Bacterial Polyhydroxyalkanoates-based Therapeutics-delivery Nano-systems


Дәйексөз келтіру

Толық мәтін

Аннотация

:Microbial polyhydroxyalkanoates (PHAs) are bio-based aliphatic biopolyester produced by bacteria as an intracellular storage material of carbon and energy under stressed conditions. PHAs have been paid attention to due to their unique and impressive biological properties including high biodegradability, biocompatibility, low cytotoxicity, and different mechanical properties. Under this context, the development of drug-delivery nanosystems based on PHAs has been revealed to have numerous advantages compared with synthetic polymers that included biocompatibility, biodegradability, non-toxic, and low-cost production, among others. In this review article, we present the available state of the art of PHAs. Moreover, we discussed the potential benefits, weaknesses, and perspectives of PHAs to the develop drug delivery systems.

Авторлар туралы

Esteban Durán-Lara

DuranLab; Bio & Nanomaterials, Faculty Health of Science, Universidad de Talca

Хат алмасуға жауапты Автор.
Email: info@benthamscience.net

Diana Rafael

Drug Delivery and Targeting Group, Molecular Biology and Biochemistry Research Centre for Nanomedicine (CIBBIM-Nanomedicine), Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona

Email: info@benthamscience.net

Fernanda Andrade

Drug Delivery and Targeting Group, Molecular Biology and Biochemistry Research Centre for Nanomedicine (CIBBIM-Nanomedicine), Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona

Email: info@benthamscience.net

Olga G.

Departamento de Microbiología, Facultad de Ciencias de la Salud,, Universidad de Talca

Email: info@benthamscience.net

Sekar Vijayakumar

, Marine College, Shandong University

Email: info@benthamscience.net

Әдебиет тізімі

  1. Coelho, J.F.; Ferreira, P.C.; Alves, P.; Cordeiro, R.; Fonseca, A.C.; Góis, J.R.; Gil, M.H. Drug delivery systems: Advanced technologies potentially applicable in personalized treatments. EPMA J., 2010, 1(1), 164-209. doi: 10.1007/s13167-010-0001-x PMID: 23199049
  2. Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.P.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; Habtemariam, S.; Shin, H.S. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnology, 2018, 16(1), 71. doi: 10.1186/s12951-018-0392-8 PMID: 30231877
  3. Adepu, S.; Ramakrishna, S. Controlled drug delivery systems: Current status and future directions. Molecules, 2021, 26(19), 5905. doi: 10.3390/molecules26195905 PMID: 34641447
  4. Majumder, J.; Taratula, O.; Minko, T. Nanocarrier-based systems for targeted and site specific therapeutic delivery. Adv. Drug Deliv. Rev., 2019, 144, 57-77. doi: 10.1016/j.addr.2019.07.010 PMID: 31400350
  5. Kenchegowda, M.; Rahamathulla, M.; Hani, U.; Begum, M.Y.; Guruswamy, S.; Osmani, R.A.M.; Gowrav, M.P.; Alshehri, S.; Ghoneim, M.M.; Alshlowi, A.; Gowda, D.V. Smart nanocarriers as an emerging platform for cancer therapy: A review. Molecules, 2021, 27(1), 146. doi: 10.3390/molecules27010146 PMID: 35011376
  6. Sugumaran, A.; Mathialagan, V. Colloidal nanocarriers as versatile targeted delivery systems for cervical cancer. Curr. Pharm. Des., 2020, 26(40), 5174-5187. doi: 10.2174/1381612826666200625110950 PMID: 32586249
  7. Alves, V.D.; Torres, C.A.V.; Freitas, F. Bacterial polymers as materials for the development of micro/nanoparticles. Int. J. Polym. Mater., 2016, 65(5), 211-224. doi: 10.1080/00914037.2015.1103239
  8. Li, Z.; Loh, X.J. Recent advances of using polyhydroxyalkanoate-based nanovehicles as therapeutic delivery carriers. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2017, 9(3), e1429. doi: 10.1002/wnan.1429 PMID: 27595635
  9. Ige, O.O.; Umoru, L.E.; Aribo, S. Natural products: A minefield of biomaterials. ISRN Mat. Sci., 2012, 2012, 1-20. doi: 10.5402/2012/983062
  10. Chuah, J.A.; Yamada, M.; Taguchi, S.; Sudesh, K.; Doi, Y.; Numata, K. Biosynthesis and characterization of polyhydroxyalkanoate containing 5-hydroxyvalerate units: Effects of 5HV units on biodegradability, cytotoxicity, mechanical and thermal properties. Polym. Degrad. Stabil., 2013, 98(1), 331-338. doi: 10.1016/j.polymdegradstab.2012.09.008
  11. Castro-Mayorga, J.L.; Martínez-Abad, A.; Fabra, M.J.; Olivera, C.; Reis, M.; Lagarón, J.M. Stabilization of antimicrobial silver nanoparticles by a polyhydroxyalkanoate obtained from mixed bacterial culture. Int. J. Biol. Macromol., 2014, 71, 103-110. doi: 10.1016/j.ijbiomac.2014.06.059 PMID: 25043131
  12. Jesus, S.; Schmutz, M.; Som, C.; Borchard, G.; Wick, P.; Borges, O. Hazard assessment of polymeric nanobiomaterials for drug delivery: What can we learn from literature so far. Front. Bioeng. Biotechnol., 2019, 7, 261. doi: 10.3389/fbioe.2019.00261 PMID: 31709243
  13. Pulingam, T.; Appaturi, J.N.; Parumasivam, T.; Ahmad, A.; Sudesh, K. Biomedical applications of polyhydroxyalkanoate in tissue engineering. Polymers, 2022, 14(11), 2141. doi: 10.3390/polym14112141 PMID: 35683815
  14. Ponjavic, M.; Malagurski, I.; Lazic, J.; Jeremic, S.; Pavlovic, V.; Prlainovic, N.; Maksimovic, V.; Cosovic, V.; Atanase, L.I.; Freitas, F.; Matos, M.; Nikodinovic-Runic, J. Advancing PHBV biomedical potential with the incorporation of bacterial biopigment prodigiosin. Int. J. Mol. Sci., 2023, 24(3), 1906. doi: 10.3390/ijms24031906 PMID: 36768226
  15. Dinjaski, N.; Prieto, M.A. Smart polyhydroxyalkanoate nanobeads by protein based functionalization. Nanomedicine, 2015, 11(4), 885-899. doi: 10.1016/j.nano.2015.01.018 PMID: 25720989
  16. Dhania, S.; Bernela, M.; Rani, R.; Parsad, M.; Grewal, S.; Kumari, S.; Thakur, R. Scaffolds the backbone of tissue engineering: Advancements in use of polyhydroxyalkanoates (PHA). Int. J. Biol. Macromol., 2022, 208, 243-259. doi: 10.1016/j.ijbiomac.2022.03.030 PMID: 35278518
  17. Rivero-Buceta, V.; Aguilar, M.R.; Hernández-Arriaga, A.M.; Blanco, F.G.; Rojas, A.; Tortajada, M.; Ramírez-Jiménez, R.A.; Vázquez-Lasa, B.; Prieto, A. Anti-staphylococcal hydrogels based on bacterial cellulose and the antimicrobial biopolyester poly(3-hydroxy-acetylthioalkanoate-co-3-hydroxyalkanoate). Int. J. Biol. Macromol., 2020, 162, 1869-1879. doi: 10.1016/j.ijbiomac.2020.07.289 PMID: 32777414
  18. Evangeline, S.; Sridharan, T.B. Biosynthesis and statistical optimization of polyhydroxyalkanoate (PHA) produced by Bacillus cereus VIT-SSR1 and fabrication of biopolymer films for sustained drug release. Int. J. Biol. Macromol., 2019, 135, 945-958. doi: 10.1016/j.ijbiomac.2019.05.163 PMID: 31128180
  19. Ang, S.L.; Sivashankari, R.; Shaharuddin, B.; Chuah, J.A.; Tsuge, T.; Abe, H.; Sudesh, K. Potential applications of polyhydroxyalkanoates as a biomaterial for the aging population. Polym. Degrad. Stabil., 2020, 181, 109371. doi: 10.1016/j.polymdegradstab.2020.109371
  20. Ansari, S.; Sami, N.; Yasin, D.; Ahmad, N.; Fatma, T. Biomedical applications of environmental friendly poly-hydroxyalkanoates. Int. J. Biol. Macromol., 2021, 183, 549-563. doi: 10.1016/j.ijbiomac.2021.04.171 PMID: 33932421
  21. Gonzalez-Miro, M.; Chen, S.; Gonzaga, Z.J.; Evert, B.; Wibowo, D.; Rehm, B.H.A. Polyester as antigen carrier toward particulate vaccines. Biomacromolecules, 2019, 20(9), 3213-3232. doi: 10.1021/acs.biomac.9b00509 PMID: 31122016
  22. Parlane, N.A.; Gupta, S.K.; Rubio-Reyes, P.; Chen, S.; Gonzalez-Miro, M.; Wedlock, D.N.; Rehm, B.H.A. Self-assembled protein-coated polyhydroxyalkanoate beads: Properties and biomedical applications. ACS Biomater. Sci. Eng., 2017, 3(12), 3043-3057. doi: 10.1021/acsbiomaterials.6b00355 PMID: 33445349
  23. Ke, Y.; Zhang, X.Y.; Ramakrishna, S.; He, L.M.; Wu, G. Reactive blends based on polyhydroxyalkanoates: Preparation and biomedical application. Mater. Sci. Eng. C, 2017, 70(Pt 2), 1107-1119. doi: 10.1016/j.msec.2016.03.114 PMID: 27772711
  24. Pryadko, A.; Surmeneva, M.A.; Surmenev, R.A. Review of hybrid materials based on polyhydroxyalkanoates for tissue engineering applications. Polymers, 2021, 13(11), 1738. doi: 10.3390/polym13111738 PMID: 34073335
  25. Vigneswari, S.; Abdul Khalil, H.P.S.; Amirul, A.A. Designing of collagen based poly(3-hydroxybutyrate- co -4-hydroxybutyrate) scaffolds for tissue engineering. Int. J. Polym. Sci., 2015, 2015, 1-10. doi: 10.1155/2015/731690
  26. Wei, D.X.; Dao, J.W.; Liu, H.W.; Chen, G.Q. Suspended polyhydroxyalkanoate microspheres as 3D carriers for mammalian cell growth. Artif. Cells Nanomed. Biotechnol., 2018, 46(sup2), 473-483. doi: 10.1080/21691401.2018.1459635 PMID: 29653500
  27. Rekhi, P.; Goswami, M.; Ramakrishna, S.; Debnath, M. Polyhydroxyalkanoates biopolymers toward decarbonizing economy and sustainable future. Crit. Rev. Biotechnol., 2022, 42(5), 668-692. doi: 10.1080/07388551.2021.1960265 PMID: 34645360
  28. Barouti, G.; Khalil, A.; Orione, C.; Jarnouen, K.; Cammas-Marion, S.; Loyer, P.; Guillaume, S.M. Poly(trimethylene carbonate)/poly(malic acid) amphiphilic diblock copolymers as biocompatible nanoparticles. Chemistry, 2016, 22(8), 2819-2830. doi: 10.1002/chem.201504824 PMID: 26791328
  29. Brelle, L.; Faÿ, F.; Ozturk, T.; Didier, N.; Renard, E.; Langlois, V. Hydrogel based on polyhydroxyalkanoate sulfonate: Control of the swelling rate by the ionic group content. Biomacromolecules, 2023, 24(4), 1871-1880. doi: 10.1021/acs.biomac.3c00059 PMID: 36967640
  30. Lukasiewicz, B.; Basnett, P.; Nigmatullin, R.; Matharu, R.; Knowles, J.C.; Roy, I. Binary polyhydroxyalkanoate systems for soft tissue engineering. Acta Biomater., 2018, 71, 225-234. doi: 10.1016/j.actbio.2018.02.027 PMID: 29501818
  31. Moroni, S.; Khorshid, S.; Aluigi, A.; Tiboni, M.; Casettari, L. Poly(3-hydroxybutyrate): A potential biodegradable excipient for direct 3D printing of pharmaceuticals. Int. J. Pharm., 2022, 623, 121960. doi: 10.1016/j.ijpharm.2022.121960 PMID: 35753539
  32. Sachin, K.; Karn, S.K. Microbial fabricated nanosystems: Applications in drug delivery and targeting. Front Chem., 2021, 9, 617353. doi: 10.3389/fchem.2021.617353 PMID: 33959586
  33. Fernandez-Bunster, G.; Pavez, P. Novel production methods of polyhydroxyalkanoates and their innovative uses in biomedicine and industry. Molecules, 2022, 27(23), 8351. doi: 10.3390/molecules27238351 PMID: 36500442
  34. Kwon, H.S.; Jung, S.G.; Kim, H.Y.; Parker, S.A.; Batt, C.A.; Kim, Y.R. A multi-functional polyhydroxybutyrate nanoparticle for theranostic applications. J. Mater. Chem. B Mater. Biol. Med., 2014, 2(25), 3965-3971. doi: 10.1039/C4TB00304G PMID: 32261648
  35. Ma, Y.M.; Wei, D.X.; Yao, H.; Wu, L.P.; Chen, G.Q. Synthesis, characterization and application of thermoresponsive polyhydroxyalkanoate- graft -Poly( N -isopropylacrylamide). Biomacromolecules, 2016, 17(8), 2680-2690. doi: 10.1021/acs.biomac.6b00724 PMID: 27350125
  36. Insomphun, C.; Chuah, J.A.; Kobayashi, S.; Fujiki, T.; Numata, K. Influence of hydroxyl groups on the cell viability of polyhydroxyalkanoate (PHA) scaffolds for tissue engineering. ACS Biomater. Sci. Eng., 2017, 3(12), 3064-3075. doi: 10.1021/acsbiomaterials.6b00279 PMID: 33445351
  37. Michalak, M.; Kurcok, P.; Hakkarainen, M. Polyhydroxyalkanoate-based drug delivery systems. Polym. Int., 2017, 66(5), 617-622. doi: 10.1002/pi.5282
  38. Wei, D.X.; Dao, J.W.; Chen, G.Q. A micro-ark for cells: Highly open porous polyhydroxyalkanoate microspheres as injectable scaffolds for tissue regeneration. Adv. Mater., 2018, 30(31), 1802273. doi: 10.1002/adma.201802273 PMID: 29920804
  39. Zhang, J.; Cran, M.J. Production of polyhydroxyalkanoate nanoparticles using a green solvent. J. Appl. Polym. Sci., 2022, 139(23), 52319. doi: 10.1002/app.52319
  40. Zhang, X.; Li, Z.; Che, X.; Yu, L.; Jia, W.; Shen, R.; Chen, J.; Ma, Y.; Chen, G.Q. Synthesis and characterization of polyhydroxyalkanoate organo/hydrogels. Biomacromolecules, 2019, 20(9), 3303-3312. doi: 10.1021/acs.biomac.9b00479 PMID: 31094501
  41. Soleymani Eil Bakhtiari, S.; Karbasi, S.; Toloue, E.B. Modified poly(3-hydroxybutyrate)-based scaffolds in tissue engineering applications: A review. Int. J. Biol. Macromol., 2021, 166, 986-998. doi: 10.1016/j.ijbiomac.2020.10.255 PMID: 33152357
  42. Prakash, P.; Lee, W.H.; Loo, C.Y.; Wong, H.S.J.; Parumasivam, T. Advances in polyhydroxyalkanoate nanocarriers for effective drug delivery: An overview and challenges. Nanomaterials, 2022, 12(1), 175. doi: 10.3390/nano12010175 PMID: 35010124
  43. Li, M.C.; Liu, Q.Q.; Lu, X.Y.; Zhang, Y.L.; Wang, L.L. Heterologous expression of human costimulatory molecule B7-2 and construction of B7-2 immobilized polyhydroxyalkanoate nanoparticles for use as an immune activation agent. BMC Biotechnol., 2012, 12(1), 43. doi: 10.1186/1472-6750-12-43 PMID: 22846711
  44. Cañadas, O.; García-García, A.; Prieto, M.; Pérez-Gil, J. Polyhydroxyalkanoate nanoparticles for pulmonary drug delivery: Interaction with lung surfactant. Nanomaterials, 2021, 11(6), 1482. doi: 10.3390/nano11061482 PMID: 34204969
  45. Elmowafy, E.; Abdal-Hay, A.; Skouras, A.; Tiboni, M.; Casettari, L.; Guarino, V. Polyhydroxyalkanoate (PHA): Applications in drug delivery and tissue engineering. Expert Rev. Med. Devices, 2019, 16(6), 467-482. doi: 10.1080/17434440.2019.1615439 PMID: 31058550
  46. Parhiz, H.; Khoshnejad, M.; Myerson, J.W.; Hood, E.; Patel, P.N.; Brenner, J.S.; Muzykantov, V.R. Unintended effects of drug carriers: Big issues of small particles. Adv. Drug Deliv. Rev., 2018, 130, 90-112. doi: 10.1016/j.addr.2018.06.023 PMID: 30149885
  47. Mukheem, A.; Shahabuddin, S.; Akbar, N.; Ahmad, I.; Sudesh, K.; Sridewi, N. Development of biocompatible polyhydroxyalkanoate/chitosan-tungsten disulphide nanocomposite for antibacterial and biological applications. Polymers, 2022, 14(11), 2224. doi: 10.3390/polym14112224 PMID: 35683897
  48. Fan, F.; Wu, X.; Zhao, J.; Ran, G.; Shang, S.; Li, M.; Lu, X. A specific drug delivery system for targeted accumulation and tissue penetration in prostate tumors based on microbially synthesized PHBHHx biopolyester and iRGD peptide fused PhaP. ACS Appl. Bio Mater., 2018, 1(6), 2041-2053. doi: 10.1021/acsabm.8b00524 PMID: 34996266
  49. Samrot, A.V.; Sean, T.C.; Kudaiyappan, T.; Bisyarah, U.; Mirarmandi, A.; Faradjeva, E.; Abubakar, A.; Ali, H.H.; Angalene, J.L.A.; Suresh Kumar, S. Production, characterization and application of nanocarriers made of polysaccharides, proteins, bio-polyesters and other biopolymers: A review. Int. J. Biol. Macromol., 2020, 165(Pt B), 3088-3105. doi: 10.1016/j.ijbiomac.2020.10.104 PMID: 33098896
  50. Aguilar-Rabiela, A.E.; Leal-Egaña, A.; Nawaz, Q.; Boccaccini, A.R. Integration of mesoporous bioactive glass nanoparticles and curcumin into PHBV microspheres as biocompatible composite for drug delivery applications. Molecules, 2021, 26(11), 3177. doi: 10.3390/molecules26113177 PMID: 34073377
  51. Shah, M.; Ullah, N.; Choi, M.H.; Kim, M.O.; Yoon, S.C. Amorphous amphiphilic P(3HV-co-4HB)-b-mPEG block copolymer synthesized from bacterial copolyester via melt transesterification: Nanoparticle preparation, cisplatin-loading for cancer therapy and in vitro evaluation. Eur. J. Pharm. Biopharm., 2012, 80(3), 518-527. doi: 10.1016/j.ejpb.2011.11.014 PMID: 22178562
  52. Zhang, C.; Zhao, L.; Dong, Y.; Zhang, X.; Lin, J.; Chen, Z. Folate-mediated poly(3-hydroxybutyrate-co-3-hydroxyoctanoate) nanoparticles for targeting drug delivery. Eur. J. Pharm. Biopharm., 2010, 76(1), 10-16. doi: 10.1016/j.ejpb.2010.05.005 PMID: 20472060
  53. Babos, G.; Rydz, J.; Kawalec, M.; Klim, M.; Fodor-Kardos, A.; Trif, L.; Feczkó, T. Poly(3-Hydroxybutyrate)-based nanoparticles for sorafenib and doxorubicin anticancer drug delivery. Int. J. Mol. Sci., 2020, 21(19), 7312. doi: 10.3390/ijms21197312 PMID: 33022990
  54. Lee, S.Y.; Kim, S.Y.; Ku, S.H.; Park, E.J.; Jang, D.J.; Kim, S.T.; Kim, S.B. Polyhydroxyalkanoate decelerates the release of paclitaxel from poly(lactic-co-glycolic acid) nanoparticles. Pharmaceutics, 2022, 14(8), 1618. doi: 10.3390/pharmaceutics14081618 PMID: 36015244
  55. Faisalina, A.F.; Sonvico, F.; Colombo, P.; Amirul, A.A.; Wahab, H.A.; Majid, M.I.A. Docetaxel-Loaded Poly(3HB-co-4HB) biodegradable nanoparticles: Impact of copolymer composition. Nanomaterials, 2020, 10(11), 2123. doi: 10.3390/nano10112123 PMID: 33114572
  56. Masood, F.; Chen, P.; Yasin, T.; Fatima, N.; Hasan, F.; Hameed, A. Encapsulation of ellipticine in poly-(3-hydroxybutyrate-co-3-hydroxyvalerate) based nanoparticles and its in vitro application. Mater. Sci. Eng. C, 2013, 33(3), 1054-1060. doi: 10.1016/j.msec.2012.11.025 PMID: 23827542
  57. Shah, M.; Naseer, M.I.; Choi, M.H.; Kim, M.O.; Yoon, S.C. Amphiphilic PHA–mPEG copolymeric nanocontainers for drug delivery: Preparation, characterization and in vitro evaluation. Int. J. Pharm., 2010, 400(1-2), 165-175. doi: 10.1016/j.ijpharm.2010.08.008 PMID: 20713137
  58. Kılıçay, E.; Demirbilek, M.; Türk, M.; Güven, E.; Hazer, B.; Denkbas, E.B. Preparation and characterization of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHX) based nanoparticles for targeted cancer therapy. Eur. J. Pharm. Sci., 2011, 44(3), 310-320. doi: 10.1016/j.ejps.2011.08.013 PMID: 21884788
  59. Lu, X.Y.; Ciraolo, E.; Stefenia, R.; Chen, G.Q.; Zhang, Y.; Hirsch, E. Sustained release of PI3K inhibitor from PHA nanoparticles and in vitro growth inhibition of cancer cell lines. Appl. Microbiol. Biotechnol., 2011, 89(5), 1423-1433. doi: 10.1007/s00253-011-3101-1 PMID: 21286711
  60. Erdal, E.; Kavaz, D.; Şam, M.; Demirbilek, M.; Demirbilek, M.E.; Sağlam, N.; Denkbaş, E.B. Preparation and characterization of magnetically responsive bacterial polyester based nanospheres for cancer therapy. J. Biomed. Nanotechnol., 2012, 8(5), 800-808. doi: 10.1166/jbn.2012.1431 PMID: 22888751
  61. Kapoor, S.; Gupta, D.; Kumar, M.; Sharma, S.; Gupta, A.K.; Misro, M.M.; Singh, H. Intracellular delivery of peptide cargos using polyhydroxybutyrate based biodegradable nanoparticles: Studies on antitumor efficacy of BCL-2 converting peptide, NuBCP-9. Int. J. Pharm., 2016, 511(2), 876-889. doi: 10.1016/j.ijpharm.2016.07.077 PMID: 27492021
  62. Pramual, S.; Assavanig, A.; Bergkvist, M.; Batt, C.A.; Sunintaboon, P.; Lirdprapamongkol, K.; Svasti, J.; Niamsiri, N. Development and characterization of bio-derived polyhydroxyalkanoate nanoparticles as a delivery system for hydrophobic photodynamic therapy agents. J. Mater. Sci. Mater. Med., 2016, 27(2), 40. doi: 10.1007/s10856-015-5655-4 PMID: 26712706
  63. Radu, I.C.; Hudita, A.; Zaharia, C.; Galateanu, B.; Iovu, H.; Tanasa, E.V.; Georgiana Nitu, S.; Ginghina, O.; Negrei, C.; Tsatsakis, A.; Velonia, K.; Shtilman, M.; Costache, M. Poly(3-hydroxybutyrate-CO-3-hydroxyvalerate) PHBHV biocompatible nanocarriers for 5-FU delivery targeting colorectal cancer. Drug Deliv., 2019, 26(1), 318-327. doi: 10.1080/10717544.2019.1582729 PMID: 30896267
  64. Lu, X.Y.; Li, M.C.; Zhu, X.L.; Fan, F.; Wang, L.L.; Ma, J.G. Microbial synthesized biodegradable PHBHHxPEG hybrid copolymer as an efficient intracellular delivery nanocarrier for kinase inhibitor. BMC Biotechnol., 2014, 14(1), 4. doi: 10.1186/1472-6750-14-4 PMID: 24438107
  65. Ezzeddine, Z.; Ghssein, G. Towards new antibiotics classes targeting bacterial metallophores. Microb. Pathog., 2023, 182, 106221. doi: 10.1016/j.micpath.2023.106221
  66. Gregory, D.A.; Taylor, C.S.; Fricker, A.T.R.; Asare, E.; Tetali, S.S.V.; Haycock, J.W.; Roy, I. Polyhydroxyalkanoates and their advances for biomedical applications. Trends Mol. Med., 2022, 28(4), 331-342. doi: 10.1016/j.molmed.2022.01.007 PMID: 35232669
  67. Li, H.; Chang, J. Preparation, characterization and in vitro release of gentamicin from PHBV/wollastonite composite microspheres. J. Control. Release, 2005, 107(3), 463-473. doi: 10.1016/j.jconrel.2005.05.019 PMID: 16154657
  68. Perveen, K.; Masood, F.; Hameed, A. Preparation, characterization and evaluation of antibacterial properties of epirubicin loaded PHB and PHBV nanoparticles. Int. J. Biol. Macromol., 2020, 144, 259-266. doi: 10.1016/j.ijbiomac.2019.12.049 PMID: 31821825
  69. Ojha, N.; Das, N. Green formulation of microbial biopolyesteric nanocarriers toward in vitro drug delivery and its characterization. Curr. Microbiol., 2021, 78(5), 2061-2070. doi: 10.1007/s00284-021-02464-2 PMID: 33787978
  70. Pavic, A.; Stojanovic, Z.; Pekmezovic, M.; Veljović, Đ.; O’Connor, K.; Malagurski, I.; Nikodinovic-Runic, J. Polyenes in medium chain length polyhydroxyalkanoate (mcl-PHA) biopolymer microspheres with reduced toxicity and improved therapeutic effect against Candida infection in zebrafish model. Pharmaceutics, 2022, 14(4), 696. doi: 10.3390/pharmaceutics14040696 PMID: 35456530
  71. Pekmezovic, M.; Kalagasidis Krusic, M.; Malagurski, I.; Milovanovic, J.; Stępień, K.; Guzik, M.; Charifou, R.; Babu, R.; O’Connor, K.; Nikodinovic-Runic, J. Polyhydroxyalkanoate/antifungal polyene formulations with monomeric hydroxyalkanoic acids for improved antifungal efficiency. Antibiotics, 2021, 10(6), 737. doi: 10.3390/antibiotics10060737 PMID: 34207011
  72. Umesh, M.; Priyanka, K.; Thazeem, B.; Preethi, K. Biogenic PHA nanoparticle synthesis and characterization from Bacillus subtilis NCDC0671 using orange peel medium. Int. J. Polym. Mater., 2018, 67(17), 996-1004. doi: 10.1080/00914037.2017.1417284
  73. Hu, J.; Wang, M.; Xiao, X.; Zhang, B.; Xie, Q.; Xu, X.; Li, S.; Zheng, Z.; Wei, D.; Zhang, X. A novel long-acting azathioprine polyhydroxyalkanoate nanoparticle enhances treatment efficacy for systemic lupus erythematosus with reduced side effects. Nanoscale, 2020, 12(19), 10799-10808. doi: 10.1039/D0NR01308K PMID: 32391836
  74. Rezaie Shirmard, L.; Bahari Javan, N.; Khoshayand, M.R.; Kebriaee-zadeh, A.; Dinarvand, R.; Dorkoosh, F.A. Nanoparticulate fingolimod delivery system based on biodegradable poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV): Design, optimization, characterization and in-vitro evaluation. Pharm. Dev. Technol., 2017, 22(7), 860-870. doi: 10.3109/10837450.2015.1108982 PMID: 26555615
  75. Dourado, L.F.N.; Pierucci, A.; Roa, J.P.B.; Carvalho Júnior, Á.D.d. Assessment of implantable drug delivery technology: poly (3-hydroxybutyrate)/polypropylene glycol films containing simvastatin. Matéria, 2022, 26(4)
  76. Vijayendra, S. Microbial biopolymers: The exopolysaccharides; Springer: New Delhi, 2015, pp. 113-125. doi: 10.1007/978-81-322-2595-9_8
  77. Urtuvia, V.; Villegas, P.; González, M.; Seeger, M. Bacterial production of the biodegradable plastics polyhydroxyalkanoates. Int. J. Biol. Macromol., 2014, 70, 208-213. doi: 10.1016/j.ijbiomac.2014.06.001 PMID: 24974981
  78. Pacheco-Leyva, I.; Guevara Pezoa, F.; Díaz-Barrera, A. Alginate biosynthesis in Azotobacter vinelandii : Overview of molecular mechanisms in connection with the oxygen availability. Int. J. Polym. Sci., 2016, 2016, 1-12. doi: 10.1155/2016/2062360
  79. Moradali, M.F.; Rehm, B.H.A. Bacterial biopolymers: From pathogenesis to advanced materials. Nat. Rev. Microbiol., 2020, 18(4), 195-210. doi: 10.1038/s41579-019-0313-3 PMID: 31992873
  80. Mokhtarzadeh, A.; Alibakhshi, A.; Hejazi, M.; Omidi, Y.; Ezzati Nazhad Dolatabadi, J. Bacterial-derived biopolymers: Advanced natural nanomaterials for drug delivery and tissue engineering. Trends Analyt. Chem., 2016, 82, 367-384. doi: 10.1016/j.trac.2016.06.013
  81. Usurelu, C.D.; Badila, S.; Frone, A.N.; Panaitescu, D.M. Poly(3-hydroxybutyrate) nanocomposites with cellulose nanocrystals. Polymers, 2022, 14(10), 1974. doi: 10.3390/polym14101974 PMID: 35631856
  82. Pagliano, G.; Ventorino, V.; Panico, A.; Pepe, O. Integrated systems for biopolymers and bioenergy production from organic waste and by-products: A review of microbial processes. Biotechnol. Biofuels, 2017, 10(1), 113. doi: 10.1186/s13068-017-0802-4 PMID: 28469708
  83. Muneer, F.; Rasul, I.; Qasim, M.; Sajid, A.; Nadeem, H. Optimization, production and characterization of polyhydroxyalkanoate (PHA) from indigenously isolated novel bacteria. J. Polym. Environ., 2022, 30(8), 3523-3533. doi: 10.1007/s10924-022-02444-y

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Bentham Science Publishers, 2024