead to significant variability in BDNF levels in healthy subjects. Changes in BDNF expression might be associated with neuropsychiatric diseases, particularly in structures important for memory processes, including the hippocampus and parahippocampal areas. Curcumin is a natural polyphenolic compound that has great potential for the prevention and treatment of age-related disorders by regulating and activating the expression of neural protective proteins such as BDNF. This review discusses and analyzes the available scientific literature on the effects of curcumin on BDNF production and function in both in vitro and in vivo models of disease.

Об авторах

Shabnam Radbakhsh

Student Research Committee, Mashhad University of Medical Sciences

Email: info@benthamscience.net

Alexandra Butler

Research Department, Royal College of Surgeons in Ireland Bahrain

Email: info@benthamscience.net

Seyed Moallem

Department of Pharmacology and Toxicology, College of Pharmacy, Al-Zahraa University for Women

Email: info@benthamscience.net

Amirhossein Sahebkar

Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences

Автор, ответственный за переписку.
Email: info@benthamscience.net

Список литературы

  1. Dugger, B.N.; Dickson, D.W. Pathology of neurodegenerative diseases. Cold Spring Harb. Perspect. Biol., 2017, 9(7), a028035. doi: 10.1101/cshperspect.a028035 PMID: 28062563
  2. Sharifi-Rad, M.; Lankatillake, C.; Dias, D.A.; Docea, A.O.; Mahomoodally, M.F.; Lobine, D.; Chazot, P.L.; Kurt, B.; Boyunegmez Tumer, T.; Catarina Moreira, A.; Sharopov, F.; Martorell, M.; Martins, N.; Cho, W.C.; Calina, D.; Sharifi-Rad, J. Impact of natural compounds on neurodegenerative disorders: From preclinical to pharmacotherapeutics. J. Clin. Med., 2020, 9(4), 1061. doi: 10.3390/jcm9041061 PMID: 32276438
  3. Chandra, V.; Pandav, R.; Laxminarayan, R.; Tanner, C.; Manyam, B.; Rajkumar, S. Neurological Disorders. In: Disease Control Priorities in Developing Countries; Jamison, D.T.; Breman, J.G.; Measham, A.R.; Alleyne, G.; Claeson, M.; Evans, D.B., Eds.; Oxford University Press: Washington (DC) New York, 2006.
  4. Cole, G.; Yang, F.; Lim, G.; Cummings, J.; Masterman, D.; Frautschy, S. A rationale for curcuminoids for the prevention or treatment of Alzheimer’s disease. Curr. Med. Chem. Immunol. Endocr. Metab. Agents, 2003, 3(1), 15-25. doi: 10.2174/1568013033358761
  5. Radbakhsh, S.; Barreto, G.E.; Bland, A.R.; Sahebkar, A. Curcumin: A small molecule with big functionality against amyloid aggregation in neurodegenerative diseases and type 2 diabetes. Biofactors, 2021, 47(4), 570-586. doi: 10.1002/biof.1735 PMID: 33893674
  6. Miranda, M.; Morici, J.F.; Zanoni, M.B.; Bekinschtein, P. Brain-derived neurotrophic factor: A key molecule for memory in the healthy and the pathological brain. Front. Cell. Neurosci., 2019, 13, 363. doi: 10.3389/fncel.2019.00363 PMID: 31440144
  7. Priyadarsini, K. The chemistry of curcumin: from extraction to therapeutic agent. Molecules, 2014, 19(12), 20091-20112. doi: 10.3390/molecules191220091 PMID: 25470276
  8. Hatamipour, M.; Johnston, T.P.; Sahebkar, A. One molecule, many targets and numerous effects: The pleiotropy of curcumin lies in its chemical structure. Curr. Pharm. Des., 2018, 24(19), 2129-2136. doi: 10.2174/1381612824666180522111036 PMID: 29788873
  9. Gupta, S.C.; Prasad, S.; Kim, J.H.; Patchva, S.; Webb, L.J.; Priyadarsini, I.K.; Aggarwal, B.B. Multitargeting by curcumin as revealed by molecular interaction studies. Nat. Prod. Rep., 2011, 28(12), 1937-1955. doi: 10.1039/c1np00051a PMID: 21979811
  10. Keihanian, F., Saeidinia, A., Bagheri, R. K., Johnston, T. P., & Sahebkar, A. Curcumin, hemostasis, thrombosis, and coagulation. J. Cell. Physiol., 2018, 233(6), 4497–4511 doi: 10.1002/jcp.26249
  11. Sabouni, N.; Marzouni, H.Z.; Palizban, S.; Meidaninikjeh, S.; Kesharwani, P.; Jamialahmadi, T.; Sahebkar, A. Role of curcumin and its nanoformulations in the treatment of neurological diseases through the effects on stem cells. J. Drug Target., 2023, 31(3), 243-260. doi: 10.1080/1061186X.2022.2141755 PMID: 36305097
  12. Soltani, S.; Boozari, M.; Cicero, A.F.G.; Jamialahmadi, T.; Sahebkar, A. Effects of phytochemicals on macrophage cholesterol efflux capacity: Impact on atherosclerosis. Phytother. Res., 2021, 35(6), 2854-2878. doi: 10.1002/ptr.6991 PMID: 33464676
  13. Prasad, S.; Aggarwal, B.B. Turmeric, the golden spice. Herbal Medicine: Biomolecular and Clinical Aspects, 2nd Ed; , 2011. doi: 10.1201/b10787-14
  14. Ganji, A.; Farahani, I.; Saeedifar, A.M.; Mosayebi, G.; Ghazavi, A.; Majeed, M.; Jamialahmadi, T.; Sahebkar, A. Protective effects of curcumin against lipopolysaccharide-induced toxicity. Curr. Med. Chem., 2021, 28(33), 6915-6930. doi: 10.2174/0929867328666210525124707 PMID: 34036908
  15. Ghasemi, F.; Bagheri, H.; Barreto, G.E.; Read, M.I.; Sahebkar, A. Effects of curcumin on microglial cells. Neurotox. Res., 2019, 36(1), 12-26. doi: 10.1007/s12640-019-00030-0 PMID: 30949950
  16. Heidari, Z.; Daei, M.; Boozari, M.; Jamialahmadi, T.; Sahebkar, A. Curcumin supplementation in pediatric patients: A systematic review of current clinical evidence. Phytother. Res., 2022, 36(4), 1442-1458. doi: 10.1002/ptr.7350 PMID: 34904764
  17. Momtazi, A. A., & Sahebkar, A. Difluorinated Curcumin: A Promising Curcumin Analogue with Improved Anti-Tumor Activity and Pharmacokinetic Profile. Curr. Pharm. Des., 2016, 22(28), 4386–4397. doi: 10.2174/1381612822666160527113501
  18. Mokhtari-Zaer, A.; Marefati, N.; Atkin, S.L.; Butler, A.E.; Sahebkar, A. The protective role of curcumin in myocardial ischemia–reperfusion injury. J. Cell. Physiol., 2019, 234(1), 214-222. doi: 10.1002/jcp.26848 PMID: 29968913
  19. Mohajeri, M., & Sahebkar, A. (). Protective effects of curcumin against doxorubicin-induced toxicity and resistance: A review. Crit. Rev. Oncol. Hematol., 2018, 122, 30–51 doi: 10.1016/j.critrevonc.2017.12.005
  20. Hashem, S.; Nisar, S.; Sageena, G.; Macha, M.A.; Yadav, S.K.; Krishnankutty, R.; Uddin, S.; Haris, M.; Bhat, A.A. Therapeutic effects of curcumol in several diseases; an overview. Nutr. Cancer, 2021, 73(2), 181-195. doi: 10.1080/01635581.2020.1749676 PMID: 32285707
  21. Slika, L.; Patra, D. Traditional uses, therapeutic effects and recent advances of curcumin: A mini-review. Mini Rev. Med. Chem., 2020, 20(12), 1072-1082. doi: 10.2174/1389557520666200414161316 PMID: 32286941
  22. Aggarwal, B.B.; Yuan, W.; Li, S.; Gupta, S.C. Curcumin-free turmeric exhibits anti-inflammatory and anticancer activities: Identification of novel components of turmeric. Mol. Nutr. Food Res., 2013, 57(9), 1529-1542. doi: 10.1002/mnfr.201200838 PMID: 23847105
  23. Hewlings, S.; Kalman, D. Curcumin: A review of its effects on human health. Foods, 2017, 6(10), 92. doi: 10.3390/foods6100092 PMID: 29065496
  24. Bagheri, H.; Ghasemi, F.; Barreto, G.E.; Rafiee, R.; Sathyapalan, T.; Sahebkar, A. Effects of curcumin on mitochondria in neurodegenerative diseases. Biofactors, 2020, 46(1), 5-20. doi: 10.1002/biof.1566 PMID: 31580521
  25. Bavarsad, K.; Barreto, G.E.; Hadjzadeh, M.A.R.; Sahebkar, A. Protective effects of curcumin against ischemia-reperfusion injury in the nervous system. Mol. Neurobiol., 2019, 56(2), 1391-1404. doi: 10.1007/s12035-018-1169-7 PMID: 29948942
  26. Hasanzadeh, S.; Read, M.I.; Bland, A.R.; Majeed, M.; Jamialahmadi, T.; Sahebkar, A. Curcumin: an inflammasome silencer. Pharmacol. Res., 2020, 159, 104921. doi: 10.1016/j.phrs.2020.104921 PMID: 32464325
  27. Mohajeri, M.; Sahebkar, A. Protective effects of curcumin against doxorubicin-induced toxicity and resistance: A review. Crit. Rev. Oncol. Hematol., 2018, 122, 30-51. doi: 10.1016/j.critrevonc.2017.12.005 PMID: 29458788
  28. Momtazi-Borojeni, A.A.; Haftcheshmeh, S.M.; Esmaeili, S.A.; Johnston, T.P.; Abdollahi, E.; Sahebkar, A. Curcumin: A natural modulator of immune cells in systemic lupus erythematosus. Autoimmun. Rev., 2018, 17(2), 125-135. doi: 10.1016/j.autrev.2017.11.016 PMID: 29180127
  29. Liczbiński, P.; Michałowicz, J.; Bukowska, B. Molecular mechanism of curcumin action in signaling pathways: Review of the latest research. Phytother. Res., 2020, 34(8), 1992-2005. doi: 10.1002/ptr.6663 PMID: 32141677
  30. Rusek, M.; Czuczwar, S.J. The Role of Curcumin in Post-Ischemic Brain. In: Cerebral Ischemia; Pluta, R. Brisbane (AU): Exon Publications, 2021. doi: 10.36255/exonpublications.cerebralischemia.2021.curcumin
  31. Gupta, S.C.; Patchva, S.; Aggarwal, B.B. Therapeutic roles of curcumin: lessons learned from clinical trials. AAPS J., 2013, 15(1), 195-218. doi: 10.1208/s12248-012-9432-8 PMID: 23143785
  32. Bathina, S.; Das, U.N. Brain-derived neurotrophic factor and its clinical implications. Arch. Med. Sci., 2015, 6(6), 1164-1178. doi: 10.5114/aoms.2015.56342 PMID: 26788077
  33. Pruunsild, P.; Kazantseva, A.; Aid, T.; Palm, K.; Timmusk, T. Dissecting the human BDNF locus: Bidirectional transcription, complex splicing, and multiple promoters. Genomics, 2007, 90(3), 397-406. doi: 10.1016/j.ygeno.2007.05.004 PMID: 17629449
  34. Cattaneo, A.; Cattane, N.; Begni, V.; Pariante, C.M.; Riva, M.A. The human BDNF gene: Peripheral gene expression and protein levels as biomarkers for psychiatric disorders. Transl Psychiatry, 2016, 6(11), e958. doi: 10.1038/tp.2016.214
  35. Pezet, S.; Malcangio, M.; McMahon, S.B. BDNF: a neuromodulator in nociceptive pathways? Brain Res. Brain Res. Rev., 2002, 40(1-3), 240-249. doi: 10.1016/S0165-0173(02)00206-0 PMID: 12589922
  36. Bonni, A.; Brunet, A.; West, A.E.; Datta, S.R.; Takasu, M.A.; Greenberg, M.E. Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and -independent mechanisms. Science, 1999, 286(5443), 1358-1362. doi: 10.1126/science.286.5443.1358 PMID: 10558990
  37. Suliman, S.; Hemmings, S.M.J.; Seedat, S. Brain-Derived Neurotrophic Factor (BDNF) protein levels in anxiety disorders: systematic review and meta-regression analysis. Front. Integr. Nuerosci., 2013, 7, 55. doi: 10.3389/fnint.2013.00055 PMID: 23908608
  38. Lima Giacobbo, B.; Doorduin, J.; Klein, H.C.; Dierckx, R.A.J.O.; Bromberg, E.; de Vries, E.F.J. Brain-derived neurotrophic factor in brain disorders: Focus on neuroinflammation. Mol. Neurobiol., 2019, 56(5), 3295-3312. doi: 10.1007/s12035-018-1283-6 PMID: 30117106
  39. Ventriglia, M.; Zanardini, R.; Bonomini, C.; Zanetti, O.; Volpe, D.; Pasqualetti, P.; Gennarelli, M.; Bocchio-Chiavetto, L. Serum brain-derived neurotrophic factor levels in different neurological diseases. BioMed Res. Int., 2013, 2013, 1-7. doi: 10.1155/2013/901082 PMID: 24024214
  40. Yu, Y.; Wu, S.; Li, J.; Wang, R.; Xie, X.; Yu, X.; Pan, J.; Xu, Y.; Zheng, L. The effect of curcumin on the brain-gut axis in rat model of irritable bowel syndrome: involvement of 5-HT-dependent signaling. Metab. Brain Dis., 2015, 30(1), 47-55. doi: 10.1007/s11011-014-9554-z PMID: 24807589
  41. Osali, A. Aerobic exercise and nano-curcumin supplementation improve inflammation in elderly females with metabolic syndrome. Diabetol. Metab. Syndr., 2020, 12(1), 26. doi: 10.1186/s13098-020-00532-4 PMID: 32256716
  42. Franco-Robles, E.; Campos-Cervantes, A.; Murillo-Ortiz, B.O.; Segovia, J.; López-Briones, S.; Vergara, P.; Pérez-Vázquez, V.; Solís-Ortiz, M.S.; Ramírez-Emiliano, J. Effects of curcumin on brain-derived neurotrophic factor levels and oxidative damage in obesity and diabetes. Appl. Physiol. Nutr. Metab., 2014, 39(2), 211-218. doi: 10.1139/apnm-2013-0133 PMID: 24476477
  43. Kurauchi, Y.; Hisatsune, A.; Isohama, Y.; Mishima, S.; Katsuki, H. Caffeic acid phenethyl ester protects nigral dopaminergic neurons via dual mechanisms involving haem oxygenase-1 and brain-derived neurotrophic factor. Br. J. Pharmacol., 2012, 166(3), 1151-1168. doi: 10.1111/j.1476-5381.2012.01833.x PMID: 22224485
  44. Moriya, J.; Chen, R.; Yamakawa, J.; Sasaki, K.; Ishigaki, Y.; Takahashi, T. Resveratrol improves hippocampal atrophy in chronic fatigue mice by enhancing neurogenesis and inhibiting apoptosis of granular cells. Biol. Pharm. Bull., 2011, 34(3), 354-359. doi: 10.1248/bpb.34.354 PMID: 21372384
  45. Zhang, F.; Lu, Y.F.; Wu, Q.; Liu, J.; Shi, J.S. Resveratrol promotes neurotrophic factor release from astroglia. Exp. Biol. Med. (Maywood), 2012, 237(8), 943-948. doi: 10.1258/ebm.2012.012044 PMID: 22875340
  46. Hoppe, J.B.; Coradini, K.; Frozza, R.L.; Oliveira, C.M.; Meneghetti, A.B.; Bernardi, A.; Pires, E.S.; Beck, R.C.R.; Salbego, C.G. Free and nanoencapsulated curcumin suppress β-amyloid-induced cognitive impairments in rats: Involvement of BDNF and Akt/GSK-3β signaling pathway. Neurobiol. Learn. Mem., 2013, 106, 134-144. doi: 10.1016/j.nlm.2013.08.001 PMID: 23954730
  47. Spencer, P.S.; Lein, P.J. Neurotoxicity. Encyclopedia of toxicology, 3rd ed; Wexler, P., Ed.; Academic Press: Oxford, 2014, pp. 489-500. doi: 10.1016/B978-0-12-386454-3.00169-X
  48. Sarraf, P.; Parohan, M.; Javanbakht, M.H.; Ranji-Burachaloo, S.; Djalali, M. Short-term curcumin supplementation enhances serum brain-derived neurotrophic factor in adult men and women: a systematic review and dose-response meta-analysis of randomized controlled trials. Nutr. Res., 2019, 69, 1-8. doi: 10.1016/j.nutres.2019.05.001 PMID: 31279955
  49. Joseph, M.S.; Ying, Z.; Zhuang, Y.; Zhong, H.; Wu, A.; Bhatia, H.S.; Cruz, R.; Tillakaratne, N.J.K.; Roy, R.R.; Edgerton, V.R.; Gomez-Pinilla, F. Effects of diet and/or exercise in enhancing spinal cord sensorimotor learning. PLoS One, 2012, 7(7), e41288. doi: 10.1371/journal.pone.0041288 PMID: 22911773
  50. Guerzoni, L.P.B.; Nicolas, V.; Angelova, A. In vitro modulation of TrkB receptor signaling upon sequential delivery of curcumin-DHA loaded carriers towards promoting neuronal survival. Pharm. Res., 2017, 34(2), 492-505. doi: 10.1007/s11095-016-2080-4 PMID: 27995523
  51. Singh, N.; Sharma, B. On the mechanisms of heavy metal-induced neurotoxicity: Amelioration by plant products. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci., 2021, 91(4), 743-751. doi: 10.1007/s40011-021-01272-9
  52. Wani, A.L.; Ara, A.; Usmani, J.A. Lead toxicity: a review. Interdiscip. Toxicol., 2015, 8(2), 55-64. doi: 10.1515/intox-2015-0009 PMID: 27486361
  53. Dabidi Roshan, V.; Hosseinzadeh, S.; Mahjoub, S.; Hosseinzadeh, M.; Myers, J. Endurance exercise training and diferuloyl methane supplement: changes in neurotrophic factor and oxidative stress induced by lead in rat brain. Biol. Sport, 2013, 30(1), 41-46. doi: 10.5604/20831862.1029820 PMID: 24744464
  54. Hosseinzadeh, S.; Roshan, V.D.; Mahjoub, S. Continuous exercise training and curcumin attenuate changes in brain-derived neurotrophic factor and oxidative stress induced by lead acetate in the hippocampus of male rats. Pharm. Biol., 2013, 51(2), 240-245. doi: 10.3109/13880209.2012.717230 PMID: 23134146
  55. Namgyal, D.; Ali, S.; Mehta, R.; Sarwat, M. The neuroprotective effect of curcumin against Cd-induced neurotoxicity and hippocampal neurogenesis promotion through CREB-BDNF signaling pathway. Toxicology, 2020, 442, 152542. doi: 10.1016/j.tox.2020.152542 PMID: 32735850
  56. Wei, W.; Dong, Q.; Jiang, W.; Wang, Y.; Chen, Y.; Han, T.; Sun, C. Dichloroacetic acid-induced dysfunction in rat hippocampus and the protective effect of curcumin. Metab. Brain Dis., 2021, 36(4), 545-556. doi: 10.1007/s11011-020-00657-5 PMID: 33411217
  57. Sheldon, A.L.; Robinson, M.B. The role of glutamate transporters in neurodegenerative diseases and potential opportunities for intervention. Neurochem. Int., 2007, 51(6-7), 333-355. doi: 10.1016/j.neuint.2007.03.012 PMID: 17517448
  58. Kawamoto, E.M.; Scavone, C.; Mattson, M.P.; Camandola, S. Curcumin requires tumor necrosis factor α signaling to alleviate cognitive impairment elicited by lipopolysaccharide. Neurosignals, 2013, 21(1-2), 75-88. doi: 10.1159/000336074 PMID: 22572473
  59. Santana-Martínez, R.A.; Silva-Islas, C.A.; Fernández-Orihuela, Y.Y.; Barrera-Oviedo, D.; Pedraza-Chaverri, J.; Hernández-Pando, R. The therapeutic effect of curcumin in quinolinic acid-induced neurotoxicity in rats is associated with BDNF, ERK1/2, Nrf2, and antioxidant enzymes. Antioxidants, 2019, 8(9)
  60. Papoušek, R.; Pataj, Z.; Nováková, P.; Lemr, K.; Barták, P. Determination of acrylamide and acrolein in smoke from tobacco and e-cigarettes. Chromatographia, 2014, 77(17-18), 1145-1151. doi: 10.1007/s10337-014-2729-2
  61. Yan, D.; Yao, J.; Liu, Y.; Zhang, X.; Wang, Y.; Chen, X.; Liu, L.; Shi, N.; Yan, H. Tau hyperphosphorylation and P-CREB reduction are involved in acrylamide-induced spatial memory impairment: Suppression by curcumin. Brain Behav. Immun., 2018, 71, 66-80. doi: 10.1016/j.bbi.2018.04.014 PMID: 29704550
  62. Shi, L.Y.; Zhang, L.; Li, H.; Liu, T.L.; Lai, J.C.; Wu, Z.B. Protective effects of curcumin on acrolein-induced neurotoxicity in HT22 mouse hippocampal cells. Pharmacol Rep, 2018, 70(5), 1040-46. doi: 10.1016/j.pharep.2018.05.006
  63. Motaghinejad, M.; Motevalian, M.; Fatima, S.; Faraji, F.; Mozaffari, S. The neuroprotective effect of curcumin against nicotine-induced neurotoxicity is mediated by CREB–BDNF signaling pathway. Neurochem. Res., 2017, 42(10), 2921-2932. doi: 10.1007/s11064-017-2323-8 PMID: 28608236
  64. Cippitelli, A.; Damadzic, R.; Frankola, K.; Goldstein, A.; Thorsell, A.; Singley, E.; Eskay, R.L.; Heilig, M. Alcohol-induced neurodegeneration, suppression of transforming growth factor-beta, and cognitive impairment in rats: prevention by group II metabotropic glutamate receptor activation. Biol. Psychiatry, 2010, 67(9), 823-830. doi: 10.1016/j.biopsych.2009.12.018 PMID: 20132926
  65. Motaghinejad, M.; Motevalian, M.; Fatima, S.; Hashemi, H.; Gholami, M. Curcumin confers neuroprotection against alcohol-induced hippocampal neurodegeneration via CREB-BDNF pathway in rats. Biomed. Pharmacother., 2017, 87, 721-740. doi: 10.1016/j.biopha.2016.12.020 PMID: 28095363
  66. Feizolahi, F.; Azarbayjani, M.A.; Nasehi, M.; Peeri, M.; Zarrindast, M.R. The combination of swimming and curcumin consumption may improve spatial memory recovery after binge ethanol drinking. Physiol. Behav., 2019, 207, 139-150. doi: 10.1016/j.physbeh.2019.03.018 PMID: 31071339
  67. Gholami, M.; Hozuri, F.; Abdolkarimi, S.; Mahmoudi, M.; Motaghinejad, M.; Safari, S.; Sadr, S. Pharmacological and molecular evidence of neuroprotective curcumin effects against biochemical and behavioral sequels caused by methamphetamine: Possible function of CREB-BDNF signaling pathway. Basic Clin. Neurosci., 2021, 12(3), 325-338. doi: 10.32598/bcn.2021.1176.3 PMID: 34917292
  68. Wang, Q.; Sun, L.H.; Jia, W.; Liu, X.M.; Dang, H.X.; Mai, W.L.; Wang, N.; Steinmetz, A.; Wang, Y.Q.; Xu, C.J. Comparison of ginsenosides Rg1 and Rb1 for their effects on improving scopolamine-induced learning and memory impairment in mice. Phytother. Res., 2010, 24(12), 1748-1754. doi: 10.1002/ptr.3130 PMID: 20564503
  69. Eun, C.S.; Lim, J.S.; Lee, J.; Lee, S.P.; Yang, S.A. The protective effect of fermented Curcuma longa L. on memory dysfunction in oxidative stress-induced C6 gliomal cells, proinflammatory-activated BV2 microglial cells, and scopolamine-induced amnesia model in mice. BMC Complement. Altern. Med., 2017, 17(1), 367. doi: 10.1186/s12906-017-1880-3 PMID: 28716085
  70. Gite, S.; Ross, R.P.; Kirke, D.; Guihéneuf, F.; Aussant, J.; Stengel, D.B.; Dinan, T.G.; Cryan, J.F.; Stanton, C. Nutraceuticals to promote neuronal plasticity in response to corticosterone-induced stress in human neuroblastoma cells. Nutr. Neurosci., 2019, 22(8), 551-568. doi: 10.1080/1028415X.2017.1418728 PMID: 29378496
  71. Tiekou Lorinczova, H.; Fitzsimons, O.; Mursaleen, L.; Renshaw, D.; Begum, G.; Zariwala, M.G. Co-administration of iron and a bioavailable curcumin supplement increases serum BDNF levels in healthy adults. Antioxidants, 2020, 9(8), 645. doi: 10.3390/antiox9080645
  72. Wu, X.; Chen, H.; Huang, C.; Gu, X.; Wang, J.; Xu, D.; Yu, X.; Shuai, C.; Chen, L.; Li, S.; Xu, Y.; Gao, T.; Ye, M.; Su, W.; Liu, H.; Zhang, J.; Wang, C.; Chen, J.; Wang, Q.; Cui, W. Curcumin attenuates surgery-induced cognitive dysfunction in aged mice. Metab. Brain Dis., 2017, 32(3), 789-798. doi: 10.1007/s11011-017-9970-y PMID: 28224377
  73. Namgyal, D.; Chandan, K.; Sultan, A.; Aftab, M.; Ali, S.; Mehta, R.; El-Serehy, H.A.; Al-Misned, F.A.; Sarwat, M. Dim light at night induced neurodegeneration and ameliorative effect of curcumin. Cells, 2020, 9(9), 2093. doi: 10.3390/cells9092093 PMID: 32933226
  74. Sumanont, Y.; Murakami, Y.; Tohda, M.; Vajragupta, O.; Watanabe, H.; Matsumoto, K. Effects of manganese complexes of curcumin and diacetylcurcumin on kainic acid-induced neurotoxic responses in the rat hippocampus. Biol. Pharm. Bull., 2007, 30(9), 1732-1739. doi: 10.1248/bpb.30.1732 PMID: 17827730
  75. Beltrán-Campos, V.; Silva-Vera, M.; García-Campos, M.L.; Díaz-Cintra, S. Effects of morphine on brain plasticity. Neurologia, 2015, 30(3), 176-180. PMID: 25444409
  76. Liang, D.Y.; Li, X.; Clark, J.D. Epigenetic regulation of opioid-induced hyperalgesia, dependence, and tolerance in mice. J. Pain, 2013, 14(1), 36-47. doi: 10.1016/j.jpain.2012.10.005 PMID: 23273833
  77. Matsushita, Y.; Ueda, H. Curcumin blocks chronic morphine analgesic tolerance and brain-derived neurotrophic factor upregulation. Neuroreport, 2009, 20(1), 63-68. doi: 10.1097/WNR.0b013e328314decb PMID: 19033880
  78. Zhu, X.; Li, Q.; Chang, R.; Yang, D.; Song, Z.; Guo, Q.; Huang, C. Curcumin alleviates neuropathic pain by inhibiting p300/CBP histone acetyltransferase activity-regulated expression of BDNF and cox-2 in a rat model. PLoS One, 2014, 9(3), e91303. doi: 10.1371/journal.pone.0091303 PMID: 24603592
  79. Pieretti, S.; Ranjan, A.P.; Di Giannuario, A.; Mukerjee, A.; Marzoli, F.; Di Giovannandrea, R.; Vishwanatha, J.K. "Curcumin-loaded Poly (d, l-lactide-co-glycolide) nanovesicles induce antinociceptive effects and reduce pronociceptive cytokine and BDNF release in spinal cord after acute administration in mice". Colloids Surf. B Biointerfaces, 2017, 158, 379-386. doi: 10.1016/j.colsurfb.2017.07.027 PMID: 28719859
  80. Srivastava, P.; Dhuriya, Y.K.; Gupta, R.; Shukla, R.K.; Yadav, R.S.; Dwivedi, H.N.; Pant, A.B.; Khanna, V.K. Protective effect of curcumin by modulating BDNF/DARPP32/CREB in arsenic-induced alterations in dopaminergic signaling in rat corpus striatum. Mol. Neurobiol., 2018, 55(1), 445-461. doi: 10.1007/s12035-016-0288-2 PMID: 27966075
  81. Srivastava, P.; Dhuriya, Y.K.; Kumar, V.; Srivastava, A.; Gupta, R.; Shukla, R.K.; Yadav, R.S.; Dwivedi, H.N.; Pant, A.B.; Khanna, V.K. PI3K/Akt/GSK3β induced CREB activation ameliorates arsenic mediated alterations in NMDA receptors and associated signaling in rat hippocampus: Neuroprotective role of curcumin. Neurotoxicology, 2018, 67, 190-205. doi: 10.1016/j.neuro.2018.04.018 PMID: 29723552
  82. Failla, M.D.; Conley, Y.P.; Wagner, A.K. Brain-derived neurotrophic factor (BDNF) in traumatic brain injury–related mortality. Neurorehabil. Neural Repair, 2016, 30(1), 83-93. doi: 10.1177/1545968315586465 PMID: 25979196
  83. Wu, A.; Ying, Z.; Gomez-Pinilla, F. Dietary curcumin counteracts the outcome of traumatic brain injury on oxidative stress, synaptic plasticity, and cognition. Exp. Neurol., 2006, 197(2), 309-317. doi: 10.1016/j.expneurol.2005.09.004 PMID: 16364299
  84. Wu, A.; Ying, Z.; Gomez-Pinilla, F. Dietary strategy to repair plasma membrane after brain trauma: implications for plasticity and cognition. Neurorehabil. Neural Repair, 2014, 28(1), 75-84. doi: 10.1177/1545968313498650 PMID: 23911971
  85. Sun, G.; Miao, Z.; Ye, Y.; Zhao, P.; Fan, L.; Bao, Z.; Tu, Y.; Li, C.; Chao, H.; Xu, X.; Ji, J. Curcumin alleviates neuroinflammation, enhances hippocampal neurogenesis, and improves spatial memory after traumatic brain injury. Brain Res. Bull., 2020, 162, 84-93. doi: 10.1016/j.brainresbull.2020.05.009 PMID: 32502596
  86. Wu, A.; Ying, Z.; Schubert, D.; Gomez-Pinilla, F. Brain and spinal cord interaction: a dietary curcumin derivative counteracts locomotor and cognitive deficits after brain trauma. Neurorehabil. Neural Repair, 2011, 25(4), 332-342. doi: 10.1177/1545968310397706 PMID: 21343524
  87. Murakami, S.; Imbe, H.; Morikawa, Y.; Kubo, C.; Senba, E. Chronic stress, as well as acute stress, reduces BDNF mRNA expression in the rat hippocampus but less robustly. Neurosci. Res., 2005, 53(2), 129-139. doi: 10.1016/j.neures.2005.06.008 PMID: 16024125
  88. Xu, Y.; Ku, B.; Cui, L.; Li, X.; Barish, P.A.; Foster, T.C.; Ogle, W.O. Curcumin reverses impaired hippocampal neurogenesis and increases serotonin receptor 1A mRNA and brain-derived neurotrophic factor expression in chronically stressed rats. Brain Res., 2007, 1162, 9-18. doi: 10.1016/j.brainres.2007.05.071 PMID: 17617388
  89. Xu, Y.; Ku, B.; Tie, L.; Yao, H.; Jiang, W.; Ma, X.; Li, X. Curcumin reverses the effects of chronic stress on behavior, the HPA axis, BDNF expression and phosphorylation of CREB. Brain Res., 2006, 1122(1), 56-64. doi: 10.1016/j.brainres.2006.09.009 PMID: 17022948
  90. Zhang, L.; Luo, J.; Zhang, M.; Yao, W.; Ma, X.; Yu, S.Y. Effects of curcumin on chronic, unpredictable, mild, stress-induced depressive-like behaviour and structural plasticity in the lateral amygdala of rats. Int. J. Neuropsychopharmacol., 2014, 17(5), 793-806. doi: 10.1017/S1461145713001661 PMID: 24405689
  91. Liu, D.; Wang, Z.; Gao, Z.; Xie, K.; Zhang, Q.; Jiang, H.; Pang, Q. Effects of curcumin on learning and memory deficits, BDNF, and ERK protein expression in rats exposed to chronic unpredictable stress. Behav. Brain Res., 2014, 271, 116-121. doi: 10.1016/j.bbr.2014.05.068 PMID: 24914461
  92. Wei, S.; Xu, H.; Xia, D.; Zhao, R. Curcumin attenuates the effects of transport stress on serum cortisol concentration, hippocampal NO production, and BDNF expression in the pig. Domest. Anim. Endocrinol., 2010, 39(4), 231-239. doi: 10.1016/j.domaniend.2010.06.004 PMID: 20920780
  93. Dwivedi, Y. Brain-derived neurotrophic factor: role in depression and suicide. Neuropsychiatr. Dis. Treat., 2009, 5, 433-449. doi: 10.2147/NDT.S5700 PMID: 19721723
  94. Ristevska-Dimitrovska, G.; Shishkov, R.; Gerazova, V.P.; Vujovik, V.; Stefanovski, B.; Novotni, A.; Marinov, P.; Filov, I. Different serum BDNF levels in depression: results from BDNF studies in FYR Macedonia and Bulgaria. Psychiatr. Danub., 2013, 25(2), 123-127. PMID: 23793275
  95. Molendijk, M.L.; Bus, B A A.; Spinhoven, P.; Penninx, B.W.J.H.; Kenis, G.; Prickaerts, J.; Voshaar, R.C.O.; Elzinga, B.M. Serum levels of brain-derived neurotrophic factor in major depressive disorder: state–trait issues, clinical features and pharmacological treatment. Mol. Psychiatry, 2011, 16(11), 1088-1095. doi: 10.1038/mp.2010.98 PMID: 20856249
  96. Afzal, A.; Batool, Z.; Sadir, S.; Liaquat, L.; Shahzad, S.; Tabassum, S.; Ahmad, S.; Kamil, N.; Perveen, T.; Haider, S. Therapeutic potential of curcumin in reversing the depression and associated pseudodementia via modulating stress hormone, hippocampal neurotransmitters, and BDNF Levels in rats. Neurochem. Res., 2021, 46(12), 3273-3285. doi: 10.1007/s11064-021-03430-x PMID: 34409523
  97. Liao, D; Lv, C; Cao, L; Yao, D; Wu, Y; Long, M Curcumin attenuates chronic unpredictable mild stress-induced depressive-like behaviors via restoring changes in oxidative stress and the activation of Nrf2 signaling pathway in rats. Oxid Med Cell Longev, 2020, 2020, 9268083. doi: 10.1155/2020/9268083
  98. Hurley, L.L.; Akinfiresoye, L.; Nwulia, E.; Kamiya, A.; Kulkarni, A.A.; Tizabi, Y. Antidepressant-like effects of curcumin in WKY rat model of depression is associated with an increase in hippocampal BDNF. Behav. Brain Res., 2013, 239, 27-30. doi: 10.1016/j.bbr.2012.10.049 PMID: 23142609
  99. Huang, Z.; Zhong, X.M.; Li, Z.Y.; Feng, C.R.; Pan, A.J.; Mao, Q.Q. Curcumin reverses corticosterone-induced depressive-like behavior and decrease in brain BDNF levels in rats. Neurosci. Lett., 2011, 493(3), 145-148. doi: 10.1016/j.neulet.2011.02.030 PMID: 21334417
  100. Zhang, L.; Xu, T.; Wang, S.; Yu, L.; Liu, D.; Zhan, R.; Yu, S.Y. Curcumin produces antidepressant effects via activating MAPK/ERK-dependent brain-derived neurotrophic factor expression in the amygdala of mice. Behav. Brain Res., 2012, 235(1), 67-72. doi: 10.1016/j.bbr.2012.07.019 PMID: 22820234
  101. Lian, L.; Xu, Y.; Zhang, J.; Yu, Y.; Zhu, N.; Guan, X.; Huang, H.; Chen, R.; Chen, J.; Shi, G.; Pan, J. Antidepressant-like effects of a novel curcumin derivative J147: Involvement of 5-HT1A receptor. Neuropharmacology, 2018, 135, 506-513. doi: 10.1016/j.neuropharm.2018.04.003 PMID: 29626566
  102. Li, J.; Chen, L.; Li, G.; Chen, X.; Hu, S.; Zheng, L.; Luria, V.; Lv, J.; Sun, Y.; Xu, Y.; Yu, Y. Sub-acute treatment of curcumin derivative J147 ameliorates depression-like behavior through 5-HT1A-mediated cAMP signaling. Front. Neurosci., 2020, 14, 701. doi: 10.3389/fnins.2020.00701 PMID: 32733195
  103. Wang, R.; Li, Y.H.; Xu, Y.; Li, Y.B.; Wu, H.L.; Guo, H.; Zhang, J.Z.; Zhang, J.J.; Pan, X.Y.; Li, X.J. Curcumin produces neuroprotective effects via activating brain-derived neurotrophic factor/TrkB-dependent MAPK and PI-3K cascades in rodent cortical neurons. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2010, 34(1), 147-153. doi: 10.1016/j.pnpbp.2009.10.016 PMID: 19879308
  104. Wang, R.; Li, Y.B.; Li, Y.H.; Xu, Y.; Wu, H.; Li, X.J. Curcumin protects against glutamate excitotoxicity in rat cerebral cortical neurons by increasing brain-derived neurotrophic factor level and activating TrkB. Brain Res., 2008, 1210, 84-91. doi: 10.1016/j.brainres.2008.01.104 PMID: 18420184
  105. He, X.; Yang, L.; Wang, M.; Zhuang, X.; Huang, R.; Zhu, R. Targeting the endocannabinoid/CB1 receptor system for treating major depression through antidepressant activities of curcumin and dexanabinol-loaded solid lipid nanoparticles. Cell Physiol Biochem, 2017, 42(6), 2281-2294.
  106. Yu, J.J.; Pei, L.B.; Zhang, Y.; Wen, Z.Y.; Yang, J.L. Chronic supplementation of curcumin enhances the efficacy of antidepressants in major depressive disorder. J. Clin. Psychopharmacol., 2015, 35(4), 406-410. doi: 10.1097/JCP.0000000000000352 PMID: 26066335
  107. Choi, G-Y; Kim, H-B; Hwang, E-S; Lee, S; Kim, M-J; Choi, J-Y Curcumin alters neural plasticity and viability of intact hippocampal circuits and attenuates behavioral despair and COX-2 expression in chronically stressed rats. Mediators Inflamm, 2017, 2017, 6280925.
  108. Rinwa, P.; Kumar, A.; Garg, S. Suppression of neuroinflammatory and apoptotic signaling cascade by curcumin alone and in combination with piperine in rat model of olfactory bulbectomy induced depression. PLoS One, 2013, 8(4), e61052. doi: 10.1371/journal.pone.0061052 PMID: 23613781
  109. Gao, L.; Zhang, Y.; Sterling, K.; Song, W. Brain-derived neurotrophic factor in Alzheimer’s disease and its pharmaceutical potential. Transl. Neurodegener., 2022, 11(1), 4. doi: 10.1186/s40035-022-00279-0 PMID: 35090576
  110. Zhang, L.; Fang, Y.; Xu, Y.; Lian, Y.; Xie, N.; Wu, T.; Zhang, H.; Sun, L.; Zhang, R.; Wang, Z. Curcumin improves amyloid β-peptide (1-42) induced spatial memory deficits through BDNF-ERK signaling pathway. PLoS One, 2015, 10(6), e0131525. doi: 10.1371/journal.pone.0131525 PMID: 26114940
  111. Okuda, M.; Fujita, Y.; Sugimoto, H. The additive effects of low dose intake of ferulic acid, phosphatidylserine and curcumin, not alone, improve cognitive function in appswe/ps1de9 transgenic mice. Biol. Pharm. Bull., 2019, 42(10), 1694-1706. doi: 10.1248/bpb.b19-00332 PMID: 31582657
  112. Li, J.; Wang, S.; Zhang, S.; Cheng, D.; Yang, X.; Wang, Y.; Yin, H.; Liu, Y.; Liu, Y.; Bai, H.; Geng, S.; Wang, Y. Curcumin slows the progression of Alzheimer’s disease by modulating mitochondrial stress responses via JMJD3-H3K27me3-BDNF axis. Am. J. Transl. Res., 2021, 13(12), 13380-13393. PMID: 35035682
  113. Tang, H.; Lu, D.; Pan, R.; Qin, X.; Xiong, H.; Dong, J. Curcumin improves spatial memory impairment induced by human immunodeficiency virus type 1 glycoprotein 120 V3 loop peptide in rats. Life Sci., 2009, 85(1-2), 1-10. doi: 10.1016/j.lfs.2009.03.013 PMID: 19345695
  114. Yang, J.; Song, S.; Li, J.; Liang, T. Neuroprotective effect of curcumin on hippocampal injury in 6-OHDA-induced Parkinson’s disease rat. Pathol. Res. Pract., 2014, 210(6), 357-362. doi: 10.1016/j.prp.2014.02.005 PMID: 24642369
  115. Yu, C.; Li, C.H.; Chen, S.; Yoo, H.; Qin, X.; Park, H. Decreased BDNF release in cortical neurons of a knock-in mouse model of Huntington’s disease. Sci. Rep., 2018, 8(1), 16976. doi: 10.1038/s41598-018-34883-w PMID: 30451892
  116. Zuccato, C.; Marullo, M.; Vitali, B.; Tarditi, A.; Mariotti, C.; Valenza, M.; Lahiri, N.; Wild, E.J.; Sassone, J.; Ciammola, A.; Bachoud-Lèvi, A.C.; Tabrizi, S.J.; Di Donato, S.; Cattaneo, E. Brain-derived neurotrophic factor in patients with Huntington’s disease. PLoS One, 2011, 6(8), e22966. doi: 10.1371/journal.pone.0022966 PMID: 21857974
  117. Gharaibeh, A.; Maiti, P.; Culver, R.; Heileman, S.; Srinageshwar, B.; Story, D.; Spelde, K.; Paladugu, L.; Munro, N.; Muhn, N.; Kolli, N.; Rossignol, J.; Dunbar, G.L. Solid lipid curcumin particles protect medium spiny neuronal morphology, and reduce learning and memory deficits in the YAC128 mouse model of Huntington’s disease. Int. J. Mol. Sci., 2020, 21(24), 9542. doi: 10.3390/ijms21249542 PMID: 33333883
  118. Elifani, F.; Amico, E.; Pepe, G.; Capocci, L.; Castaldo, S.; Rosa, P.; Montano, E.; Pollice, A.; Madonna, M.; Filosa, S.; Calogero, A.; Maglione, V.; Crispi, S.; Di Pardo, A. Curcumin dietary supplementation ameliorates disease phenotype in an animal model of Huntington’s disease. Hum. Mol. Genet., 2019, 28(23), ddz247. doi: 10.1093/hmg/ddz247 PMID: 31630202
  119. Mojtabavi, H.; Shaka, Z.; Momtazmanesh, S.; Ajdari, A.; Rezaei, N. Circulating brain-derived neurotrophic factor as a potential biomarker in stroke: a systematic review and meta-analysis. J. Transl. Med., 2022, 20(1), 126. doi: 10.1186/s12967-022-03312-y PMID: 35287688
  120. Lapchak, P.A.; Boitano, P.D.; Bombien, R.; Cook, D.J.; Doyan, S.; Lara, J.M.; Schubert, D.R. CNB-001, a pleiotropic drug is efficacious in embolized agyrencephalic New Zealand white rabbits and ischemic gyrencephalic cynomolgus monkeys. Exp. Neurol., 2019, 313, 98-108. doi: 10.1016/j.expneurol.2018.11.010 PMID: 30521790
  121. Green, M.J.; Matheson, S.L.; Shepherd, A.; Weickert, C.S.; Carr, V.J. Brain-derived neurotrophic factor levels in schizophrenia: a systematic review with meta-analysis. Mol. Psychiatry, 2011, 16(9), 960-972. doi: 10.1038/mp.2010.88 PMID: 20733577
  122. Wynn, J.K.; Green, M.F.; Hellemann, G.; Karunaratne, K.; Davis, M.C.; Marder, S.R. The effects of curcumin on brain-derived neurotrophic factor and cognition in schizophrenia: A randomized controlled study. Schizophr. Res., 2018, 195, 572-573. doi: 10.1016/j.schres.2017.09.046 PMID: 28965778

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Bentham Science Publishers, 2024