Thiazole, Isatin and Phthalimide Derivatives Tested in vivo against Cancer Models: A Literature Review of the Last Six Years


Cite item

Full Text

Abstract

Background:Cancer is a disease characterized by the abnormal multiplication of cells and is the second leading cause of death in the world. The search for new effective and safe anticancer compounds is ongoing due to factors such as low selectivity, high toxicity, and multidrug resistance. Thus, heterocyclic compounds derived from isatin, thiazole and phthalimide that have achieved promising in vitro anticancer activity have been tested in vivo and in clinical trials.

Objective:This review focused on the compilation of promising data from thiazole, isatin, and phthalimide derivatives, reported in the literature between 2015 and 2022, with in vivo anticancer activity and clinical trials.

Methods:A bibliographic search was carried out in the PUBMED, MEDLINE, ELSEVIER, and CAPES PERIODIC databases, selecting relevant works for each pharmacophoric group with in vivo antitumor activity in the last 6 years.

Results:In our study, 68 articles that fit the scope were selected and critically analyzed. These articles were organized considering the type of antitumor activity and their year of publication. Some compounds reported here demonstrated potent antitumor activity against several tumor types.

Conclusion:This review allowed us to highlight works that reported promising structures for the treatment of various cancer types and also demonstrated that the privileged structures thiazole, isatin and phthalimide are important in the design of new syntheses and molecular optimization of compounds with antitumor activity.

About the authors

Aline Pinto

Laboratory of Planning in Medicinal Chemistry, Department of Pharmaceutical Sciences, Center for Health Sciences,, Federal University of Pernambuco

Email: info@benthamscience.net

Janine Nunes

Laboratory of Planning in Medicinal Chemistry, Department of Pharmaceutical Sciences, Center for Health Sciences, Federal University of Pernambuco

Email: info@benthamscience.net

José Eduardo Severino Martins

Regulatory Affairs Advisory, Empresa Brasileira de Hemoderivados e Biotecnologia (HEMOBRAS)

Email: info@benthamscience.net

Amanda Leal

Laboratory of Planning in Medicinal Chemistry, Department of Pharmaceutical Sciences, Center for Health Sciences, Federal University of Pernambuco

Email: info@benthamscience.net

Carla Silva

50740-520, Recife, PE, Federal University of Pernambuco

Email: info@benthamscience.net

Anderson da Silva

50740-520, Recife, PE, Federal University of Pernambuco

Email: info@benthamscience.net

Daiane da Cruz Olímpio

Laboratory of Planning in Medicinal Chemistry, Department of Pharmaceutical Sciences, Center for Health Sciences, Federal University of Pernambuco

Email: info@benthamscience.net

Elineide da Silva

Laboratory of Planning in Medicinal Chemistry, Department of Pharmaceutical Sciences, Center for Health Sciences, Federal University of Pernambuco

Email: info@benthamscience.net

Thiers Campos

Laboratory of Planning in Medicinal Chemistry, Department of Pharmaceutical Sciences, Center for Health Sciences, Federal University of Pernambuco

Email: info@benthamscience.net

Ana Cristina Lima Leite

Laboratory of Planning in Medicinal Chemistry, Department of Pharmaceutical Sciences, Center for Health Sciences, Federal University of Pernambuco

Author for correspondence.
Email: info@benthamscience.net

References

  1. Feng, Y.; Panwar, N.; Tng, D.J.H.; Tjin, S.C.; Wang, K.; Yong, K.T. The application of mesoporous silica nanoparticle family in cancer theranostics. Coord. Chem. Rev., 2016, 319, 86-109. doi: 10.1016/j.ccr.2016.04.019
  2. Din, F.; Aman, W.; Ullah, I.; Qureshi, O.S.; Mustapha, O.; Shafique, S.; Zeb, A. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int. J. Nanomedicine, 2017, 12, 7291-7309. doi: 10.2147/IJN.S146315 PMID: 29042776
  3. Coleman, W.B. Neoplasia. Molecular Pathology: The Molecular Basis of Human Disease; Coleman, W.; Tsongalis, G., Eds.; Academic Express, 2018, pp. 71-97. doi: 10.1016/B978-0-12-802761-5.00004-3
  4. Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249. doi: 10.3322/caac.21660 PMID: 33538338
  5. Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin., 2019, 69(1), 7-34. doi: 10.3322/caac.21551 PMID: 30620402
  6. Chen, H.; Zhang, W.; Zhu, G.; Xie, J.; Chen, X. Rethinking cancer nanotheranostics. Nat. Rev. Mater., 2017, 2(7), 17024. doi: 10.1038/natrevmats.2017.24 PMID: 29075517
  7. Braegelman, A.S.; Webber, M.J. Integrating stimuli-responsive properties in host-guest supramolecular drug delivery systems. Theranostics, 2019, 9(11), 3017-3040. doi: 10.7150/thno.31913 PMID: 31244940
  8. Labbozzetta, M.; Raimondi, M.V.; Poma, P.; Notarbartolo, M.; Barraja, P.; Montalbano, A. Novel insights on 1,2oxazolo5,4-eisoindoles on multidrug resistant acute myeloid leukemia cell line. Drug Dev. Res., 2022, 83(6), 1331-1341. doi: 10.1002/ddr.21962
  9. Liang, T.; Sun, X.; Li, W.; Hou, G.; Gao, F. 1,2,3-triazole-containing compounds as anti-lung cancer agents: Current developments, mechanisms of action, and structure-activity relationship. Front. Pharmacol., 2021, 12, 661173. doi: 10.3389/fphar.2021.661173 PMID: 34177578
  10. Barreca, M.; Ingarra, A.M.; Raimondi, M.V.; Spanò, V.; De Franco, M.; Menilli, L.; Gandin, V.; Miolo, G.; Barraja, P.; Montalbano, A. Insight on pyrimido5,4-gindolizine and pyrimido4,5-cpyrrolo1,2-aazepine systems as promising photosensitizers on malignant cells. Eur. J. Med. Chem., 2022, 237, 114399. doi: 10.1016/j.ejmech.2022.114399 PMID: 35468516
  11. Spanò, V.; Pennati, M.; Parrino, B.; Carbone, A.; Montalbano, A.; Cilibrasi, V.; Zuco, V.; Lopergolo, A.; Cominetti, D.; Diana, P.; Cirrincione, G.; Barraja, P.; Zaffaroni, N. Preclinical activity of new 1,2Oxazolo5,4- eisoindole derivatives in diffuse malignant peritoneal mesothelioma. J. Med. Chem., 2016, 59(15), 7223-7238. doi: 10.1021/acs.jmedchem.6b00777 PMID: 27428868
  12. Barreca, M.; Spanò, V.; Rocca, R.; Bivacqua, R.; Abel, A.C.; Maruca, A.; Montalbano, A.; Raimondi, M.V.; Tarantelli, C.; Gaudio, E.; Cascione, L.; Rinaldi, A.; Bai, R.; Steinmetz, M.O.; Prota, A.E.; Alcaro, S.; Hamel, E.; Bertoni, F.; Barraja, P. Development of 1,2oxazoloisoindoles tubulin polymerization inhibitors: Further chemical modifications and potential therapeutic effects against lymphomas. Eur. J. Med. Chem., 2022, 243, 114744. doi: 10.1016/j.ejmech.2022.114744 PMID: 36242921
  13. Macan, A.M.; Harej, A.; Cazin, I.; Klobučar, M.; Stepanić, V.; Pavelić, K.; Pavelić, S.K.; Schols, D.; Snoeck, R.; Andrei, G.; Raić-Malić, S. Antitumor and antiviral activities of 4-substituted 1,2,3-triazolyl-2,3-dibenzyl-L-ascorbic acid derivatives. Eur. J. Med. Chem., 2019, 184, 111739. doi: 10.1016/j.ejmech.2019.111739 PMID: 31586832
  14. Barreca, M.; Ingarra, A.M.; Raimondi, M.V.; Spanò, V.; Piccionello, A.P.; De Franco, M.; Menilli, L.; Gandin, V.; Miolo, G.; Barraja, P.; Montalbano, A. New tricyclic systems as photosensitizers towards triple negative breast cancer cells. Arch. Pharm. Res., 2022, 45(11), 806-821. doi: 10.1007/s12272-022-01414-1 PMID: 36399284
  15. Hou, Y.; Shang, C.; Wang, H.; Yun, J. Isatin-azole hybrids and their anticancer activities. Arch. Pharm., 2020, 353(1), 1900272. doi: 10.1002/ardp.201900272 PMID: 31691360
  16. Al-Wabli, R.I.; Almomen, A.A.; Almutairi, M.S.; Keeton, A.B.; Piazza, G.A.; Attia, M.I. New isatin-indole conjugates: Synthesis, characterization, and a plausible mechanism of their in vitro antiproliferative activity. Drug Des. Devel. Ther., 2020, 14, 483-495. doi: 10.2147/DDDT.S227862 PMID: 32099332
  17. Abdel-Sattar, N.E.A.; El-Naggar, A.M.; Abdel-Mottaleb, M.S.A. Novel thiazole derivatives of medicinal potential: synthesis and modeling. J. Chem., 2017, 2017(d), 1-11. doi: 10.1155/2017/4102796
  18. Murugan, B.; Krishnan, U.M. Chemoresponsive smart mesoporous silica systems - An emerging paradigm for cancer therapy. Int. J. Pharm., 2018, 553(1-2), 310-326. doi: 10.1016/j.ijpharm.2018.10.026 PMID: 30316004
  19. Pawar, S.; Kumar, K.; Gupta, M.K.; Rawal, R.K. Synthetic and medicinal perspective of fused-thiazoles as anticancer agents. Anticancer. Agents Med. Chem., 2021, 21(11), 1379-1402. doi: 10.2174/1871520620666200728133017 PMID: 32723259
  20. Ali, S.H.; Sayed, A.R. Review of the synthesis and biological activity of thiazoles. Synth. Commun., 2021, 51(5), 670-700. doi: 10.1080/00397911.2020.1854787
  21. Chhabria, M.T.; Patel, S.; Modi, P.; Brahmkshatriya, P.S. Thiazole: A review on chemistry, synthesis and therapeutic importance of its derivatives. Curr. Top. Med. Chem., 2016, 16(26), 2841-2862. doi: 10.2174/1568026616666160506130731 PMID: 27150376
  22. Borcea, A.M.; Ionuț, I.; Crișan, O.; Oniga, O. An overview of the synthesis and antimicrobial, antiprotozoal, and antitumor activity of thiazole and bisthiazole derivatives. Molecules, 2021, 26(3), 624. doi: 10.3390/molecules26030624
  23. Ayati, A.; Emami, S.; Asadipour, A.; Shafiee, A.; Foroumadi, A. Recent applications of 1,3-thiazole core structure in the identification of new lead compounds and drug discovery. Eur. J. Med. Chem., 2015, •••, 699-718. doi: 10.1016/j.ejmech.2015.04.015
  24. Petrou, A.; Fesatidou, M.; Geronikaki, A. Thiazole Ring—a biologically active scaffold. Molecules, 2021, •••, 3166-3241. doi: 10.3390/molecules26113166
  25. Gümüş, M.; Yakan, M.; Koca, İ. Recent advances of thiazole hybrids in biological applications. Future Med. Chem., 2019, 11(15), 1979-1998. doi: 10.4155/fmc-2018-0196 PMID: 31517529
  26. Sbenati, R.M.; Semreen, M.H.; Semreen, A.M.; Shehata, M.K.; Alsaghir, F.M.; El-Gamal, M.I. Evaluation of imidazo2,1-bthiazole-based anticancer agents in one decade (2011-2020): Current status and future prospects. Bioorg. Med. Chem., 2021, 29, 115897. doi: 10.1016/j.bmc.2020.115897 PMID: 33316752
  27. Ayati, A.; Emami, S.; Moghimi, S.; Foroumadi, A. Thiazole in the targeted anticancer drug discovery. Future Med. Chem., 2019, 11(15), 1929-1952. doi: 10.4155/fmc-2018-0416 PMID: 31313595
  28. Irfan, A.; Batool, F.; Zahra Naqvi, S.A.; Islam, A.; Osman, S.M.; Nocentini, A.; Alissa, S.A.; Supuran, C.T. Benzothiazole derivatives as anticancer agents. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 265-279. doi: 10.1080/14756366.2019.1698036 PMID: 31790602
  29. Sharma, P.C.; Bansal, K.K.; Sharma, A.; Sharma, D.; Deep, A. Thiazole-containing compounds as therapeutic targets for cancer therapy. Eur. J. Med. Chem., 2020, 188, 112016. doi: 10.1016/j.ejmech.2019.112016 PMID: 31926469
  30. Sharma, D.; Sharma, V.; Sharma, A.; Goyal, R.; Tonk, R.K.; Thakur, V.K.; Sharma, P.C. Green chemistry approaches for thiazole containing compounds as a potential scaffold for cancer therapy. Sustain. Chem. Pharm., 2021, 23, 100496. doi: 10.1016/j.scp.2021.100496
  31. Martins, P.; Jesus, J.; Santos, S.; Raposo, L.; Roma-Rodrigues, C.; Baptista, P.; Fernandes, A. Heterocyclic anticancer compounds: Recent advances and the paradigm shift towards the use of nanomedicine’s tool box. Molecules, 2015, 20(9), 16852-16891. doi: 10.3390/molecules200916852 PMID: 26389876
  32. Guerrero-Pepinosa, N.Y.; Cardona-Trujillo, M.C.; Garzón-Castaño, S.C.; Veloza, L.A.; Sepúlveda-Arias, J.C. Antiproliferative activity of thiazole and oxazole derivatives: A systematic review of in vitro and in vivo studies. Biomed. Pharmacother., 2021, 138, 111495. doi: 10.1016/j.biopha.2021.111495 PMID: 33765586
  33. Ferraz de Paiva, R.E.; Vieira, E.G.; Rodrigues da Silva, D.; Wegermann, C.A.; Costa Ferreira, A.M. Anticancer compounds based on isatin-derivatives: Strategies to ameliorate selectivity and efficiency. Front. Mol. Biosci., 2021, 7, 627272. doi: 10.3389/fmolb.2020.627272
  34. Nath, R.; Pathania, S.; Grover, G.; Akhtar, M.J. Isatin containing heterocycles for different biological activities: Analysis of structure activity relationship. J. Mol. Struct., 2020, 1222, 128900. doi: 10.1016/j.molstruc.2020.128900
  35. Zhang, Y.Z.; Du, H.Z.; Liu, H.L.; He, Q.S.; Xu, Z. Isatin dimers and their biological activities. Arch. Pharm., 2020, 353(3), 1900299. doi: 10.1002/ardp.201900299 PMID: 31985855
  36. Ding, Z.; Zhou, M.; Zeng, C. Recent advances in isatin hybrids as potential anticancer agents. Arch. Pharm., 2020, 353(3), 1900367. doi: 10.1002/ardp.201900367 PMID: 31960987
  37. Das, S. Beyond conventional construction of the phthalimide core: A review. New J. Chem., 2021, 45(44), 20519-20536. doi: 10.1039/D1NJ03924E
  38. Almeida, M.L.; Oliveira, M.C.V.A.; Pitta, I.R.; Pitta, M.G.R. Advances in synthesis and medicinal applications of compounds derived from phthalimide. Curr. Org. Synth., 2020, 17(4), 252-270. doi: 10.2174/1570179417666200325124712 PMID: 32209046
  39. Rouf, A.; Tanyeli, C. Bioactive thiazole and benzothiazole derivatives. Eur. J. Med. Chem., 2015, 97(1), 911-927. doi: 10.1016/j.ejmech.2014.10.058 PMID: 25455640
  40. de Santana, T.I.; Barbosa, M.O.; Gomes, P.A.T.M.; da Cruz, A.C.N.; da Silva, T.G.; Leite, A.C.L. Synthesis, anticancer activity and mechanism of action of new thiazole derivatives. Eur. J. Med. Chem., 2018, 144, 874-886. doi: 10.1016/j.ejmech.2017.12.040 PMID: 29329071
  41. Mirza, S.; Asma Naqvi, S.; Mohammed Khan, K.; Salar, U.; Choudhary, M.I. Facile synthesis of novel substituted aryl-thiazole (SAT) analogs via one-pot multi-component reaction as potent cytotoxic agents against cancer cell lines. Bioorg. Chem., 2017, 70, 133-143. doi: 10.1016/j.bioorg.2016.12.003 PMID: 28038777
  42. Evren, A.E.; Yurttas, L.; Ekselli, B.; Akalin-Ciftci, G. Synthesis and biological evaluation of 5-methyl-4-phenyl thiazole derivatives as anticancer agents. Phosphorus Sulfur Silicon Relat. Elem., 2019, 194(8), 820-828. doi: 10.1080/10426507.2018.1550642
  43. Meleddu, R.; Distinto, S.; Corona, A.; Maccioni, E.; Arridu, A.; Melis, C.; Bianco, G.; Matyus, P.; Cottiglia, F.; Sanna, A.; De Logu, A. Exploring the thiazole scaffold for the identification of new agents for the treatment of fluconazole resistant Candida. J. Enzyme Inhib. Med. Chem., 2016, 31(6), 1672-1677. doi: 10.3109/14756366.2015.1113171 PMID: 26745285
  44. Althagafi, I.; El-Metwaly, N.; Farghaly, T.A. New series of thiazole derivatives: Synthesis, structural elucidation, antimicrobial activity, molecular modeling and moe docking. Molecules, 2019, 24(9), 1741. doi: 10.3390/molecules24091741 PMID: 31060260
  45. Álvarez, G.; Varela, J.; Cruces, E.; Fernández, M.; Gabay, M.; Leal, S.M.; Escobar, P.; Sanabria, L.; Serna, E.; Torres, S.; Figueredo Thiel, S.J.; Yaluff, G.; Vera de Bilbao, N.I.; Cerecetto, H.; González, M. Identification of a new amide-containing thiazole as a drug candidate for treatment of Chagas’ disease. Antimicrob. Agents Chemother., 2015, 59(3), 1398-1404. doi: 10.1128/AAC.03814-14 PMID: 25512408
  46. Jin, Q.; Fu, Z.; Guan, L. Syntheses of BenzodThiazol-2(3H)-. one derivatives and their antidepressant and anticonvulsant effects. Mar. Drugs, 2019, 2, 1-10.
  47. Maghraby, M.T.E.; Abou-Ghadir, O.M.F.; Abdel-Moty, S.G.; Ali, A.Y.; Salem, O.I.A. Novel class of benzimidazole-thiazole hybrids: The privileged scaffolds of potent anti-inflammatory activity with dual inhibition of cyclooxygenase and 15-lipoxygenase enzymes. Bioorg. Med. Chem., 2020, 28(7), 115403. doi: 10.1016/j.bmc.2020.115403 PMID: 32127262
  48. Sowjanya, C.; Seetaram, S.S.; Gomathi, S.; Ashok Babu, K. Synthesis, chemistry and anti-hypertensive activity of some new thiazole-thiadiazole derivatives. Int. J. Adv. Res. Med. Pharm. Sci., 2016, 1(1), 6-10.
  49. Sinha, S.; Sravanthi, T.V.; Yuvaraj, S.; Manju, S.L.; Doble, M. 2-Amino-4-aryl thiazole: A promising scaffold identified as a potent 5-LOX inhibitor. RSC Advances, 2016, 6(23), 19271-19279. doi: 10.1039/C5RA28187C
  50. Mishra, C.B.; Kumari, S.; Tiwari, M. Thiazole: A promising heterocycle for the development of potent CNS active agents. Eur. J. Med. Chem., 2015, 92, 1-34. doi: 10.1016/j.ejmech.2014.12.031 PMID: 25544146
  51. Ghaemmaghami, S.; May, B.C.H.; Renslo, A.R.; Prusiner, S.B. Discovery of 2-aminothiazoles as potent antiprion compounds. J. Virol., 2010, 84(7), 3408-3412. doi: 10.1128/JVI.02145-09 PMID: 20032192
  52. Pereira, A.S.A.; Silveira, G.O.; Amaral, M.S.; Almeida, S.M.V.; Oliveira, J.F.; Lima, M.C.A.; Verjovski-Almeida, S. in vitro activity of aryl-thiazole derivatives against Schistosoma mansoni schistosomula and adult worms. PLoS One, 2019, 14(11), e0225425. doi: 10.1371/journal.pone.0225425 PMID: 31765429
  53. Amr, A.E.G.E.; Sabrry, N.M.; Abdalla, M.M.; Abdel-Wahab, B.F. Synthesis, antiarrhythmic and anticoagulant activities of novel thiazolo derivatives from methyl 2-(thiazol-2-ylcarbamoyl)acetate. Eur. J. Med. Chem., 2009, 44(2), 725-735. doi: 10.1016/j.ejmech.2008.05.004 PMID: 18579260
  54. Moraski, G.C.; Deboosère, N.; Marshall, K.L.; Weaver, H.A.; Vandeputte, A.; Hastings, C.; Woolhiser, L.; Lenaerts, A.J.; Brodin, P.; Miller, M.J. Intracellular and in vivo evaluation of imidazo2,1-bthiazole-5-carboxamide anti-tuberculosis compounds. PLoS One, 2020, 15(1), e0227224. doi: 10.1371/journal.pone.0227224 PMID: 31905374
  55. Pawar, C.D.; Sarkate, A.P.; Karnik, K.S.; Bahekar, S.S.; Pansare, D.N.; Shelke, R.N.; Jawale, C.S.; Shinde, D.B. Synthesis and antimicrobial evaluation of novel ethyl 2-(2-(4-substituted)acetamido)-4-subtituted-thiazole-5-carboxylate derivatives. Bioorg. Med. Chem. Lett., 2016, 26(15), 3525-3528. doi: 10.1016/j.bmcl.2016.06.030 PMID: 27324976
  56. Xie, X.X.; Li, H.; Wang, J.; Mao, S.; Xin, M.H.; Lu, S.M.; Mei, Q.B.; Zhang, S.Q. Synthesis and anticancer effects evaluation of 1-alkyl-3-(6-(2-methoxy-3-sulfonylaminopyridin-5-yl)benzodthiazol-2-yl)urea as anticancer agents with low toxicity. Bioorg. Med. Chem., 2015, 23(19), 6477-6485. doi: 10.1016/j.bmc.2015.08.013 PMID: 26321603
  57. Zablotskaya, A.; Segal, I.; Geronikaki, A.; Kazachonokh, G.; Popelis, Y.; Shestakova, I.; Nikolajeva, V.; Eze, D. Synthesis and biological evaluation of lipid-like 5-(2-hydroxyethyl)-4-methyl-1,3-thiazole derivatives as potential anticancer and antimicrobial agents. MedChemComm, 2015, 6(8), 1464-1470. doi: 10.1039/C5MD00140D
  58. Qin, J.; Ji, J.; Deng, R.; Tang, J.; Yang, F.; Feng, G.K.; Chen, W.D.; Wu, X.Q.; Qian, X.J.; Ding, K.; Zhu, X.F. DC120, a novel AKT inhibitor, preferentially suppresses nasopharyngeal carcinoma cancer stem-like cells by downregulating Sox2. Oncotarget, 2015, 6(9), 6944-6958. doi: 10.18632/oncotarget.3128 PMID: 25749514
  59. Reddy, V.G.; Reddy, T.S.; Jadala, C.; Reddy, M.S.; Sultana, F.; Akunuri, R.; Bhargava, S.K.; Wlodkowic, D.; Srihari, P.; Kamal, A. Pyrazolo-benzothiazole hybrids: Synthesis, anticancer properties and evaluation of antiangiogenic activity using in vitro VEGFR-2 kinase and in vitro transgenic zebrafish model. Eur. J. Med. Chem., 2019, 182, 111609. doi: 10.1016/j.ejmech.2019.111609 PMID: 31445229
  60. Bayomi, S.M.; El-Kashef, H.A.; El-Ashmawy, M.B.; Nasr, M.N.A.; El-Sherbeny, M.A.; Abdel-Aziz, N.I.; El-Sayed, M.A.A.; Suddek, G.M.; El-Messery, S.M.; Ghaly, M.A. Synthesis and biological evaluation of new curcumin analogues as antioxidant and antitumor agents: Molecular modeling study. Eur. J. Med. Chem., 2015, 101, 584-594. doi: 10.1016/j.ejmech.2015.07.014 PMID: 26197162
  61. Mohammed, Y.H.E.; Malojirao, V.H.; Thirusangu, P.; Al-Ghorbani, M.; Prabhakar, B.T.; Khanum, S.A. The Novel 4-Phenyl-2-Phenoxyacetamide Thiazoles modulates the tumor hypoxia leading to the crackdown of neoangiogenesis and evoking the cell death. Eur. J. Med. Chem., 2018, 143, 1826-1839. doi: 10.1016/j.ejmech.2017.10.082 PMID: 29133037
  62. Abd Elhameed, A.A.; El-Gohary, N.S.; El-Bendary, E.R.; Shaaban, M.I.; Bayomi, S.M. Synthesis and biological screening of new thiazolo4,5-dpyrimidine and dithiazolo3,2-a:5′,4′-epyrimidinone derivatives as antimicrobial, antiquorum-sensing and antitumor agents. Bioorg. Chem., 2018, 81, 299-310. doi: 10.1016/j.bioorg.2018.08.013 PMID: 30172111
  63. Prashanth, T.; Avin, B.R.V.; Thirusangu, P.; Ranganatha, V.L.; Prabhakar, B.T.; Sharath Chandra, J.N.N.; Khanum, S.A. Synthesis of coumarin analogs appended with quinoline and thiazole moiety and their apoptogenic role against murine ascitic carcinoma. Biomed. Pharmacother., 2019, 112, 108707. doi: 10.1016/j.biopha.2019.108707 PMID: 30970513
  64. Wang, F.; Yang, Z.; Liu, Y.; Ma, L.; Wu, Y.; He, L.; Shao, M.; Yu, K.; Wu, W.; Pu, Y.; Nie, C.; Chen, L. Synthesis and biological evaluation of diarylthiazole derivatives as antimitotic and antivascular agents with potent antitumor activity. Bioorg. Med. Chem., 2015, 23(13), 3337-3350. doi: 10.1016/j.bmc.2015.04.055 PMID: 25937236
  65. Thamkachy, R.; Kumar, R.; Rajasekharan, K.N.; Sengupta, S. ERK mediated upregulation of death receptor 5 overcomes the lack of p53 functionality in the diaminothiazole DAT1 induced apoptosis in colon cancer models: efficiency of DAT1 in Ras-Raf mutated cells. Mol. Cancer, 2016, 15(1), 22. doi: 10.1186/s12943-016-0505-7 PMID: 26956619
  66. Rajasekharan, K.N.; Nair, K.P.; Jenardanan, G.C. Studies on the Synthesis of 5-Acyl-2,4-diaminothiazoles from Amidinothioureas. Synthesis, 1986, 1986(5), 353-355. doi: 10.1055/s-1986-31634
  67. Wang, Y.J.; Patel, B.A.; Anreddy, N.; Zhang, Y.K.; Zhang, G.N.; Alqahtani, S.; Singh, S.; Shukla, S.; Kaddoumi, A.; Ambudkar, S.V.; Talele, T.T.; Chen, Z.S. Thiazole-valine peptidomimetic (TTT-28) antagonizes multidrug resistance in vitro and in vivo by selectively inhibiting the efflux activity of ABCB1. Sci. Rep., 2017, 7(1), 42106. doi: 10.1038/srep42106 PMID: 28181548
  68. Wang, B.; Zhang, W.; Liu, X.; Zou, F.; Wang, J.; Liu, Q.; Wang, A.; Hu, Z.; Chen, Y.; Qi, S.; Jiang, Z.; Chen, C.; Hu, C.; Wang, L.; Wang, W.; Liu, Q.; Liu, J. Discovery of (E)-N-(4-methyl-5-(3-(2-(pyridin-2-yl)vinyl)-1H-indazol-6-yl)thiazol-2-yl)-2-(4-methylpiperazin-1-yl)acetamide (IHMT-TRK-284) as a novel orally available type II TRK kinase inhibitor capable of overcoming multiple resistant mutants. Eur. J. Med. Chem., 2020, 207, 112744. doi: 10.1016/j.ejmech.2020.112744 PMID: 32949955
  69. Hu, C-M.; Zhu, J.; Guo, X.E.; Chen, W.; Qiu, X-L.; Ngo, B.; Chien, R.; Wang, Y.V.; Tsai, C.Y.; Wu, G.; Kim, Y.; Lopez, R.; Chamberlin, A.R.; Lee, E.Y-H.P.; Lee, W-H. Novel small molecules disrupting Hec1/Nek2 interaction ablate tumor progression by triggering Nek2 degradation through a death-trap mechanism. Oncogene, 2015, 34(10), 1220-1230. doi: 10.1038/onc.2014.67 PMID: 24662830
  70. Hu, X.; Li, S.; He, Y.; Ai, P.; Wu, S.; Su, Y.; Li, X.; Cai, L.; Peng, X. Antitumor and antimetastatic activities of a novel benzothiazole-2-thiol derivative in a murine model of breast cancer. Oncotarget, 2017, 8(7), 11887-11895. doi: 10.18632/oncotarget.14431 PMID: 28060755
  71. Wang, Z.; Shi, X.H.; Wang, J.; Zhou, T.; Xu, Y.Z.; Huang, T.T.; Li, Y.F.; Zhao, Y.L.; Yang, L.; Yang, S.Y.; Yu, L.T.; Wei, Y.Q. Synthesis, structure-activity relationships and preliminary antitumor evaluation of benzothiazole-2-thiol derivatives as novel apoptosis inducers. Bioorg. Med. Chem. Lett., 2011, 21(4), 1097-1101. doi: 10.1016/j.bmcl.2010.12.124 PMID: 21262571
  72. Liu, J.H.; Chen, C.; Li, Z.Y.; Zou, Z.M.; Gao, D.C.; Zhang, X.; Kuang, X.W.; Sun, Z.H.; Zheng, W.J.; Zhou, P.; Sun, S.R. The MyD88 inhibitor TJ-M2010-2 suppresses proliferation, migration and invasion of breast cancer cells by regulating MyD88/GSK-3β and MyD88/NF-κB signalling pathways. Exp. Cell Res., 2020, 394(2), 112157. doi: 10.1016/j.yexcr.2020.112157 PMID: 32610185
  73. Jiang, F.; Zhou, P.; Chen, J.; Wang, Y.; Cao, B.; Yan, J. 2- aminothiazole derivative, preparation method, and use USE. Patent EP2682390A1, 2012.
  74. Zhao, L.; Han, X.; Lu, J.; McEachern, D.; Wang, S. A highly potent PROTAC androgen receptor (AR) degrader ARD-61 effectively inhibits AR-positive breast cancer cell growth in vitro and tumor growth in vivo. Neoplasia, 2020, 22(10), 522-532. doi: 10.1016/j.neo.2020.07.002 PMID: 32928363
  75. Kregel, S.; Wang, C.; Han, X.; Xiao, L.; Fernandez-Salas, E.; Bawa, P.; McCollum, B.L.; Wilder-Romans, K.; Apel, I.J.; Cao, X.; Speers, C.; Wang, S.; Chinnaiyan, A.M. Androgen receptor degraders overcome common resistance mechanisms developed during prostate cancer treatment. Neoplasia, 2020, 22(2), 111-119. doi: 10.1016/j.neo.2019.12.003 PMID: 31931431
  76. Xu, Q.; Liu, C.; Zang, J.; Gao, S.; Chou, C.J.; Zhang, Y. Discovery of a novel hybrid of vorinostat and riluzole as a potent antitumor agent. Front. Cell Dev. Biol., 2020, 8, 454. doi: 10.3389/fcell.2020.00454 PMID: 32760715
  77. Qin, M.; Meng, Y.; Yang, H.; Liu, L.; Zhang, H.; Wang, S.; Liu, C.; Wu, X.; Wu, D.; Tian, Y.; Hou, Y.; Zhao, Y.; Liu, Y.; Xu, C.; Wang, L. Discovery of 4-arylindolines containing a thiazole moiety as potential antitumor agents inhibiting the programmed cell death-1/programmed cell death-ligand 1 interaction. J. Med. Chem., 2021, 64(9), 5519-5534. doi: 10.1021/acs.jmedchem.0c01958 PMID: 33938739
  78. Ewida, M.A.; Ewida, H.A.; Ahmed, M.S.; Allam, H.A.; ElBagary, R.I.; George, R.F.; Georgey, H.H.; El-Subbagh, H.I. 3-Methyl-imidazo2,1-bthiazole derivatives as a new class of antifolates: Synthesis, in vitro/in vivo bio-evaluation and molecular modeling simulations. Bioorg. Chem., 2021, 115, 105205. doi: 10.1016/j.bioorg.2021.105205 PMID: 34329992
  79. Chuang, S.H.; Lee, Y.S.E.; Huang, L.Y.L.; Chen, C.K.; Lai, C.L.; Lin, Y.H.; Yang, J.Y.; Yang, S.C.; Chang, L.H.; Chen, C.H.; Liu, C.W.; Lin, H.S.; Lee, Y.R.; Huang, K.P.; Fu, K.C.; Jen, H.M.; Lai, J.Y.; Jian, P.S.; Wang, Y.C.; Hsueh, W.Y.; Tsai, P.Y.; Hong, W.H.; Chang, C.C.; Wu, D.Z.C.; Wu, J.; Chen, M.H.; Yu, K.M.; Chern, C.Y.; Chang, J.M.; Lau, J.Y.N.; Huang, J.J. Discovery of T-1101 tosylate as a first-in-class clinical candidate for Hec1/Nek2 inhibition in cancer therapy. Eur. J. Med. Chem., 2020, 191, 112118. doi: 10.1016/j.ejmech.2020.112118 PMID: 32113126
  80. Matsumoto, K.; Hayashi, K.; Murata-Hirai, K.; Iwasaki, M.; Okamura, H.; Minato, N.; Morita, C.T.; Tanaka, Y. Targeting cancer cells with a bisphosphonate prodrug. ChemMedChem, 2016, 11(24), 2656-2663. doi: 10.1002/cmdc.201600465 PMID: 27786425
  81. Al-Ghorbani, M.; Pavankumar, G.S.; Naveen, P.; Thirusangu, P.; Prabhakar, B.T.; Khanum, S.A. Synthesis and an angiolytic role of novel piperazine-benzothiazole analogues on neovascularization, a chief tumoral parameter in neoplastic development. Bioorg. Chem., 2016, 65, 110-117. doi: 10.1016/j.bioorg.2016.02.006 PMID: 26918263
  82. Thirusangu, P.; Vigneshwaran, V.; Prashanth, T.; Vijay Avin, B.R.; Malojirao, V.H.; Rakesh, H.; Khanum, S.A.; Mahmood, R.; Prabhakar, B.T. BP-1T, an antiangiogenic benzophenone-thiazole pharmacophore, counteracts HIF-1 signalling through p53/MDM2-mediated HIF-1α proteasomal degradation. Angiogenesis, 2017, 20(1), 55-71. doi: 10.1007/s10456-016-9528-3 PMID: 27743086
  83. Di Martile, M.; Desideri, M.; De Luca, T.; Gabellini, C.; Buglioni, S.; Eramo, A.; Sette, G.; Milella, M.; Rotili, D.; Mai, A.; Carradori, S.; Secci, D.; De Maria, R.; Del Bufalo, D.; Trisciuoglio, D. Histone acetyltransferase inhibitor CPTH6 preferentially targets lung cancer stem-like cells. Oncotarget, 2016, 7(10), 11332-11348. doi: 10.18632/oncotarget.7238 PMID: 26870991
  84. Chimenti, F.; Bizzarri, B.; Maccioni, E.; Secci, D.; Bolasco, A.; Chimenti, P.; Fioravanti, R.; Granese, A.; Carradori, S.; Tosi, F.; Ballario, P.; Vernarecci, S.; Filetici, P. A novel histone acetyltransferase inhibitor modulating Gcn5 network: cyclopentylidene-4-(4′-chlorophenyl)thiazol-2-yl)hydrazone. J. Med. Chem., 2009, 52(2), 530-536. doi: 10.1021/jm800885d PMID: 19099397
  85. Wang, L.; Guo, C.; Li, X.; Yu, X.; Li, X.; Xu, K.; Jiang, B.; Jia, X.; Li, C.; Shi, D. Design, synthesis and biological evaluation of bromophenol-thiazolylhydrazone hybrids inhibiting the interaction of translation initiation factors eIF4E/eIF4G as multifunctional agents for cancer treatment. Eur. J. Med. Chem., 2019, 177, 153-170. doi: 10.1016/j.ejmech.2019.05.044 PMID: 31132531
  86. Zakharenko, A. L.; Luzina, O. A.; Sokolov, D. N.; Kaledin, V. I.; Nikolin, V. P.; Popova, N. A.; Patel, J.; Zakharova, O. D.; Chepanova, A. A.; Zafar, A. Novel tyrosyl-DNA phosphodiesterase 1 inhibitors enhance the therapeutic impact of topotecan on in vivo tumor models. Eur. J. Med. Chem., 2019, 161, 581-593. doi: 10.1016/j.ejmech.2018.10.055
  87. Wang, J.; Wang, L.; Zhang, S.; Fan, J.; Yang, H.; Li, Q.; Guo, C. Novel eIF4E/eIF4G protein-protein interaction inhibitors DDH-1 exhibits anti-cancer activity in vivo and in vitro. Int. J. Biol. Macromol., 2020, 160, 496-505. doi: 10.1016/j.ijbiomac.2020.05.233 PMID: 32479946
  88. Kim, S.J.; Jegal, K.H. Im, J.H.; Park, G.; Kim, S.; Jeong, H.G.; Cho, I.J.; Kang, K.W. Involvement of ER stress and reactive oxygen species generation in anti-cancer effect of CKD-516 for lung cancer. Cancer Chemother. Pharmacol., 2020, 85(4), 685-697. doi: 10.1007/s00280-020-04043-x PMID: 32157413
  89. Kim, M.Y.; Shin, J.Y.; Kim, J.O.; Son, K.H.; Kim, Y.S.; Jung, C.K.; Kang, J.H. Anti-tumor efficacy of CKD-516 in combination with radiation in xenograft mouse model of lung squamous cell carcinoma. BMC Cancer, 2020, 20(1), 1057. doi: 10.1186/s12885-020-07566-x PMID: 33143663
  90. Millet, A.; Plaisant, M.; Ronco, C.; Cerezo, M.; Abbe, P.; Jaune, E.; Cavazza, E.; Rocchi, S.; Benhida, R. Discovery and optimization of N -(4-(3-Aminophenyl)thiazol-2-yl)acetamide as a novel scaffold active against sensitive and resistant cancer cells. J. Med. Chem., 2016, 59(18), 8276-8292. doi: 10.1021/acs.jmedchem.6b00547 PMID: 27575313
  91. Cerezo, M.; Lehraiki, A.; Millet, A.; Rouaud, F.; Plaisant, M.; Jaune, E.; Botton, T.; Ronco, C.; Abbe, P.; Amdouni, H.; Passeron, T.; Hofman, V.; Mograbi, B.; Dabert-Gay, A.S.; Debayle, D.; Alcor, D.; Rabhi, N.; Annicotte, J.S.; Héliot, L.; Gonzalez-Pisfil, M.; Robert, C.; Moréra, S.; Vigouroux, A.; Gual, P.; Ali, M.M.U.; Bertolotto, C.; Hofman, P.; Ballotti, R.; Benhida, R.; Rocchi, S. Compounds triggering ER stress exert anti-melanoma effects and overcome braf inhibitor resistance. Cancer Cell, 2016, 29(6), 805-819. doi: 10.1016/j.ccell.2016.04.013 PMID: 27238082
  92. Abdel-Maksoud, M.S.; El-Gamal, M.I.; Lee, B.S.; Gamal El-Din, M.M.; Jeon, H.R.; Kwon, D.; Ammar, U.M.; Mersal, K.I.; Ali, E.M.H.; Lee, K.T.; Yoo, K.H.; Han, D.K.; Lee, J.K.; Kim, G.; Choi, H.S.; Kwon, Y.J.; Lee, K.H.; Oh, C.H. Discovery of new imidazo2,1- bthiazole derivatives as potent Pan-RAF inhibitors with promising in vitro and in vivo anti-melanoma activity. J. Med. Chem., 2021, 64(10), 6877-6901. doi: 10.1021/acs.jmedchem.1c00230 PMID: 33999621
  93. Morigi, R.; Locatelli, A.; Leoni, A.; Rambaldi, M.; Bortolozzi, R.; Mattiuzzo, E.; Ronca, R.; Maccarinelli, F.; Hamel, E.; Bai, R.; Brancale, A.; Viola, G. Synthesis, in vitro and in vivo biological evaluation of substituted 3-(5-imidazo2,1-bthiazolylmethylene)-2-indolinones as new potent anticancer agents. Eur. J. Med. Chem., 2019, 166, 514-530. doi: 10.1016/j.ejmech.2019.01.049 PMID: 30784885
  94. dos Santos Silva, T.D.; Bomfim, L.M.; da Cruz Rodrigues, A.C.B.; Dias, R.B.; Sales, C.B.S.; Rocha, C.A.G.; Soares, M.B.P.; Bezerra, D.P.; de Oliveira, C.M.V.; Leite, A.C.L.; Militão, G.C.G. Anti-liver cancer activity in vitro and in vivo induced by 2-pyridyl 2,3-thiazole derivatives. Toxicol. Appl. Pharmacol., 2017, 329, 212-223. doi: 10.1016/j.taap.2017.06.003 PMID: 28610992
  95. Xie, J.; Si, X.; Gu, S.; Wang, M.; Shen, J.; Li, H.; Shen, J.; Li, D.; Fang, Y.; Liu, C.; Zhu, J. Allosteric inhibitors of SHP2 with therapeutic potential for cancer treatment. J. Med. Chem., 2017, 60(24), 10205-10219. doi: 10.1021/acs.jmedchem.7b01520 PMID: 29155585
  96. Wang, B.; Wu, J.; Wu, Y.; Chen, C.; Zou, F.; Wang, A.; Wu, H.; Hu, Z.; Jiang, Z.; Liu, Q.; Wang, W.; Zhang, Y.; Liu, F.; Zhao, M.; Hu, J.; Huang, T.; Ge, J.; Wang, L.; Ren, T.; Wang, Y.; Liu, J.; Liu, Q. Discovery of 4-(((4-(5-chloro-2-(((1s,4s)-4-((2-methoxyethyl)amino)cyclohexyl)amino) pyridin-4-yl)thiazol-2-yl)amino)methyl)tetrahydro-2H-pyran-4-carbonitrile (JSH-150) as a novel highly selective and potent CDK9 kinase inhibitor. Eur. J. Med. Chem., 2018, 158, 896-916. doi: 10.1016/j.ejmech.2018.09.025 PMID: 30253346
  97. Liang, X.; Li, F.; Chen, C.; Jiang, Z.; Wang, A.; Liu, X.; Ge, J.; Hu, Z.; Yu, K.; Wang, W.; Zou, F.; Liu, Q.; Wang, B.; Wang, L.; Zhang, S.; Wang, Y.; Liu, Q.; Liu, J. Discovery of (S)-2-amino-N-(5-(6-chloro-5-(3-methylphenylsulfonamido)pyridin-3-yl)-4-methylthiazol-2-yl)-3-methylbutanamide (CHMFL-PI3KD-317) as a potent and selective phosphoinositide 3-kinase delta (PI3Kδ) inhibitor. Eur. J. Med. Chem., 2018, 156, 831-846. doi: 10.1016/j.ejmech.2018.07.036 PMID: 30053721
  98. Zhao, Q.; Ren, C.; Liu, L.; Chen, J.; Shao, Y.; Sun, N.; Sun, R.; Kong, Y.; Ding, X.; Zhang, X.; Xu, Y.; Yang, B.; Yin, Q.; Yang, X.; Jiang, B. Discovery of SIAIS178 as an effective BCR-ABL degrader by recruiting von hippel-lindau (VHL) E3 ubiquitin ligase. J. Med. Chem., 2019, 62(20), 9281-9298. doi: 10.1021/acs.jmedchem.9b01264 PMID: 31539241
  99. Shen, X.; Zhao, L.; Chen, P.; Gong, Y.; Liu, D.; Zhang, X.; Dai, L.; Sun, Q.; Lou, J.; Jin, Z.; Zhang, B.; Niu, D.; Chen, C.; Qi, X.; Jia, D. A thiazole-derived oridonin analogue exhibits antitumor activity by directly and allosterically inhibiting STAT3. J. Biol. Chem., 2019, 294(46), 17471-17486. doi: 10.1074/jbc.RA119.009801 PMID: 31594861
  100. Jiao, P.; Wang, Y.; Mao, B.; Wang, B.; Zhong, Y.; Jin, H.; Zhang, L.; Zhang, L.; Liu, Z. Discovery of 2-(2-aminobenzodthiazol-6-yl) benzodoxazol-5-amine derivatives that regulated HPV relevant cellular pathway and prevented cervical cancer from abnormal proliferation. Eur. J. Med. Chem., 2020, 204, 112556. doi: 10.1016/j.ejmech.2020.112556 PMID: 32739649
  101. Yuan, J.M.; Chen, N.Y.; Liao, H.R.; Zhang, G.H.; Li, X.J.; Gu, Z.Y.; Pan, C.X.; Mo, D.L.; Su, G.F. 3-(Benzo dthiazol-2-yl)-4-aminoquinoline derivatives as novel scaffold topoisomerase I inhibitor via DNA intercalation: design, synthesis, and antitumor activities. New J. Chem., 2020, 44(26), 11203-11214. doi: 10.1039/C9NJ05846J
  102. Montemagno, C.; Serrano, B.; Durivault, J.; Nataf, V.; Mocquot, F.; Amblard, R.; Vial, V.; Ronco, C.; Benhida, R.; Dufies, M.; Faraggi, M.; Pagès, G. In vivo monitoring of the therapeutic efficacy of a CXCR1/2 inhibitor with 18F-FDG PET/CT imaging in experimental head and neck carcinoma: A feasibility study. Biochem. Biophys. Rep., 2021, 27, 101098. doi: 10.1016/j.bbrep.2021.101098 PMID: 34430714
  103. Varun, V.; Sonam, S.; Kakkar, R. Isatin and its derivatives: A survey of recent syntheses, reactions, and applications. MedChemComm, 2019, 10(3), 351-368. doi: 10.1039/C8MD00585K PMID: 30996856
  104. De Moraes Gomes, P.A.T.; Pena, L.J.; Leite, A.C.L. Isatin derivatives and their antiviral properties against arboviruses: A review. Mini Rev. Med. Chem., 2018, 19(1), 56-62. doi: 10.2174/1389557518666180424093305 PMID: 29692243
  105. Guo, H. Isatin derivatives and their anti-bacterial activities. Eur. J. Med. Chem., 2019, 164, 678-688. doi: 10.1016/j.ejmech.2018.12.017 PMID: 30654239
  106. Fan, Y.L.; Jin, X.H.; Huang, Z.P.; Yu, H.F.; Zeng, Z.G.; Gao, T.; Feng, L.S. Recent advances of imidazole-containing derivatives as anti-tubercular agents. Eur. J. Med. Chem., 2018, 150, 347-365. doi: 10.1016/j.ejmech.2018.03.016 PMID: 29544148
  107. Pakravan, P.; Kashanian, S.; Khodaei, M.M.; Harding, F.J. Biochemical and pharmacological characterization of isatin and its derivatives: From structure to activity. Pharmacol. Rep., 2013, 65(2), 313-335. doi: 10.1016/S1734-1140(13)71007-7 PMID: 23744416
  108. Meleddu, R.; Distinto, S.; Corona, A.; Tramontano, E.; Bianco, G.; Melis, C.; Cottiglia, F.; Maccioni, E. Isatin thiazoline hybrids as dual inhibitors of HIV-1 reverse transcriptase. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 130-136. doi: 10.1080/14756366.2016.1238366 PMID: 27766892
  109. Nisha; Gut, J.; Rosenthal, P.J.; Kumar, V. β-amino-alcohol tethered 4-aminoquinoline-isatin conjugates: Synthesis and antimalarial evaluation. Eur. J. Med. Chem., 2014, 84, 566-573. doi: 10.1016/j.ejmech.2014.07.064 PMID: 25062007
  110. Singh, G.S.; Desta, Z.Y. Isatins as privileged molecules in design and synthesis of spiro-fused cyclic frameworks. Chem. Rev., 2012, 112(11), 6104-6155. doi: 10.1021/cr300135y PMID: 22950860
  111. Liang, C.; Xia, J.; Lei, D.; Li, X.; Yao, Q.; Gao, J. Synthesis, in vitro and in vivo antitumor activity of symmetrical bis-Schiff base derivatives of isatin. Eur. J. Med. Chem., 2014, 74, 742-750. doi: 10.1016/j.ejmech.2013.04.040 PMID: 24176732
  112. Zhang, X.; Song, Y.; Wu, Y.; Dong, Y.; Lai, L.; Zhang, J.; Lu, B.; Dai, F.; He, L.; Liu, M.; Yi, Z. Indirubin inhibits tumor growth by antitumor angiogenesis via blocking VEGFR2-mediated JAK/STAT3 signaling in endothelial cell. Int. J. Cancer, 2011, 129(10), 2502-2511. doi: 10.1002/ijc.25909 PMID: 21207415
  113. Lee, C.J.; Wilson, L.; Jordan, M.A.; Nguyen, V.; Tang, J.; Smiyun, G. Hesperidin suppressed proliferations of both Human breast cancer and androgen-dependent prostate cancer cells. Phytother. Res., 2010, 24(S1), S15-S19. doi: 10.1002/ptr.2856
  114. Prenen, H.; Cools, J.; Mentens, N.; Folens, C.; Sciot, R.; Schöffski, P.; Van Oosterom, A.; Marynen, P.; Debiec-Rychter, M. Efficacy of the kinase inhibitor SU11248 against gastrointestinal stromal tumor mutants refractory to imatinib mesylate. Clin. Cancer Res., 2006, 12(8), 2622-2627. doi: 10.1158/1078-0432.CCR-05-2275 PMID: 16638875
  115. Ma, J.; Li, S.; Reed, K.; Guo, P.; Gallo, J.M. Pharmacodynamic-mediated effects of the angiogenesis inhibitor SU5416 on the tumor disposition of temozolomide in subcutaneous and intracerebral glioma xenograft models. J. Pharmacol. Exp. Ther., 2003, 305(3), 833-839. doi: 10.1124/jpet.102.048587 PMID: 12626639
  116. Kaur, J.; Kaur, B.; Singh, P. Rational modification of semaxanib and sunitinib for developing a tumor growth inhibitor targeting ATP binding site of tyrosine kinase. Bioorg. Med. Chem. Lett., 2018, 28(2), 129-133. doi: 10.1016/j.bmcl.2017.11.049 PMID: 29208523
  117. Havrylyuk, D.; Zimenkovsky, B.; Vasylenko, O.; Gzella, A.; Lesyk, R. Synthesis of new 4-thiazolidinone-, pyrazoline-, and isatin-based conjugates with promising antitumor activity. J. Med. Chem., 2012, 55(20), 8630-8641. doi: 10.1021/jm300789g PMID: 22992049
  118. Chiou, C.T.; Lee, W.C.; Liao, J.H.; Cheng, J.J.; Lin, L.C.; Chen, C.Y.; Song, J.S.; Wu, M.H.; Shia, K.S.; Li, W.T. Synthesis and evaluation of 3-ylideneoxindole acetamides as potent anticancer agents. Eur. J. Med. Chem., 2015, 98, 1-12. doi: 10.1016/j.ejmech.2015.04.062 PMID: 25988923
  119. Kumar, A.; Gupta, G.; Bishnoi, A.K.; Saxena, R.; Saini, K.S.; Konwar, R.; Kumar, S.; Dwivedi, A. Design and synthesis of new bioisosteres of spirooxindoles (MI-63/219) as anti-breast cancer agents. Bioorg. Med. Chem., 2015, 23(4), 839-848. doi: 10.1016/j.bmc.2014.12.037 PMID: 25618595
  120. Hou, J.; Jin, K.; Li, J.; Jiang, Y.; Li, X.; Wang, X.; Huang, Y.; Zhang, Y.; Xu, W. LJNK, an indoline-2,3-dione-based aminopeptidase N inhibitor with promising antitumor potency. Anticancer Drugs, 2016, 27(6), 496-507. doi: 10.1097/CAD.0000000000000351 PMID: 26872309
  121. Jin, K.; Zhang, X.; Ma, C.; Xu, Y.; Yuan, Y.; Xu, W. Novel indoline-2,3-dione derivatives as inhibitors of aminopeptidase N (APN). Bioorg. Med. Chem., 2013, 21(9), 2663-2670. doi: 10.1016/j.bmc.2012.06.024 PMID: 23510562
  122. Zhang, X.; Wang, M.; Teng, S.; Wang, D.; Li, X.; Wang, X.; Liao, W.; Wang, D. Indolyl-chalcone derivatives induce hepatocellular carcinoma cells apoptosis through oxidative stress related mitochondrial pathway in vitro and in vivo. Chem. Biol. Interact., 2018, 293, 61-69. doi: 10.1016/j.cbi.2018.07.025 PMID: 30055129
  123. Shang, Y.; Wang, Q.; Li, J.; Zhao, Q.; Huang, X.; Dong, H.; Liu, H.; Zhang, Y.; Zhang, J.; Gui, R.; Nie, X. The acetone indigo red dehydrating agent IF203 Induces HepG2 cell death through cell cycle arrest, autophagy and apoptosis. OncoTargets Ther., 2020, 13, 473-486. doi: 10.2147/OTT.S232594 PMID: 32021291
  124. Rana, S.; Blowers, E.C.; Tebbe, C.; Contreras, J.I.; Radhakrishnan, P.; Kizhake, S.; Zhou, T.; Rajule, R.N.; Arnst, J.L.; Munkarah, A.R.; Rattan, R.; Natarajan, A. Isatin derived spirocyclic analogues with α-methylene-γ-butyrolactone as anticancer agents: A structure-activity relationship study. J. Med. Chem., 2016, 59(10), 5121-5127. doi: 10.1021/acs.jmedchem.6b00400 PMID: 27077228
  125. Gabr, M.T.; El-Gohary, N.S.; El-Bendary, E.R.; El-Kerdawy, M.M.; Ni, N. Isatin-β-thiocarbohydrazones: Microwave-assisted synthesis, antitumor activity and structure-activity relationship. Eur. J. Med. Chem., 2017, 128, 36-44. doi: 10.1016/j.ejmech.2017.01.030 PMID: 28147307
  126. Pandey, M.K.; Gowda, K.; Sung, S.; Abraham, T.; Budak-Alpdogan, T.; Talamo, G.; Dovat, S.; Amin, S. A novel dual inhibitor of microtubule and Bruton’s tyrosine kinase inhibits survival of multiple myeloma and osteoclastogenesis. Exp. Hematol., 2017, 53, 31-42. doi: 10.1016/j.exphem.2017.06.003 PMID: 28647392
  127. Krishnegowda, G.; Prakasha Gowda, A.S.; Tagaram, H.R.S.; Carroll, K.F.S.O.; Irby, R.B.; Sharma, A.K.; Amin, S. Synthesis and biological evaluation of a novel class of isatin analogs as dual inhibitors of tubulin polymerization and Akt pathway. Bioorg. Med. Chem., 2011, 19(20), 6006-6014. doi: 10.1016/j.bmc.2011.08.044 PMID: 21920762
  128. Pati, M. L.; Niso, M.; Spitzer, D.; Berardi, F.; Contino, M.; Riganti, C.; Hawkins, W. G.; Abate, C. Multifunctional thiosemicarbazones and deconstructed analogues as a strategy to study the involvement of metal chelation, sigma-2 (Σ2) receptor and P-Gp protein in the cytotoxic action: in vitro and in vivo activity in pancreatic tumors. Eur. J. Med. Chem., 2018, 144, 359-371. doi: 10.1016/j.ejmech.2017.12.024
  129. Ohman, K.A.; Hashim, Y.M.; Vangveravong, S.; Nywening, T.M.; Cullinan, D.R.; Goedegebuure, S.P.; Liu, J.; Van Tine, B.A.; Tiriac, H.; Tuveson, D.A.; DeNardo, D.G.; Spitzer, D.; Mach, R.H.; Hawkins, W.G. Conjugation to the sigma-2 ligand SV119 overcomes uptake blockade and converts dm-Erastin into a potent pancreatic cancer therapeutic. Oncotarget, 2016, 7(23), 33529-33541. doi: 10.18632/oncotarget.9551 PMID: 27244881
  130. Wang, J.; Yun, D.; Yao, J.; Fu, W.; Huang, F.; Chen, L.; Wei, T.; Yu, C.; Xu, H.; Zhou, X.; Huang, Y.; Wu, J.; Qiu, P.; Li, W. Design, synthesis and QSAR study of novel isatin analogues inspired Michael acceptor as potential anticancer compounds. Eur. J. Med. Chem., 2018, 144, 493-503. doi: 10.1016/j.ejmech.2017.12.043 PMID: 29288946
  131. Zhang, W.H.; Chen, S.; Liu, X.L. Bing-Lin; Liu, X.W.; Zhou, Y. Study on antitumor activities of the chrysin-chromene-spirooxindole on Lewis lung carcinoma C57BL/6 mice in vivo. Bioorg. Med. Chem. Lett., 2020, 30(17), 127410. doi: 10.1016/j.bmcl.2020.127410 PMID: 32738990
  132. Annageldiyev, C.; Gowda, K.; Patel, T.; Bhattacharya, P.; Tan, S.F.; Iyer, S.; Desai, D.; Dovat, S.; Feith, D.J.; Loughran, T.P., Jr; Amin, S.; Claxton, D.; Sharma, A. The novel Isatin analog KS99 targets stemness markers in acute myeloid leukemia. Haematologica, 2020, 105(3), 687-696. doi: 10.3324/haematol.2018.212886 PMID: 31123028
  133. Hua, Y.; Zhou, N.; Zhang, J.; Zhang, Z.; Li, N.; Wang, J.; Zheng, W.; Li, X.; Wang, F.; Zhang, L.; Hou, L. Isatin inhibits the invasion and metastasis of SH-SY5Y neuroblastoma cells in vitro and in vivo. Int. J. Oncol., 2020, 58(1), 122-132. doi: 10.3892/ijo.2020.5144 PMID: 33367935
  134. Bansal, M.; Upadhyay, C. Poonam; Kumar, S.; Rathi, B. Phthalimide analogs for antimalarial drug discovery. RSC Medicinal Chemistry, 2021, 12(11), 1854-1867. doi: 10.1039/D1MD00244A PMID: 34825184
  135. Lu, Y.; Yu, X.; Evans, C.J.; Yang, S.; Zhang, K. Elucidating the role of acetylene in ortho -phthalimide functional benzoxazines: design, synthesis, and structure-property investigations. Polym. Chem., 2021, 12(35), 5059-5068. doi: 10.1039/D1PY00850A
  136. Schneider, P.; Schneider, G. Privileged structures revisited. Angew. Chem. Int. Ed., 2017, 56(27), 7971-7974. doi: 10.1002/anie.201702816 PMID: 28558125
  137. Zahran, M.; Agwa, H.; Osman, A.; Hammad, S.; El-Aarag, B.; Ismail, N.; Salem, T.; Gamal-Eldeen, A. Synthesis and biological evaluation of phthalimide dithiocarbamate and dithioate derivatives as anti-proliferative and anti-angiogenic agents-I. Eur. J. Chem., 2017, 8(4), 391-399. doi: 10.5155/eurjchem.8.4.391-399.1652
  138. Abdulrahman, H.S.; Hassan Mohammed, M.; Al-Ani, L.A.; Ahmad, M.H.; Hashim, N.M.; Yehye, W.A. Synthesis of phthalimide imine derivatives as a potential anticancer agent. J. Chem., 2020, 2020, 1-13. doi: 10.1155/2020/3928204
  139. Alanazi, A.M.; El-Azab, A.S.; Al-Suwaidan, I.A.; ElTahir, K.E.H.; Asiri, Y.A.; Abdel-Aziz, N.I.; Abdel-Aziz, A.A.M. Structure-based design of phthalimide derivatives as potential cyclooxygenase-2 (COX-2) inhibitors: Anti-inflammatory and analgesic activities. Eur. J. Med. Chem., 2015, 92, 115-123. doi: 10.1016/j.ejmech.2014.12.039 PMID: 25549551
  140. Singh, G.; Saroa, A.; Girdhar, S.; Rani, S.; Sahoo, S.; Choquesillo-Lazarte, D. Synthesis, characterization, electronic absorption and antimicrobial studies of N-(silatranylpropyl)phthalimide derived from phthalic anhydride. Inorg. Chim. Acta, 2015, 427, 232-239. doi: 10.1016/j.ica.2015.01.011
  141. Al-Qaisi, J.A.; Alhussainy, T.M.; Qinna, N.A.; Matalka, K.Z.; Al-Kaissi, E.N.; Muhi-Eldeen, Z.A. Synthesis and pharmacological evaluation of aminoacetylenic isoindoline-1,3-dione derivatives as anti-inflammatory agents. Arab. J. Chem., 2014, 7(6), 1024-1030. doi: 10.1016/j.arabjc.2010.12.030
  142. Davood, A.; Iman, M.; Pouriaiee, H.; Shafaroodi, H.; Akhbari, S.; Azimidoost, L.; Imani, E.; Rahmatpour, S. Novel derivatives of phthalimide with potent anticonvulsant activity in PTZ and MES seizure models. Iran. J. Basic Med. Sci., 2017, 20(4), 430-437. doi: 10.22038/IJBMS.2017.8586 PMID: 28804613
  143. Cao, Y.; Sun, N.; Zhang, J.; Liu, Z.; Tang, Y.; Wu, Z.; Kim, K.M.; Cheon, S.H. Design, synthesis, and evaluation of bitopic arylpiperazine-phthalimides as selective dopamine D 3 receptor agonists. MedChemComm, 2018, 9(9), 1457-1465. doi: 10.1039/C8MD00237A PMID: 30288220
  144. Chidan Kumar, C.S.; Loh, W.S.; Chandraju, S.; Win, Y.F.; Tan, W.K.; Quah, C.K.; Fun, H.K. Synthesis, structural and antioxidant studies of some novel N-ethyl phthalimide esters. PLoS One, 2015, 10(3), e0119440. doi: 10.1371/journal.pone.0119440 PMID: 25742494
  145. Kushwaha, N.; Kaushik, D. Recent advances and future prospects of phthalimide derivatives. J. Appl. Pharm. Sci., 2016, 6(03), 159-171. doi: 10.7324/JAPS.2016.60330
  146. Leite, A.C.L.; Barbosa, F.F.; Cardoso, M.V.D.O.; Moreira, D.R.M.; Coêlho, L.C.D.; Silva, E.B.; Filho, G.B.D.O.; Souza, V.M.O.; Pereira, V.R.A.; Reis, L.D.C. Phthaloyl amino acids as anti-inflammatory and immunomodulatory prototypes. Med. Chem. Res., 2014, 23(4), 1701-1708. doi: 10.1007/s00044-013-0730-1
  147. Coêlho, L.C.D.; Cardoso, M.V.O.; Moreira, D.R.M.; Gomes, P.A.T.M.; Cavalcanti, S.M.T.; Oliveira, A.R.; Filho, G.B.O.; Siqueira, L.R.P.; Barbosa, M.O.; Borba, E.F.O.; Silva, T.G.; Kaskow, B.; Karimi, M.; Abraham, L.J.; Leite, A.C.L. Novel phthalimide derivatives with TNF-α and IL-1β expression inhibitory and apoptotic inducing properties. MedChemComm, 2014, 5(6), 758-765. doi: 10.1039/C4MD00070F
  148. Cardoso, M.V.O.; Moreira, D.R.M.; Filho, G.B.O.; Cavalcanti, S.M.T.; Coelho, L.C.D.; Espíndola, J.W.P.; Gonzalez, L.R.; Rabello, M.M.; Hernandes, M.Z.; Ferreira, P.M.P.; Pessoa, C.; Alberto de Simone, C.; Guimarães, E.T.; Soares, M.B.P.; Leite, A.C.L. Design, synthesis and structure-activity relationship of phthalimides endowed with dual antiproliferative and immunomodulatory activities. Eur. J. Med. Chem., 2015, 96, 491-503. doi: 10.1016/j.ejmech.2015.04.041 PMID: 25942060
  149. da Costa, P.M.; da Costa, M.P.; Carvalho, A.A.; Cavalcanti, S.M.T.; de Oliveira Cardoso, M.V.; de Oliveira Filho, G.B.; de Araújo Viana, D.; Fechine-Jamacaru, F.V.; Leite, A.C.L.; de Moraes, M.O.; Pessoa, C.; Ferreira, P.M.P. Improvement of in vivo anticancer and antiangiogenic potential of thalidomide derivatives. Chem. Biol. Interact., 2015, 239, 174-183. doi: 10.1016/j.cbi.2015.06.037 PMID: 26134001
  150. Santiago, E.F.; de Oliveira, S.A.; de Oliveira Filho, G.B.; Moreira, D.R.M.; Gomes, P.A.T.; da Silva, A.L.; de Barros, A.F.; da Silva, A.C.; dos Santos, T.A.R.; Pereira, V.R.A.; Gonçalves, G.G.A.; Brayner, F.A.; Alves, L.C.; Wanderley, A.G.; Leite, A.C.L. Evaluation of the anti-Schistosoma mansoni activity of thiosemicarbazones and thiazoles. Antimicrob. Agents Chemother., 2014, 58(1), 352-363. doi: 10.1128/AAC.01900-13 PMID: 24165185
  151. Gomes, P.A.T.M.; Oliveira, A.R.; Cardoso, M.V.O.; Santiago, E.F.; Barbosa, M.O.; de Siqueira, L.R.P.; Moreira, D.R.M.; Bastos, T.M.; Brayner, F.A.; Soares, M.B.P.; Mendes, A.P.O.; de Castro, M.C.A.B.; Pereira, V.R.A.; Leite, A.C.L. Phthalimido-thiazoles as building blocks and their effects on the growth and morphology of Trypanosoma cruzi. Eur. J. Med. Chem., 2016, 111, 46-57. doi: 10.1016/j.ejmech.2016.01.010 PMID: 26854377
  152. Aliança, A.S.S.; Oliveira, A.R.; Feitosa, A.P.S.; Ribeiro, K.R.C.; de Castro, M.C.A.B.; Leite, A.C.L.; Alves, L.C.; Brayner, F.A. In vitro evaluation of cytotoxicity and leishmanicidal activity of phthalimido-thiazole derivatives. Eur. J. Pharm. Sci., 2017, 105, 1-10. doi: 10.1016/j.ejps.2017.05.005 PMID: 28478133
  153. Yin, L.L.; Wen, X.M.; Lai, Q.H.; Li, J.; Wang, X.W. Lenalidomide improvement of cisplatin antitumor efficacy on triple-negative breast cancer cells in vitro. Oncol. Lett., 2018, 15(5), 6469-6474. doi: 10.3892/ol.2018.8120 PMID: 29616116
  154. Matsushita, M.; Ozaki, Y.; Hasegawa, Y.; Terada, F.; Tabata, N.; Shiheido, H.; Yanagawa, H.; Oikawa, T.; Matsuo, K.; Du, W. A novel phthalimide derivative, TC11, has preclinical effects on high-risk myeloma cells and osteoclasts. PLoS One, 2015, 10(1) doi: 10.1371/journal.pone.0116135
  155. Hozumi, M.; Ichikawa, D.; Matsushita, M.; Kamiyama, E.; Yanagawa, H.; Tabata, N.; Kitabatake, S.; Ueda, A.; Yamaguchi, T.; Sato, M.; Hattori, Y. Drug design for overcoming high-risk myeloma and identification of novel binding proteins to immune-modulatory drugs. Blood, 2015, 126(23), 1800. doi: 10.1182/blood.V126.23.1800.1800
  156. Aida, S.; Hozumi, M.; Ichikawa, D.; Iida, K.; Yonemura, Y.; Tabata, N.; Yamada, T.; Matsushita, M.; Sugai, T.; Yanagawa, H.; Hattori, Y. A novel phenylphthalimide derivative, pegylated TC11, improves pharmacokinetic properties and induces apoptosis of high-risk myeloma cells via G2/M cell-cycle arrest. Biochem. Biophys. Res. Commun., 2017, 493(1), 514-520. doi: 10.1016/j.bbrc.2017.08.159 PMID: 28867196
  157. Xiao, D.; Wang, Y.; Hu, X.; Kan, W.; Zhang, Q.; Jiang, X.; Zhou, Y.; Li, J.; Lu, W. Design, synthesis and biological evaluation of the thioether-containing lenalidomide analogs with anti-proliferative activities. Eur. J. Med. Chem., 2019, 176, 419-430. doi: 10.1016/j.ejmech.2019.05.035 PMID: 31125896
  158. National Library of Medicine. Iberdomide ⋅ CC-220 ⋅ C25H27N3O5 -PubChem. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Iberdomide#section=2D-Structure (Accessed on: Jun 18, 2022)
  159. Wang, Y.; Mi, T.; Li, Y.; Kan, W.; Xu, G.; Li, J.; Zhou, Y.; Li, J.; Jiang, X. Design, synthesis and biological evaluation of thioether-containing lenalidomide and pomalidomide derivatives with anti-multiple myeloma activity. Eur. J. Med. Chem., 2021, 209, 112912. doi: 10.1016/j.ejmech.2020.112912 PMID: 33328101
  160. Ferreira, P.M.P.; da Costa, P.M.; de Menezes Costa, A.; Lima, D.J.B.; Drumond, R.R.; Silva, J.D.N.; de Magalhães Moreira, D.R.; de Oliveira Filho, G.B.; Ferreira, J.M.; de Queiroz, M.G.R. Cytotoxic and toxicological effects of phthalimide derivatives on tumor and normal murine cells. An. Acad. Bras. Cienc., 2015, 87(1), 313-330.
  161. Winter, G.E.; Buckley, D.L.; Paulk, J.; Roberts, J.M.; Souza, A.; Dhe-Paganon, S.; Bradner, J.E. Phthalimide conjugation as a strategy for in vivo target protein degradation. Science, 2015, 348(6241), 1376-1381. doi: 10.1126/SCIENCE.AAB1433
  162. Liu, H.; Ding, X.; Liu, L.; Mi, Q.; Zhao, Q.; Shao, Y.; Ren, C.; Chen, J.; Kong, Y.; Qiu, X.; Elvassore, N.; Yang, X.; Yin, Q.; Jiang, B. Discovery of novel BCR-ABL PROTACs based on the cereblon E3 ligase design, synthesis, and biological evaluation. Eur. J. Med. Chem., 2021, 223, 113645. doi: 10.1016/j.ejmech.2021.113645 PMID: 34217059
  163. Wang, M.; Zhou, A.; An, T.; Kong, L.; Yu, C.; Liu, J.; Xia, C.; Zhou, H.; Li, Y. N-Hydroxyphthalimide exhibits antitumor activity by suppressing mTOR signaling pathway in BT-20 and LoVo cells. J. Exp. Clin. Cancer Res., 2016, 35(1), 41. doi: 10.1186/s13046-016-0315-1 PMID: 26940018
  164. Santin, J.R.; da Silva, G.F.; Pastor, M.V.D.; Broering, M.F.; Nunes, R.; Braga, R.C.; de Sousa, I.T.S.; Stiz, D.S.; da Silva, K.A.B.S.; Stoeberl, L.C.; Corrêa, R.; Filho, V.C.; dos Santos, C.E.M.; Quintão, N.L.M. Biological and toxicological evaluation of N-(4methyl-phenyl)-4-methylphthalimide on bone cancer in mice. Anticancer. Agents Med. Chem., 2019, 19(5), 667-676. doi: 10.2174/1871520619666190207130732 PMID: 30734686
  165. Wee, C.W.; Kim, J.H.; Kim, H.J.; Kang, H.C.; Suh, S.Y.; Shin, B.S.; Ma, E.; Kim, H. Radiosensitization of glioblastoma cells by a novel DNA methyltransferase-inhibiting phthalimido-alkanamide derivative. Anticancer Res., 2019, 39(2), 759-769. doi: 10.21873/anticanres.13173 PMID: 30711955
  166. Joo, I.; Kim, J.H.; Lee, J.M.; Choi, J.W.; Han, J.K.; Choi, B.I. Early quantification of the therapeutic efficacy of the vascular disrupting agent, CKD-516, using dynamic contrast-enhanced ultrasonography in rabbit VX2 liver tumors. Ultrasonography, 2014, 33(1), 18-25. doi: 10.14366/usg.13006 PMID: 24936491
  167. Oh, D.Y.; Kim, T.M.; Han, S.W.; Shin, D.Y.; Lee, Y.G.; Lee, K.W.; Kim, J.H.; Kim, T.Y.; Jang, I.J.; Lee, J.S.; Bang, Y.J. Phase I study of CKD-516, a novel vascular disrupting agent, in patients with advanced solid tumors. Cancer Res. Treat., 2016, 48(1), 28-36. doi: 10.4143/crt.2014.258 PMID: 25715767
  168. CID 46929538 - S516⋅ C21H19N5O4S – PubChem. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/46929538 (Accessed on: May 30, 2022).
  169. RNR inhibitor COH29 in treating patients with solid tumors that are refractory to standard therapy or for which no standard therapy exists - no study results posted. NCT02112565, Available from: https://clinicaltrials.gov/ct2/show/results/NCT02112565
  170. Rnr inhibitor COH29 ⋅ C22H16N2O5S - PubChem. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Rnr-inhibitor-COH29(accessed on: May 30, 2022).
  171. A phase 1/2 study of MEDI4276 in adults subjects with select HER2-expressing advanced solid tumors. Patent NCT02576548, Available from: https://clinicaltrials.gov/ct2/show/results/NCT02576548?term=MEDI4276&draw=2&rank=1(accessed on: May 7, 2022). doi: 10.3390/antib8010011 PMID: 31544817
  172. Faria, M.; Peay, M.; Lam, B.; Ma, E.; Yuan, M.; Waldron, M.; Mylott, W.; Liang, M.; Rosenbaum, A. Multiplex LCMS/ MS assays for clinical bioanalysis of MEDI4276, an antibody-drug conjugate of tubulysin analogue attached via cleavable linker to a biparatopic humanized antibody against HER-2. Antibodies, 2019, 8(1), 11. doi: 10.3390/ANTIB8010011
  173. Safety and tolerability study for T-1101 (Tosylate) to treat advanced refractory solid tumors - full text view patent NCT03195764. 2017. Available from: https://clinicaltrials. gov/ct2/show/study/NCT03195764?id=NCT03195764&draw=2&rank=1(accessed on: Jun 25, 2022).
  174. Folic acid-tubulysin conjugate EC1456 in patients with advanced solid tumors patent NCT01999738 Available from: https://clinicaltrials.gov/ct2/show/NCT01999738(accessed on: Aug 7, 2022).
  175. Sachdev, J.C.; Edelman, M.; Harb, W.; Armour, A.; Wang, D.; Starodub, A.N. Phase 1 dose-escalation study of the folic acid-tubulysin small-molecule drug conjugate (SMDC) folate-tubulysin EC1456: Study update. In: Annals of Oncology; Elsevier, 2016; 7, p. vi126. doi: 10.1093/annonc/mdw368.38
  176. An exploratory study of the folic acid-tubulysin conjugate EC1456 in ovarian cancer subjects undergoing surgery. Patent NCT03011320, Available from: https://clinicaltrials. gov/ct2/show/record/NCT03011320?view=record(accessed on: Aug 9, 2022).
  177. Endocyte, Inc. Endocyte Announces Clinical Updates for EC1456 and EC1169. Endocyte Announces Clinical Updates for EC1456 and EC1169, Available from: https://www.globenewswire.com/news-release/2017/06/02/1006220/0/en/Endocyte-Announces-Clinical-Updates-for-EC1456-and-EC1169.html (Accessed on: Aug 20, 2022).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers