Advances in Chitosan-based Drug Delivery Systems in Melanoma: A Narrative Review


Cite item

Full Text

Abstract

Melanoma accounts for the minority of skin cancer cases. However, it has the highest mortality rate among the subtypes of skin cancer. At the early stages of the disease, patients show a good prognosis after the surgery, but developing metastases leads to a remarkable drop in patients’ 5-year survival rate. Despite the advances made in the therapeutic approaches to this disease, melanoma treatment is still facing several obstacles. Systemic toxicity, water insolubility, instability, lack of proper biodistribution, inadequate cellular penetration, and rapid clearance are some of the challenges that should be addressed in the field of melanoma treatment. While various delivery systems have been developed to circumvent these challenges, chitosan-based delivery platforms have indicated significant success. Chitosan that is produced by the deacetylation of chitin can be formulated into different materials (e.g., nanoparticle, film, and hydrogel) due to its characteristics. Both in vitro and in vivo studies have reported that chitosan-based materials can be used in drug delivery systems while offering a solution for the common problems in this area, such as enhancing biodistribution and skin penetration as well as the sustained release of the drugs. Herein, we reviewed the studies concerning the role of chitosan as a drug delivery system in melanoma and discussed how these drug systems are used for delivering chemotherapeutic drugs (e.g., doxorubicin and paclitaxel), genes (e.g., TRAIL), and RNAs (e.g., miRNA199a and STAT3 siRNA) successfully. Furthermore, we take a look into the role of chitosan-based nanoparticles in neutron capture therapy.

About the authors

Parisa Dana

Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences,, Kashan University of Medical Sciences

Email: info@benthamscience.net

Jamal Hallajzadeh

Department of Biochemistry and Nutrition, Research Center for Evidence-Based Health Management, Maragheh University of Medical Sciences

Author for correspondence.
Email: info@benthamscience.net

Zatollah Asemi

Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences,, Kashan University of Medical Sciences

Author for correspondence.
Email: info@benthamscience.net

Mohammad Mansournia

Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences

Email: info@benthamscience.net

Bahman Yousefi

Molecular Medicine Research Center, Tabriz University of Medical Sciences

Email: info@benthamscience.net

References

  1. Davis, L.E.; Shalin, S.C.; Tackett, A.J. Current state of melanoma diagnosis and treatment. Cancer Biol. Ther., 2019, 20(11), 1366-1379. doi: 10.1080/15384047.2019.1640032 PMID: 31366280
  2. Nabavi, S.M.; Russo, G.L.; Tedesco, I.; Daglia, M.; Orhan, I.E.; Nabavi, S.F.; Bishayee, A.; Nagulapalli, V.K.C.; Abdollahi, M.; Hajheydari, Z. Curcumin and melanoma: From chemistry to medicine. Nutr. Cancer, 2018, 70(2), 164-175. doi: 10.1080/01635581.2018.1412485 PMID: 29300102
  3. Martincorena, I.; Roshan, A.; Gerstung, M.; Ellis, P.; Van Loo, P.; McLaren, S.; Wedge, D.C.; Fullam, A.; Alexandrov, L.B.; Tubio, J.M.; Stebbings, L.; Menzies, A.; Widaa, S.; Stratton, M.R.; Jones, P.H.; Campbell, P.J. High burden and pervasive positive selection of somatic mutations in normal human skin. Science, 2015, 348(6237), 880-886. doi: 10.1126/science.aaa6806 PMID: 25999502
  4. Robles-Espinoza, C.D.; Roberts, N.D.; Chen, S.; Leacy, F.P.; Alexandrov, L.B.; Pornputtapong, N.; Halaban, R.; Krauthammer, M.; Cui, R.; Timothy, B.D.; Adams, D.J. Germline MC1R status influences somatic mutation burden in melanoma. Nat. Commun., 2016, 7(1), 12064. doi: 10.1038/ncomms12064 PMID: 27403562
  5. Williams, P.F.; Olsen, C.M.; Hayward, N.K.; Whiteman, D.C. Melanocortin 1 receptor and risk of cutaneous melanoma: A meta-analysis and estimates of population burden. Int. J. Cancer, 2011, 129(7), 1730-1740. doi: 10.1002/ijc.25804 PMID: 21128237
  6. Alshamsan, A.; Hamdy, S.; Haddadi, A.; Samuel, J.; El-Kadi, A.O.S.; Uludağ, H.; Lavasanifar, A. STAT3 knockdown in b16 melanoma by siRNA lipopolyplexes induces bystander immune response in vitro and in vivo. Transl. Oncol., 2011, 4(3), 178-188. doi: 10.1593/tlo.11100 PMID: 21633673
  7. Lens, M.B.; Dawes, M. Global perspectives of contemporary epidemiological trends of cutaneous malignant melanoma. Br. J. Dermatol., 2004, 150(2), 179-185. doi: 10.1111/j.1365-2133.2004.05708.x PMID: 14996086
  8. Thompson, J.F.; Scolyer, R.A.; Kefford, R.F. Cutaneous melanoma. Lancet, 2005, 365(9460), 687-701. doi: 10.1016/S0140-6736(05)17951-3 PMID: 15721476
  9. Gowda, R.; Robertson, B.M.; Iyer, S.; Barry, J.; Dinavahi, S.S.; Robertson, G.P. The role of exosomes in metastasis and progression of melanoma. Cancer Treat. Rev., 2020, 85, 101975. doi: 10.1016/j.ctrv.2020.101975 PMID: 32050108
  10. Liu, Q.; Das, M.; Liu, Y.; Huang, L. Targeted drug delivery to melanoma. Adv. Drug Deliv. Rev., 2018, 127, 208-221. doi: 10.1016/j.addr.2017.09.016 PMID: 28939379
  11. Mundra, V.; Li, W.; Mahato, R.I. Nanoparticle-mediated drug delivery for treating melanoma. Nanomedicine, 2015, 10(16), 2613-2633. doi: 10.2217/nnm.15.111 PMID: 26244818
  12. Hudson, D.; Margaritis, A. Biopolymer nanoparticle production for controlled release of biopharmaceuticals. Crit. Rev. Biotechnol., 2014, 34(2), 161-179. doi: 10.3109/07388551.2012.743503 PMID: 23294062
  13. Sundar, S.; Kundu, J.; Kundu, S.C. Biopolymeric nanoparticles. Sci. Technol. Adv. Mater., 2010, 11(1), 014104. doi: 10.1088/1468-6996/11/1/014104 PMID: 27877319
  14. Agnihotri, S.A.; Mallikarjuna, N.N.; Aminabhavi, T.M. Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J. Control. Release, 2004, 100(1), 5-28. doi: 10.1016/j.jconrel.2004.08.010 PMID: 15491807
  15. Assa, F.; Jafarizadeh-Malmiri, H.; Ajamein, H.; Vaghari, H.; Anarjan, N.; Ahmadi, O.; Berenjian, A. Chitosan magnetic nanoparticles for drug delivery systems. Crit. Rev. Biotechnol., 2017, 37(4), 492-509. doi: 10.1080/07388551.2016.1185389 PMID: 27248312
  16. Wang, W.; Meng, Q.; Li, Q.; Liu, J.; Zhou, M.; Jin, Z.; Zhao, K. Chitosan derivatives and their application in biomedicine. Int. J. Mol. Sci., 2020, 21(2), 487. doi: 10.3390/ijms21020487 PMID: 31940963
  17. Vaghari, H.; Jafarizadeh-Malmiri, H.; Berenjian, A.; Anarjan, N. Recent advances in application of chitosan in fuel cells. Sustain. Chem. Process., 2013, 1(1), 16. doi: 10.1186/2043-7129-1-16
  18. Ryu, J.H.; Yoon, H.Y.; Sun, I.C.; Kwon, I.C.; Kim, K. Tumor-targeting glycol chitosan nanoparticles for cancer heterogeneity. Adv. Mater., 2020, 32(51), 2002197. doi: 10.1002/adma.202002197 PMID: 33051905
  19. Gover Antoniraj, M.; Maria Leena, M.; Moses, J.A.; Anandharamakrishnan, C. Cross-linked chitosan microparticles preparation by modified three fluid nozzle spray drying approach. Int. J. Biol. Macromol., 2020, 147, 1268-1277. doi: 10.1016/j.ijbiomac.2019.09.254 PMID: 31770556
  20. Kiti, K.; Suwantong, O. The potential use of curcumin-β- cyclodextrin inclusion complex/chitosan-loaded cellulose sponges for the treatment of chronic wound. Int. J. Biol. Macromol., 2020, 164, 3250-3258. doi: 10.1016/j.ijbiomac.2020.08.190 PMID: 32860794
  21. Abd El-Hack, M.E.; El-Saadony, M.T.; Shafi, M.E.; Zabermawi, N.M.; Arif, M.; Batiha, G.E.; Khafaga, A.F.; Abd El-Hakim, Y.M.; Al-Sagheer, A.A. Antimicrobial and antioxidant properties of chitosan and its derivatives and their applications: A review. Int. J. Biol. Macromol., 2020, 164, 2726-2744. doi: 10.1016/j.ijbiomac.2020.08.153 PMID: 32841671
  22. Xie, M.; Huang, K.; Yang, F.; Wang, R.; Han, L.; Yu, H.; Ye, Z.; Wu, F. Chitosan nanocomposite films based on halloysite nanotubes modification for potential biomedical applications. Int. J. Biol. Macromol., 2020, 151, 1116-1125. doi: 10.1016/j.ijbiomac.2019.10.154 PMID: 31751717
  23. Muxika, A.; Etxabide, A.; Uranga, J.; Guerrero, P.; de la Caba, K. Chitosan as a bioactive polymer: Processing, properties and applications. Int. J. Biol. Macromol., 2017, 105(Pt 2), 1358-1368. doi: 10.1016/j.ijbiomac.2017.07.087 PMID: 28735006
  24. Caracciolo, G.; Vali, H.; Moore, A.; Mahmoudi, M. Challenges in molecular diagnostic research in cancer nanotechnology. Nano Today, 2019, 27, 6-10. doi: 10.1016/j.nantod.2019.06.001
  25. Hoda, J.M.; Mohammad, A.G.J.; Aydin, B. Potential applications of chitosan nanoparticles as novel support in enzyme immobilization. Am. J. Biochem. Biotechnol., 2012, 8(4)
  26. Wang, J.J.; Zeng, Z.W.; Xiao, R.Z.; Xie, T.; Zhou, G.L.; Zhan, X.R.; Wang, S.L. Recent advances of chitosan nanoparticles as drug carriers. Int. J. Nanomedicine, 2011, 6, 765-774. PMID: 21589644
  27. Pang, Y.; Qin, A.; Lin, X.; Yang, L.; Wang, Q.; Wang, Z.; Shan, Z.; Li, S.; Wang, J.; Fan, S.; Hu, Q. Biodegradable and biocompatible high elastic chitosan scaffold is cell-friendly both in vitro and in vivo. Oncotarget, 2017, 8(22), 35583-35591. doi: 10.18632/oncotarget.14709 PMID: 28103580
  28. Liu, J.; Meng, C.; Liu, S.; Kan, J.; Jin, C. Preparation and characterization of protocatechuic acid grafted chitosan films with antioxidant activity. Food Hydrocoll., 2017, 63, 457-466. doi: 10.1016/j.foodhyd.2016.09.035
  29. Gallaher, C.M.; Munion, J.; Gallaher, D.D.; Hesslink, R., Jr; Wise, J. Cholesterol reduction by glucomannan and chitosan is mediated by changes in cholesterol absorption and bile acid and fat excretion in rats. J. Nutr., 2000, 130(11), 2753-2759. doi: 10.1093/jn/130.11.2753 PMID: 11053517
  30. Vodenkova, S.; Buchler, T.; Cervena, K.; Veskrnova, V.; Vodicka, P.; Vymetalkova, V. 5-fluorouracil and other fluoropyrimidines in colorectal cancer: Past, present and future. Pharmacol. Ther., 2020, 206, 107447. doi: 10.1016/j.pharmthera.2019.107447 PMID: 31756363
  31. Lee, W.; Song, G.; Bae, H. Matairesinol induces mitochondrial dysfunction and exerts synergistic anticancer effects with 5-fluorouracil in pancreatic cancer cells. Mar. Drugs, 2022, 20(8), 473. doi: 10.3390/md20080473 PMID: 35892941
  32. Mahajan, U.M.; Li, Q.; Alnatsha, A.; Maas, J.; Orth, M.; Maier, S.H.; Peterhansl, J.; Regel, I.; Sendler, M.; Wagh, P.R.; Mishra, N.; Xue, Y.; Allawadhi, P.; Beyer, G.; Kühn, J.P.; Marshall, T.; Appel, B.; Lämmerhirt, F.; Belka, C.; Müller, S.; Weiss, F.U.; Lauber, K.; Lerch, M.M.; Mayerle, J. Tumor-specific delivery of 5-fluorouracil–incorporated epidermal growth factor receptor–targeted aptamers as an efficient treatment in pancreatic ductal adenocarcinoma models. Gastroenterology, 2021, 161(3), 996-1010.e1. doi: 10.1053/j.gastro.2021.05.055 PMID: 34097885
  33. Nomura, H.; Tsuji, D.; Ueno, S.; Kojima, T.; Fujii, S.; Yano, T.; Daiko, H.; Demachi, K.; Itoh, K.; Kawasaki, T. Relevance of pharmacogenetic polymorphisms with response to docetaxel, cisplatin, and 5-fluorouracil chemotherapy in esophageal cancer. Invest. New Drugs, 2022, 40(2), 420-429. doi: 10.1007/s10637-021-01199-y PMID: 34792690
  34. Mafi, A.; Rezaee, M.; Hedayati, N.; Hogan, S.D.; Reiter, R.J.; Aarabi, M.H.; Asemi, Z. Melatonin and 5-fluorouracil combination chemotherapy: Opportunities and efficacy in cancer therapy. Cell Commun. Signal., 2023, 21(1), 33. doi: 10.1186/s12964-023-01047-x PMID: 36759799
  35. Khan, M.A.; Pandit, J.; Sultana, Y.; Sultana, S.; Ali, A.; Aqil, M.; Chauhan, M. Novel carbopol-based transfersomal gel of 5-fluorouracil for skin cancer treatment: In vitro characterization and in vivo study. Drug Deliv., 2015, 22(6), 795-802. doi: 10.3109/10717544.2014.902146 PMID: 24735246
  36. She, W.; Luo, K.; Zhang, C.; Wang, G.; Geng, Y.; Li, L.; He, B.; Gu, Z. The potential of self-assembled, pH-responsive nanoparticles of mPEGylated peptide dendron–doxorubicin conjugates for cancer therapy. Biomaterials, 2013, 34(5), 1613-1623. doi: 10.1016/j.biomaterials.2012.11.007 PMID: 23195490
  37. Sahu, P.; Kashaw, S.K.; Sau, S.; Kushwah, V.; Jain, S.; Agrawal, R.K.; Iyer, A.K. pH responsive 5-fluorouracil loaded biocompatible nanogels for topical chemotherapy of aggressive melanoma. Colloids Surf. B Biointerfaces, 2019, 174, 232-245. doi: 10.1016/j.colsurfb.2018.11.018 PMID: 30465998
  38. Hu, W.; Zhang, C.; Fang, Y.; Lou, C. Anticancer properties of 10-hydroxycamptothecin in a murine melanoma pulmonary metastasis model in vitro and in vivo. Toxicol. In Vitro, 2011, 25(2), 513-520. doi: 10.1016/j.tiv.2010.11.009 PMID: 21093576
  39. Li, J.; Xu, W.; Li, D.; Liu, T.; Zhang, Y.S.; Ding, J.; Chen, X. Locally deployable nanofiber patch for sequential drug delivery in treatment of primary and advanced orthotopic hepatomas. ACS Nano, 2018, 12(7), 6685-6699. doi: 10.1021/acsnano.8b01729 PMID: 29874035
  40. Guo, H.; Li, F.; Xu, W.; Chen, J.; Hou, Y.; Wang, C.; Ding, J.; Chen, X. Mucoadhesive cationic polypeptide nanogel with enhanced penetration for efficient intravesical chemotherapy of bladder cancer. Adv. Sci., 2018, 5(6), 1800004. doi: 10.1002/advs.201800004 PMID: 29938183
  41. Guo, H.; Li, F.; Qiu, H.; Liu, J.; Qin, S.; Hou, Y.; Wang, C. Preparation and characterization of chitosan nanoparticles for chemotherapy of melanoma through enhancing tumor penetration. Front. Pharmacol., 2020, 11, 317. doi: 10.3389/fphar.2020.00317 PMID: 32231576
  42. Fan, X.; Song, J.; Zhao, Z.; Chen, M.; Tu, J.; Lu, C.; Wu, F.; Zhang, D.; Weng, Q.; Zheng, L.; Xu, M.; Ji, J. Piplartine suppresses proliferation and invasion of hepatocellular carcinoma by LINC01391-modulated Wnt/β-catenin pathway inactivation through ICAT. Cancer Lett., 2019, 460, 119-127. doi: 10.1016/j.canlet.2019.06.008 PMID: 31207322
  43. Oliveira, M.S.; Barbosa, M.I.F.; de Souza, T.B.; Moreira, D.R.M.; Martins, F.T.; Villarreal, W.; Machado, R.P.; Doriguetto, A.C.; Soares, M.B.P.; Bezerra, D.P. A novel platinum complex containing a piplartine derivative exhibits enhanced cytotoxicity, causes oxidative stress and triggers apoptotic cell death by ERK/p38 pathway in human acute promyelocytic leukemia HL-60 cells. Redox Biol., 2019, 20, 182-194. doi: 10.1016/j.redox.2018.10.006 PMID: 30359932
  44. Fofaria, N.M.; Qhattal, H.S.S.; Liu, X.; Srivastava, S.K. Nanoemulsion formulations for anti-cancer agent piplartine-Characterization, toxicological, pharmacokinetics and efficacy studies. Int. J. Pharm., 2016, 498(1-2), 12-22. doi: 10.1016/j.ijpharm.2015.11.045 PMID: 26642946
  45. Giacone, D.V. Effect of nanoemulsion modification with chitosan and sodium alginate on the topical delivery and efficacy of the cytotoxic agent piplartine in 2D and 3D skin cancer models. Int J Biol Macromol, 2020, 165(Pt A), 1055-1065. doi: 10.1016/j.ijbiomac.2020.09.167
  46. Ji, Z.; Xu, J.; Li, M.; Wang, H.; Xu, B.; Yang, Y.; Hu, Y. The mechanisms of immune-chemotherapy with nanocomplex codelivery of pTRP-2 and adjuvant of paclitaxel against melanoma. Drug Dev. Ind. Pharm., 2021, 47(11), 1744-1752. doi: 10.1080/03639045.2022.2045306 PMID: 35193436
  47. Liu, X.; Xu, Y.; Yin, L.; Hou, Y.; Zhao, S. Chitosan-Poly(Acrylic Acid) nanoparticles loaded with R848 and MnCl2 inhibit melanoma via regulating macrophage polarization and dendritic cell maturation. Int. J. Nanomed., 2021, 16, 5675-5692. doi: 10.2147/IJN.S318363 PMID: 34456564
  48. He, J.; Duan, S.; Yu, X.; Qian, Z.; Zhou, S.; Zhang, Z.; Huang, X.; Huang, Y.; Su, J.; Lai, C.; Meng, J.; Zhou, N.; Lu, X.; Zhao, Y. Folate-modified chitosan nanoparticles containing the ip-10 gene enhance melanoma-specific cytotoxic CD8+ CD28+ T lymphocyte responses. Theranostics, 2016, 6(5), 752-761. doi: 10.7150/thno.14527 PMID: 27022421
  49. Li, X.; Dong, W.; Nalin, A.P.; Wang, Y.; Pan, P.; Xu, B.; Zhang, Y.; Tun, S.; Zhang, J.; Wang, L.S.; He, X.; Caligiuri, M.A.; Yu, J. The natural product chitosan enhances the anti-tumor activity of natural killer cells by activating dendritic cells. OncoImmunology, 2018, 7(6), e1431085. doi: 10.1080/2162402X.2018.1431085 PMID: 29872557
  50. Won, J.E.; Wi, T.I.; Lee, C.M.; Lee, J.H.; Kang, T.H.; Lee, J.W.; Shin, B.C.; Lee, Y.; Park, Y.M.; Han, H.D. NIR irradiation-controlled drug release utilizing injectable hydrogels containing gold-labeled liposomes for the treatment of melanoma cancer. Acta Biomater., 2021, 136, 508-518. doi: 10.1016/j.actbio.2021.09.062 PMID: 34626819
  51. Mirzaei, H.; Mirzaei, H.R.; Sahebkar, A.; Salehi, R.; Nahand, J.S.; Karimi, E.; Jaafari, M.R. Boron neutron capture therapy: Moving toward targeted cancer therapy. J. Cancer Res. Ther., 2016, 12(2), 520-525. doi: 10.4103/0973-1482.176167 PMID: 27461603
  52. Barth, R.F.; Coderre, J.A.; Vicente, M.G.H.; Blue, T.E. Boron neutron capture therapy of cancer: Current status and future prospects. Clin. Cancer Res., 2005, 11(11), 3987-4002. doi: 10.1158/1078-0432.CCR-05-0035 PMID: 15930333
  53. Yong, Z.; Song, Z.; Zhou, Y.; Liu, T.; Zhang, Z.; Zhao, Y.; Chen, Y.; Jin, C.; Chen, X.; Lu, J.; Han, R.; Li, P.; Sun, X.; Wang, G.; Shi, G.; Zhu, S. Boron neutron capture therapy for malignant melanoma: First clinical case report in China. Chin. J. Cancer Res., 2016, 28(6), 634-640. doi: 10.21147/j.issn.1000-9604.2016.06.10 PMID: 28174492
  54. Wang, L.W.; Liu, Y.W.H.; Chou, F.I.; Jiang, S.H. Clinical trials for treating recurrent head and neck cancer with boron neutron capture therapy using the Tsing-Hua open pool reactor. Cancer Commun., 2018, 38(1), 37. doi: 10.1186/s40880-018-0295-y PMID: 29914577
  55. Barth, R.F.; Zhang, Z.; Liu, T. A realistic appraisal of boron neutron capture therapy as a cancer treatment modality. Cancer Commun., 2018, 38(1), 36. doi: 10.1186/s40880-018-0280-5 PMID: 29914575
  56. Miyatake, S.I.; Wanibuchi, M.; Hu, N.; Ono, K. Boron neutron capture therapy for malignant brain tumors. J. Neurooncol., 2020, 149(1), 1-11. doi: 10.1007/s11060-020-03586-6 PMID: 32676954
  57. Takeuchi, I.; Ariyama, M.; Makino, K. Chitosan coating effect on cellular uptake of PLGA nanoparticles for boron neutron capture therapy. J. Oleo Sci., 2019, 68(4), 361-368. doi: 10.5650/jos.ess18239 PMID: 30867387
  58. Ichikawa, H.; Watanabe, T.; Tokumitsu, H.; Fukumori, Y. Formulation considerations of gadolinium lipid nanoemulsion for intravenous delivery to tumors in neutron-capture therapy. Curr. Drug Deliv., 2007, 4(2), 131-140. doi: 10.2174/156720107780362294 PMID: 17456032
  59. Ichikawa, H.; Uneme, T.; Andoh, T.; Arita, Y.; Fujimoto, T.; Suzuki, M.; Sakurai, Y.; Shinto, H.; Fukasawa, T.; Fujii, F.; Fukumori, Y. Gadolinium-loaded chitosan nanoparticles for neutron-capture therapy: Influence of micrometric properties of the nanoparticles on tumor-killing effect. Appl. Radiat. Isot., 2014, 88, 109-113. doi: 10.1016/j.apradiso.2013.12.018 PMID: 24462286
  60. Zhou, J.; Xu, D.; Xie, H.; Tang, J.; Liu, R.; Li, J.; Wang, S.; Chen, X.; Su, J.; Zhou, X.; Xia, K.; He, Q.; Chen, J.; Xiong, W.; Cao, P.; Cao, K. miR-33a functions as a tumor suppressor in melanoma by targeting HIF-1α. Cancer Biol. Ther., 2015, 16(6), 846-855. doi: 10.1080/15384047.2015.1030545 PMID: 25891797
  61. Xu, D.; Tan, J.; Zhou, M.; Jiang, B.; Xie, H.; Nie, X.; Xia, K.; Zhou, J. Let-7b and microRNA-199a inhibit the proliferation of B16F10 melanoma cells. Oncol. Lett., 2012, 4(5), 941-946. doi: 10.3892/ol.2012.878 PMID: 23162627
  62. Uchino, K.; Ochiya, T.; Takeshita, F. RNAi therapeutics and applications of microRNAs in cancer treatment. Jpn. J. Clin. Oncol., 2013, 43(6), 596-607. doi: 10.1093/jjco/hyt052 PMID: 23592885
  63. Liu, C.A.; Chang, C.Y.; Hsueh, K.W.; Su, H.L.; Chiou, T.W.; Lin, S.Z.; Harn, H.J. Migration/invasion of malignant gliomas and implications for therapeutic treatment. Int. J. Mol. Sci., 2018, 19(4), 1115. doi: 10.3390/ijms19041115 PMID: 29642503
  64. Alshaer, W.; Zureigat, H.; Al Karaki, A.; Al-Kadash, A.; Gharaibeh, L.; Hatmal, M.M.; Aljabali, A.A.A.; Awidi, A. siRNA: Mechanism of action, challenges, and therapeutic approaches. Eur. J. Pharmacol., 2021, 905, 174178. doi: 10.1016/j.ejphar.2021.174178 PMID: 34044011
  65. Petrocca, F.; Lieberman, J. Promise and challenge of RNA interference-based therapy for cancer. J. Clin. Oncol., 2011, 29(6), 747-754. doi: 10.1200/JCO.2009.27.6287 PMID: 21079135
  66. Rahman, M.A.; Amin, A.R.M.R.; Wang, X.; Zuckerman, J.E.; Choi, C.H.J.; Zhou, B.; Wang, D.; Nannapaneni, S.; Koenig, L.; Chen, Z.; Chen, Z.G.; Yen, Y.; Davis, M.E.; Shin, D.M. Systemic delivery of siRNA nanoparticles targeting RRM2 suppresses head and neck tumor growth. J. Control. Release, 2012, 159(3), 384-392. doi: 10.1016/j.jconrel.2012.01.045 PMID: 22342644
  67. Tabernero, J.; Shapiro, G.I.; LoRusso, P.M.; Cervantes, A.; Schwartz, G.K.; Weiss, G.J.; Paz-Ares, L.; Cho, D.C.; Infante, J.R.; Alsina, M.; Gounder, M.M.; Falzone, R.; Harrop, J.; White, A.C.S.; Toudjarska, I.; Bumcrot, D.; Meyers, R.E.; Hinkle, G.; Svrzikapa, N.; Hutabarat, R.M.; Clausen, V.A.; Cehelsky, J.; Nochur, S.V.; Gamba-Vitalo, C.; Vaishnaw, A.K.; Sah, D.W.Y.; Gollob, J.A.; Burris, H.A., III First-in-humans trial of an RNA interference therapeutic targeting VEGF and KSP in cancer patients with liver involvement. Cancer Discov., 2013, 3(4), 406-417. doi: 10.1158/2159-8290.CD-12-0429 PMID: 23358650
  68. Nguyen, J.; Szoka, F.C. Nucleic acid delivery: The missing pieces of the puzzle? Acc. Chem. Res., 2012, 45(7), 1153-1162. doi: 10.1021/ar3000162 PMID: 22428908
  69. Ragelle, H.; Riva, R.; Vandermeulen, G.; Naeye, B.; Pourcelle, V.; Le Duff, C.S.; D’Haese, C.; Nysten, B.; Braeckmans, K.; De Smedt, S.C.; Jérôme, C.; Préat, V. Chitosan nanoparticles for siRNA delivery: Optimizing formulation to increase stability and efficiency. J. Control. Release, 2014, 176, 54-63. doi: 10.1016/j.jconrel.2013.12.026 PMID: 24389132
  70. Kortylewski, M.; Jove, R.; Yu, H. Targeting STAT3 affects melanoma on multiple fronts. Cancer Metastasis Rev., 2005, 24(2), 315-327. doi: 10.1007/s10555-005-1580-1 PMID: 15986140
  71. Xie, T.; Huang, F.J.; Aldape, K.D.; Kang, S.H.; Liu, M.; Gershenwald, J.E.; Xie, K.; Sawaya, R.; Huang, S. Activation of stat3 in human melanoma promotes brain metastasis. Cancer Res., 2006, 66(6), 3188-3196. doi: 10.1158/0008-5472.CAN-05-2674 PMID: 16540670
  72. Labala, S.; Jose, A.; Venuganti, V.V.K. Transcutaneous iontophoretic delivery of STAT3 siRNA using layer-by-layer chitosan coated gold nanoparticles to treat melanoma. Colloids Surf. B Biointerfaces, 2016, 146, 188-197. doi: 10.1016/j.colsurfb.2016.05.076 PMID: 27318964
  73. Zhuang, L.; Lee, C.S.; Scolyer, R.A.; McCarthy, S.W.; Zhang, X.D.; Thompson, J.F.; Screaton, G.; Hersey, P. Progression in melanoma is associated with decreased expression of death receptors for tumor necrosis factor–related apoptosis-inducing ligand. Hum. Pathol., 2006, 37(10), 1286-1294. doi: 10.1016/j.humpath.2006.04.026 PMID: 16949935
  74. Alvizo-Baez, C.A.; Luna-Cruz, I.E.; Vilches-Cisneros, N.; Rodríguez-Padilla, C.; Alcocer-González, J.M. Systemic delivery and activation of the TRAIL gene in lungs, with magnetic nanoparticles of chitosan controlled by an external magnetic field. Int. J. Nanomed., 2016, 11, 6449-6458. doi: 10.2147/IJN.S118343 PMID: 27980403
  75. Chen, Y.Z.; Yao, X.L.; Ruan, G.X.; Zhao, Q.Q.; Tang, G.P.; Tabata, Y.; Gao, J.Q. Gene-carried chitosan-linked polyethylenimine induced high gene transfection efficiency on dendritic cells. Biotechnol. Appl. Biochem., 2012, 59(5), 346-352. doi: 10.1002/bab.1036 PMID: 23586911
  76. Garg, U.; Chauhan, S.; Nagaich, U.; Jain, N. Current advances in chitosan nanoparticles based drug delivery and targeting. Adv. Pharm. Bull., 2019, 9(2), 195-204. doi: 10.15171/apb.2019.023 PMID: 31380245
  77. Kim, J.H.; Kim, Y.S.; Kim, S.; Park, J.H.; Kim, K.; Choi, K.; Chung, H.; Jeong, S.Y.; Park, R.W.; Kim, I.S.; Kwon, I.C. Hydrophobically modified glycol chitosan nanoparticles as carriers for paclitaxel. J. Control. Release, 2006, 111(1-2), 228-234. doi: 10.1016/j.jconrel.2005.12.013 PMID: 16458988
  78. Bae, K.H.; Moon, C.W.; Lee, Y.; Park, T.G. Intracellular delivery of heparin complexed with chitosan-g-poly(ethylene glycol) for inducing apoptosis. Pharm. Res., 2009, 26(1), 93-100. doi: 10.1007/s11095-008-9713-1 PMID: 18777202
  79. Zhou, T.; Xiao, C.; Fan, J.; Chen, S.; Shen, J.; Wu, W.; Zhou, S. A nanogel of on-site tunable pH-response for efficient anticancer drug delivery. Acta Biomater., 2013, 9(1), 4546-4557. doi: 10.1016/j.actbio.2012.08.017 PMID: 22906624
  80. Li, S.; Zhang, F.; Yu, Y.; Zhang, Q. A dermatan sulfate-functionalized biomimetic nanocarrier for melanoma targeted chemotherapy. Carbohydr. Polym., 2020, 235, 115983. doi: 10.1016/j.carbpol.2020.115983 PMID: 32122513
  81. Sharma, S.; Verma, A.; Pandey, G.; Mittapelly, N.; Mishra, P.R. Investigating the role of pluronic-g-cationic polyelectrolyte as functional stabilizer for nanocrystals: Impact on paclitaxel oral bioavailability and tumor growth. Acta Biomater., 2015, 26, 169-183. doi: 10.1016/j.actbio.2015.08.005 PMID: 26265061
  82. Liu, X.; Zhou, S.; Li, X.; Chen, X.; Zhao, X.; Qian, Z.; Zhou, L.; Li, Z.; Wang, Y.; Zhong, Q.; Yi, T.; Li, Z.; He, X.; Wei, Y. Anti-tumor activity of N-trimethyl chitosan-encapsulated camptothecin in a mouse melanoma model. J. Exp. Clin. Cancer Res., 2010, 29(1), 76. doi: 10.1186/1756-9966-29-76 PMID: 20565783
  83. Joshi, N.; Saha, R.; Shanmugam, T.; Balakrishnan, B.; More, P.; Banerjee, R. Carboxymethyl-chitosan-tethered lipid vesicles: Hybrid nanoblanket for oral delivery of paclitaxel. Biomacromolecules, 2013, 14(7), 2272-2282. doi: 10.1021/bm400406x PMID: 23721348
  84. Mandala Rayabandla, S.K.; Aithal, K.; Anandam, A.; Shavi, G.; Nayanabhirama, U.; Arumugam, K.; Musmade, P.; Bhat, K.; Bola, S.S.R. Preparation, in vitro characterization, pharmacokinetic, and pharmacodynamic evaluation of chitosan-based plumbagin microspheres in mice bearing B16F1 melanoma. Drug Deliv., 2010, 17(3), 103-113. doi: 10.3109/10717540903548447 PMID: 20100068
  85. Venâncio, J.H.; Andrade, L.M.; Esteves, N.L.S.; Brito, L.B.; Valadares, M.C.; Oliveira, G.A.R.; Lima, E.M.; Marreto, R.N.; Gratieri, T.; Taveira, S.F. Topotecan-loaded lipid nanoparticles as a viable tool for the topical treatment of skin cancers. J. Pharm. Pharmacol., 2017, 69(10), 1318-1326. doi: 10.1111/jphp.12772 PMID: 28703281
  86. Liu, F.; Feng, L.; Zhang, L.; Zhang, X.; Zhang, N. Synthesis, characterization and antitumor evaluation of CMCS–DTX conjugates as novel delivery platform for docetaxel. Int. J. Pharm., 2013, 451(1-2), 41-49. doi: 10.1016/j.ijpharm.2013.04.020 PMID: 23608199
  87. Battogtokh, G.; Ko, Y.T. Self-assembled polymeric nanoparticle of PEGylated chitosan–ceramide conjugate for systemic delivery of paclitaxel. J. Drug Target., 2014, 22(9), 813-821. doi: 10.3109/1061186X.2014.930469 PMID: 24964055
  88. Loch-Neckel, G.; Santos-Bubniak, L.; Mazzarino, L.; Jacques, A.V.; Moccelin, B.; Santos-Silva, M.C.; Lemos-Senna, E. Orally administered chitosan-coated polycaprolactone nanoparticles containing curcumin attenuate metastatic melanoma in the lungs. J. Pharm. Sci., 2015, 104(10), 3524-3534. doi: 10.1002/jps.24548 PMID: 26085173
  89. Liu, F.; Li, M.; Liu, C.; Liu, Y.; Liang, Y.; Wang, F.; Zhang, N. Tumor-specific delivery and therapy by double- targeted DTX-CMCS-PEG-NGR conjugates. Pharm. Res., 2014, 31(2), 475-488. doi: 10.1007/s11095-013-1176-3 PMID: 24043295
  90. Ferraz, L.S.; Watashi, C.M.; Colturato-Kido, C.; Pelegrino, M.T.; Paredes-Gamero, E.J.; Weller, R.B.; Seabra, A.B.; Rodrigues, T. Antitumor potential of s-nitrosothiol- containing polymeric nanoparticles against melanoma. Mol. Pharm., 2018, 15(3), 1160-1168. doi: 10.1021/acs.molpharmaceut.7b01001 PMID: 29378125
  91. Battogtokh, G.; Ko, Y.T. Self-assembled chitosan-ceramide nanoparticle for enhanced oral delivery of paclitaxel. Pharm. Res., 2014, 31(11), 3019-3030. doi: 10.1007/s11095-014-1395-2 PMID: 24825757
  92. Mazzarino, L.; Otsuka, I.; Halila, S.; Bubniak, L.S.; Mazzucco, S.; Santos-Silva, M.C.; Lemos-Senna, E.; Borsali, R. Xyloglucan-block-poly(ϵ-caprolactone) copolymer nanoparticles coated with chitosan as biocompatible mucoadhesive drug delivery system. Macromol. Biosci., 2014, 14(5), 709-719. doi: 10.1002/mabi.201300465 PMID: 24469965
  93. Siddiqui, I.A.; Bharali, D.J.; Nihal, M.; Adhami, V.M.; Khan, N.; Chamcheu, J.C.; Khan, M.I.; Shabana, S.; Mousa, S.A.; Mukhtar, H. Excellent anti-proliferative and pro-apoptotic effects of (−)-epigallocatechin-3-gallate encapsulated in chitosan nanoparticles on human melanoma cell growth both in vitro and in vivo. Nanomedicine, 2014, 10(8), 1619-1626. doi: 10.1016/j.nano.2014.05.007 PMID: 24965756
  94. Xu, M.; Asghar, S.; Dai, S.; Wang, Y.; Feng, S.; Jin, L.; Shao, F.; Xiao, Y. Mesenchymal stem cells-curcumin loaded chitosan nanoparticles hybrid vectors for tumor-tropic therapy. Int. J. Biol. Macromol., 2019, 134, 1002-1012. doi: 10.1016/j.ijbiomac.2019.04.201 PMID: 31063785
  95. Shen, H.; Shi, H.; Xie, M.; Ma, K.; Li, B.; Shen, S.; Wang, X.; Jin, Y. Biodegradable chitosan/alginate BSA-gel-capsules for pH-controlled loading and release of doxorubicin and treatment of pulmonary melanoma. J. Mater. Chem. B Mater. Biol. Med., 2013, 1(32), 3906-3917. doi: 10.1039/c3tb20330a PMID: 32261218
  96. Barone, A.; Mendes, M.; Cabral, C.; Mare, R.; Paolino, D.; Vitorino, C. Hybrid nanostructured films for topical administration of simvastatin as coadjuvant treatment of melanoma. J. Pharm. Sci., 2019, 108(10), 3396-3407. doi: 10.1016/j.xphs.2019.06.002 PMID: 31201905
  97. Lee, S.Y.; Koo, J.S.; Yang, M.; Cho, H.J. Application of temporary agglomeration of chitosan-coated nanoparticles for the treatment of lung metastasis of melanoma. J. Colloid Interface Sci., 2019, 544, 266-275. doi: 10.1016/j.jcis.2019.02.092 PMID: 30852352
  98. Kim, S.; Liu, Y.; Gaber, M.W.; Bumgardner, J.D.; Haggard, W.O.; Yang, Y. Development of chitosan-ellagic acid films as a local drug delivery system to induce apoptotic death of human melanoma cells. J. Biomed. Mater. Res. B Appl. Biomater., 2009, 90B(1), 145-155. doi: 10.1002/jbm.b.31266 PMID: 18985785
  99. Ferreira, T.A.; de Carvalho, S.S.M.; Cardoso, B.R.; L Silva, S.M.; Sabino, G.M.A.; B de Lima, A.G.; L Fook, M.V. Ionically crosslinked chitosan membranes used as drug carriers for cancer therapy application. Materials, 2018, 11(10), 2051. doi: 10.3390/ma11102051 PMID: 30347857
  100. Stie, M.B.; Thoke, H.S.; Issinger, O.G.; Hochscherf, J.; Guerra, B.; Olsen, L.F. Delivery of proteins encapsulated in chitosan-tripolyphosphate nanoparticles to human skin melanoma cells. Colloids Surf. B Biointerfaces, 2019, 174, 216-223. doi: 10.1016/j.colsurfb.2018.11.005 PMID: 30465996
  101. Lee, E.H.; Lim, S.J.; Lee, M.K. Chitosan-coated liposomes to stabilize and enhance transdermal delivery of indocyanine green for photodynamic therapy of melanoma. Carbohydr. Polym., 2019, 224, 115143. doi: 10.1016/j.carbpol.2019.115143 PMID: 31472877
  102. Bragta, P.; Sidhu, R.K.; Jyoti, K.; Baldi, A.; Jain, U.K.; Chandra, R.; Madan, J. Intratumoral administration of carboplatin bearing poly (ε-caprolactone) nanoparticles amalgamated with in situ gel tendered augmented drug delivery, cytotoxicity, and apoptosis in melanoma tumor. Colloids Surf. B Biointerfaces, 2018, 166, 339-348. doi: 10.1016/j.colsurfb.2018.03.009 PMID: 29627747
  103. Yoncheva, K.; Merino, M.; Shenol, A.; Daskalov, N.T.; Petkov, P.S.; Vayssilov, G.N.; Garrido, M.J. Optimization and in-vitro/in-vivo evaluation of doxorubicin-loaded chitosan-alginate nanoparticles using a melanoma mouse model. Int. J. Pharm., 2019, 556, 1-8. doi: 10.1016/j.ijpharm.2018.11.070 PMID: 30529664
  104. Zhu, L.F.; Zheng, Y.; Fan, J.; Yao, Y.; Ahmad, Z.; Chang, M.W. A novel core-shell nanofiber drug delivery system intended for the synergistic treatment of melanoma. Eur. J. Pharm. Sci., 2019, 137, 105002. doi: 10.1016/j.ejps.2019.105002 PMID: 31302215
  105. Radmansouri, M.; Bahmani, E.; Sarikhani, E.; Rahmani, K.; Sharifianjazi, F.; Irani, M. Doxorubicin hydrochloride - Loaded electrospun chitosan/cobalt ferrite/titanium oxide nanofibers for hyperthermic tumor cell treatment and controlled drug release. Int. J. Biol. Macromol., 2018, 116, 378-384. doi: 10.1016/j.ijbiomac.2018.04.161 PMID: 29723626
  106. Nawaz, A.; Wong, T.W. Chitosan-carboxymethyl-5-fluorouracil-folate conjugate particles: Microwave modulated uptake by skin and melanoma cells. J. Invest. Dermatol., 2018, 138(11), 2412-2422. doi: 10.1016/j.jid.2018.04.037 PMID: 29857069
  107. Chen, M.; Quan, G.; Wen, T.; Yang, P.; Qin, W.; Mai, H.; Sun, Y.; Lu, C.; Pan, X.; Wu, C. Cold to hot: Binary cooperative microneedle array-amplified photoimmunotherapy for eliciting antitumor immunity and the abscopal effect. ACS Appl. Mater. Interfaces, 2020, 12(29), 32259-32269. doi: 10.1021/acsami.0c05090 PMID: 32406239
  108. Tokumitsu, H.; Ichikawa, H.; Fukumori, Y. Chitosan-gadopentetic acid complex nanoparticles for gadolinium neutron-capture therapy of cancer: Preparation by novel emulsion-droplet coalescence technique and characterization. Pharm. Res., 1999, 16(12), 1830-1835. doi: 10.1023/A:1018995124527 PMID: 10644070
  109. Tokumitsu, H.; Hiratsuka, J.; Sakurai, Y.; Kobayashi, T.; Ichikawa, H.; Fukumori, Y. Gadolinium neutron-capture therapy using novel gadopentetic acid–chitosan complex nanoparticles: In vivo growth suppression of experimental melanoma solid tumor. Cancer Lett., 2000, 150(2), 177-182. doi: 10.1016/S0304-3835(99)00388-2 PMID: 10704740
  110. Andoh, T.; Nakatani, Y.; Suzuki, M.; Sakurai, Y.; Fujimoto, T.; Ichikawa, H. Influence of the particle size of gadolinium-loaded chitosan nanoparticles on their tumor-killing effect in neutron capture therapy in vitro. Appl. Radiat. Isot., 2020, 164, 109270. doi: 10.1016/j.apradiso.2020.109270 PMID: 32819508
  111. Shikata, F.; Tokumitsu, H.; Ichikawa, H.; Fukumori, Y. In vitro cellular accumulation of gadolinium incorporated into chitosan nanoparticles designed for neutron-capture therapy of cancer. Eur. J. Pharm. Biopharm., 2002, 53(1), 57-63. doi: 10.1016/S0939-6411(01)00198-9 PMID: 11777753

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers