Imidazo[4,5-b]Pyridines: From Kinase Inhibitors to more Diversified Biological Properties


Citar

Texto integral

Resumo

Imidazo[4,5-b]pyridines are amongst the oldest known heteroaromatic derivatives. Their structural similarity with purine basis has however aroused the curiosity of biologists and resulted in the developments of innovative bioactive compounds. This review thus firstly describes the main synthetic ways currently used to produce imidazo[ 4,5-b]pyridine derivatives, and secondly gives examples of their potential, especially focusing on protein inhibition abilities, thus opening the way to applications as anti-cancer or antimicrobial agents.

Sobre autores

Karim Jarmoni

, Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes

Email: info@benthamscience.net

Khalid Misbahi

Laboratoire de Chimie Organique Appliquée, Faculté des Sciences et Techniques, Université Sidi Mohammed Ben Abdalla

Email: info@benthamscience.net

Vincent Ferrières

, Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes

Autor responsável pela correspondência
Email: info@benthamscience.net

Bibliografia

  1. Foster, A.; Kemp, J. Glutamate- and GABA-based CNS therapeutics. Curr. Opin. Pharmacol., 2006, 6(1), 7-17. doi: 10.1016/j.coph.2005.11.005 PMID: 16377242
  2. Temple, C., Jr; Rose, J.D.; Comber, R.N.; Rener, G.A. Synthesis of potential anticancer agents: Imidazo4,5-cpyridines and imidazo4,5-bpyridines. J. Med. Chem., 1987, 30(10), 1746-1751. doi: 10.1021/jm00393a011 PMID: 3656351
  3. Cristalli, G.; Vittori, S.; Eleuteri, A.; Grifantini, M.; Volpini, R.; Lupidi, G.; Capolongo, L.; Pesenti, E. Purine and 1-deazapurine ribonucleosides and deoxyribonucleosides: Synthesis and biological activity. J. Med. Chem., 1991, 34(7), 2226-2230. doi: 10.1021/jm00111a044 PMID: 2066996
  4. Cristalli, G.; Vittori, S.; Eleuteri, A.; Volpini, R.; Camaioni, E.; Lupidi, G.; Mahmood, N.; Bevilacqua, F.; Palù, G. Synthesis and biological evaluation of N6-cycloalkyl derivatives of 1-deazaadenine nucleosides: A new class of anti-human immunodeficiency virus agents. J. Med. Chem., 1995, 38(20), 4019-4025. doi: 10.1021/jm00020a017 PMID: 7562937
  5. Cundy, D.J.; Holan, G.; Otaegui, M.; Simpson, G.W. 3-(3′-Hydroxymethyl)-4′-hydroxybutylimidazo4,5-b pyridines-novel antiviral agents. Bioorg. Med. Chem. Lett., 1997, 7(6), 669-674. doi: 10.1016/S0960-894X(97)00082-6
  6. Banie, H.; Sinha, A.; Thomas, R.J.; Sircar, J.C.; Richards, M.L. 2-phenylimidazopyridines, a new series of Golgi compounds with potent antiviral activity. J. Med. Chem., 2007, 50(24), 5984-5993. doi: 10.1021/jm0704907 PMID: 17973358
  7. Mader, M.; de Dios, A.; Shih, C.; Bonjouklian, R.; Li, T.; White, W.; de Uralde, B.L.; Sánchez-Martinez, C.; del Prado, M.; Jaramillo, C.; de Diego, E.; Martín Cabrejas, L.M.; Dominguez, C.; Montero, C.; Shepherd, T.; Dally, R.; Toth, J.E.; Chatterjee, A.; Pleite, S.; Blanco-Urgoiti, J.; Perez, L.; Barberis, M.; Lorite, M.J.; Jambrina, E.; Nevill, C.R., Jr; Lee, P.A.; Schultz, R.C.; Wolos, J.A.; Li, L.C.; Campbell, R.M.; Anderson, B.D. Imidazolyl benzimidazoles and imidazo4,5-bpyridines as potent p38α MAP kinase inhibitors with excellent in vivo antiinflammatory properties. Bioorg. Med. Chem. Lett., 2008, 18(1), 179-183. doi: 10.1016/j.bmcl.2007.10.106 PMID: 18039577
  8. Bukowski, L.; Kaliszan, R. Imidazo4,5-bpyridine derivatives of potential tuberculostatic activity. Part 1: Synthesis and quantitative structure-activity relationships. Arch. Pharm. (Weinheim), 1991, 324(2), 121-127. doi: 10.1002/ardp.19913240212 PMID: 1906702
  9. Nicholson, A.N.; Pascoe, P.A. Hypnotic activity of an imidazo-pyridine (zolpidem). Br. J. Clin. Pharmacol., 1986, 21(2), 205-211. doi: 10.1111/j.1365-2125.1986.tb05176.x PMID: 3954937
  10. Holm, K.J.; Goa, K.L. Zolpidem. Drugs, 2000, 59(4), 865-889. doi: 10.2165/00003495-200059040-00014 PMID: 10804040
  11. Bolm, C.; Hendriks, C.; Nürnberg, P. Zolimidine analogues: The synthesis of imidazo1,2-αpyridine-based sulfilimines and sulfoximines. Synthesis, 2015, 47(8), 1190-1194. doi: 10.1055/s-0034-1380109
  12. Bagdi, A.K.; Santra, S.; Monir, K.; Hajra, A. Synthesis of imidazo1,2-apyridines: A decade update. Chem. Commun., 2015, 51(9), 1555-1575. doi: 10.1039/C4CC08495K PMID: 25407981
  13. Krause, M.; Foks, H.; Gobis, K. Pharmacological potential and synthetic approaches of imidazo4,5-bpyridine and imidazo4,5-cpyridine derivatives. Molecules, 2017, 22(3), 399. doi: 10.3390/molecules22030399 PMID: 28273868
  14. Tschitschibabin, A.E.; Kirsanow, A.W. α, β′-Diamino-pyridin und α, β-Diamino-pyridin. Ber. Dtsch. Chem. Ges. B, 1927, 60(3), 766-776. doi: 10.1002/cber.19270600330
  15. Dymińska, L.; Gągor, A.; Talik, Z.; Lorenc, J.; Hanuza, J. Vibrational spectra and structure of methyl-derivatives of imidazo4,5-cpyridine based on DFT quantum chemical calculations and XRD studies. Vib. Spectrosc., 2011, 57(2), 229-241. doi: 10.1016/j.vibspec.2011.07.009
  16. René, O.; Souverneva, A.; Magnuson, S.R.; Fauber, B.P. Efficient syntheses of 2-fluoroalkylbenzimidazoles and -benzothiazoles. Tetrahedron Lett., 2013, 54(3), 201-204. doi: 10.1016/j.tetlet.2012.09.069
  17. Baladi, T.; Aziz, J.; Dufour, F.; Abet, V.; Stoven, V.; Radvanyi, F.; Poyer, F.; Wu, T.D.; Guerquin-Kern, J.L.; Bernard-Pierrot, I.; Garrido, S.M.; Piguel, S. Design, synthesis, biological evaluation and cellular imaging of imidazo4,5-bpyridine derivatives as potent and selective TAM inhibitors. Bioorg. Med. Chem., 2018, 26(20), 5510-5530. doi: 10.1016/j.bmc.2018.09.031 PMID: 30309671
  18. Kale, R.P.; Shaikh, M.U.; Jadhav, G.R.; Gill, C.H. Eco-friendly and facile synthesis of 2-substituted-1H-imidazo4,5-bpyridine in aqueous medium by air oxidation. Tetrahedron Lett., 2009, 50(16), 1780-1782. doi: 10.1016/j.tetlet.2008.12.104
  19. Dekhane, D.V.; Pawar, S.S.; Gupta, S.V.; Shingare, M.S.; Thore, S.N. Lithium bromide catalyzed solvent free method for synthesis of 2-substituted benzimidazoles and imidazopyridines. Chin. Chem. Lett., 2010, 21(5), 519-523. doi: 10.1016/j.cclet.2009.11.034
  20. Joule, J.A.; Mills, K. Heterocyclic Chemistry, 4th ed; Blackwell Publishing: India, 2007.
  21. Hranjec, M.; Lučić, B.; Ratkaj, I.; Pavelić, S.K.; Piantanida, I.; Pavelić, K.; Karminski-Zamola, G. Novel imidazo4,5-bpyridine and triaza-benzocfluorene derivatives: Synthesis, antiproliferative activity and DNA binding studies. Eur. J. Med. Chem., 2011, 46(7), 2748-2758. doi: 10.1016/j.ejmech.2011.03.062 PMID: 21524829
  22. Hranjec, M.; Pavlović, G.; Marinović, M.; Karminski-Zamola, G. Synthesis, spectroscopic properties and crystal structure determination of 2-(2-pyridin-4-yl-vinyl)-1H-benzimidazole derivatives. Struct. Chem., 2008, 19(2), 353-359. doi: 10.1007/s11224-008-9291-1
  23. Kappe, C. O.; Dallinger, D.; Murphree, S. S. Practical Microwave Synthesis for Organic Chemists: Strategies, Instruments, and Protocols. 2008. p. 525. doi: 10.1002/9783527623907
  24. Martínez-Palou, R.; Zepeda, L.G.; Höpfl, H.; Montoya, A.; Guzmán-Lucero, D.J.; Guzmán, J. Parallel and automated library synthesis of 2-long alkyl chain benzoazoles and azole4,5-bpyridines under microwave irradiation. Mol. Divers., 2005, 9(4), 361-369. doi: 10.1007/s11030-005-6357-5 PMID: 16311813
  25. Bavetsias, V.; Large, J.M.; Sun, C.; Bouloc, N.; Kosmopoulou, M.; Matteucci, M.; Wilsher, N.E.; Martins, V.; Reynisson, J.; Atrash, B.; Faisal, A.; Urban, F.; Valenti, M.; de Haven Brandon, A.; Box, G.; Raynaud, F.I.; Workman, P.; Eccles, S.A.; Bayliss, R.; Blagg, J.; Linardopoulos, S.; McDonald, E. Imidazo4,5-bpyridine derivatives as inhibitors of Aurora kinases: Lead optimization studies toward the identification of an orally bioavailable preclinical development candidate. J. Med. Chem., 2010, 53(14), 5213-5228. doi: 10.1021/jm100262j PMID: 20565112
  26. Bourichi, S.; Rodi, Y.K.; Hoekelek, T.; Ouzidan, Y.; Chahdi, F.O.; Akhazzane, M.; Essassi, E.M. Crystal structure and Hirshfeld surface analysis of 6-bromo-2-(4-chlorophenyl)-3-((1-octyl-1H-1,2,3-triazol-4-yl)methyl)-3H-imidazo4,5-Bpyridine. J. Maroc. Chim. Heterocycl., 2019, 18(1), 43.
  27. Jabri, Z.; Sebbar, N.K.; Hökelek, T.; Mague, J.T.; Sabir, S.; Rodi, Y.K.; Misbahi, K. Crystal structure, Hirshfeld surface analysis and DFT study of 6-bromo-3-(5-bromohexyl)-2-4-(dimethylamino)-phenyl-3H-imidazo4,5-bpyridine. Acta Crystallogr. Sect. E Struct. Rep. Online, 2020, E76, 1234.
  28. Jabri, Z.; Ibrahimi, B.E.; Jarmoni, K.; Sabir, S.; Misbahi, K.; Rodi, Y.K.; Mashrai, A.; Hökelek, T.; Mague, J.T.; Sebbar, N.K. New imidazo4,5-bpyridine derivatives: Synthesis, crystal structures, Hirshfeld surface analysis, DFT computations and Monte Carlo simulations. J. Chem. Technol. Metal., 2022, 57(3), 451.
  29. Salomé, C.; Schmitt, M.; Bourguignon, J.J. Rapid synthesis of imidazo4,5-bpyridine containing polycyclics by means of palladium-catalyzed amidation of 2-chloro-3-nitropyridine. Tetrahedron Lett., 2009, 50(27), 3798-3800. doi: 10.1016/j.tetlet.2009.04.031
  30. Chen, G.; Liu, Z.; Zhang, Y.; Shan, X.; Jiang, L.; Zhao, Y.; He, W.; Feng, Z.; Yang, S.; Liang, G. Synthesis and anti-inflammatory evaluation of novel benzimidazole and imidazopyridine derivatives. ACS Med. Chem. Lett., 2013, 4(1), 69-74. doi: 10.1021/ml300282t PMID: 24900565
  31. Shin, J.M.; Homerin, M.; Domagala, F.; Ficheux, H.; Sachs, G. Characterization of the inhibitory activity of tenatoprazole on the gastric H+,K+-ATPase in vitro and in vivo. Biochem. Pharmacol., 2006, 71(6), 837-849. doi: 10.1016/j.bcp.2005.11.030 PMID: 16405921
  32. Scarpignato, C.; Hunt, R. Proton pump inhibitors: The beginning of the end or the end of the beginning? Curr. Opin. Pharmacol., 2008, 8(6), 677-684. doi: 10.1016/j.coph.2008.09.004 PMID: 18840545
  33. Shin, J.M.; Cho, Y.M.; Sachs, G. Chemistry of covalent inhibition of the gastric (H+, K+)-ATPase by proton pump inhibitors. J. Am. Chem. Soc., 2004, 126(25), 7800-7811. doi: 10.1021/ja049607w PMID: 15212527
  34. Hall, P.A.; Levison, D.A. Review: Assessment of cell proliferation in histological material. J. Clin. Pathol., 1990, 43(3), 184-192. doi: 10.1136/jcp.43.3.184 PMID: 2185282
  35. Manning, B.D.; Cantley, L.C. AKT/PKB signaling: Navigating downstream. Cell, 2007, 129(7), 1261-1274. doi: 10.1016/j.cell.2007.06.009 PMID: 17604717
  36. Manning, B.D.; Toker, A. AKT/PKB signaling: Navigating the network. Cell, 2017, 169(3), 381-405. doi: 10.1016/j.cell.2017.04.001 PMID: 28431241
  37. Matheny, R.W., Jr; Adamo, M.L. Current perspectives on AKT Activation and AKT-ions. Exp. Biol. Med., 2009, 234(11), 1264-1270. doi: 10.3181/0904-MR-138 PMID: 19596822
  38. Song, M.; Bode, A.M.; Dong, Z.; Lee, M.H. AKT as a therapeutic target for cancer. Cancer Res., 2019, 79(6), 1019-1031. doi: 10.1158/0008-5472.CAN-18-2738 PMID: 30808672
  39. Hinz, N.; Jücker, M. Distinct functions of AKT isoforms in breast cancer: A comprehensive review. Cell Commun. Signal., 2019, 17(1), 154. doi: 10.1186/s12964-019-0450-3 PMID: 31752925
  40. Pascual, J.; Turner, N.C. Targeting the PI3-kinase pathway in triple-negative breast cancer. Ann. Oncol., 2019, 30(7), 1051-1060. doi: 10.1093/annonc/mdz133 PMID: 31050709
  41. Ashwell, M.A.; Lapierre, J.M.; Brassard, C.; Bresciano, K.; Bull, C.; Cornell-Kennon, S.; Eathiraj, S.; France, D.S.; Hall, T.; Hill, J.; Kelleher, E.; Khanapurkar, S.; Kizer, D.; Koerner, S.; Link, J.; Liu, Y.; Makhija, S.; Moussa, M.; Namdev, N.; Nguyen, K.; Nicewonger, R.; Palma, R.; Szwaya, J.; Tandon, M.; Uppalapati, U.; Vensel, D.; Volak, L.P.; Volckova, E.; Westlund, N.; Wu, H.; Yang, R.Y.; Chan, T.C.K. Discovery and optimization of a series of 3-(3-phenyl-3H-imidazo4,5-bpyridin-2-yl)pyridin-2-amines: Orally bioavailable, selective, and potent ATP-independent Akt inhibitors. J. Med. Chem., 2012, 55(11), 5291-5310. doi: 10.1021/jm300276x PMID: 22533986
  42. Hallberg, B.; Palmer, R.H. Mechanistic insight into ALK receptor tyrosine kinase in human cancer biology. Nat. Rev. Cancer, 2013, 13(10), 685-700. doi: 10.1038/nrc3580 PMID: 24060861
  43. Learn, K.S.; Wagner, J.C.; Albom, M.S.; Angeles, T.S.; Huang, Z.; Ghose, A.K.; Wan, W.; Cheng, M.; Dorsey, B.D.; Ott, G.R. Design of 7-amino-6-chloro-3H-imidazo4,5-bpyridine scaffold from 5-chloro-2,4-diaminopyrimidine pharmacophore: Identification of potent inhibitors of anaplastic lymphoma kinase. MedChemComm, 2012, 3(9), 1138. doi: 10.1039/c2md20061a
  44. Gschwind, A.; Fischer, O.M.; Ullrich, A. The discovery of receptor tyrosine kinases: Targets for cancer therapy. Nat. Rev. Cancer, 2004, 4(5), 361-370. doi: 10.1038/nrc1360 PMID: 15122207
  45. Wiesmann, C.; Ultsch, M.H.; Bass, S.H.; de Vos, A.M. Crystal structure of nerve growth factor in complex with the ligand-binding domain of the TrkA receptor. Nature, 1999, 401(6749), 184-188. doi: 10.1038/43705 PMID: 10490030
  46. Wang, T.; Lamb, M.L.; Block, M.H.; Davies, A.M.; Han, Y.; Hoffmann, E.; Ioannidis, S.; Josey, J.A.; Liu, Z.Y.; Lyne, P.D.; MacIntyre, T.; Mohr, P.J.; Omer, C.A.; Sjögren, T.; Thress, K.; Wang, B.; Wang, H.; Yu, D.; Zhang, H.J. Discovery of disubstituted imidazo4,5- b pyridines and purines as potent TrkA inhibitors. ACS Med. Chem. Lett., 2012, 3(9), 705-709. doi: 10.1021/ml300074j PMID: 24900538
  47. Thress, K.; MacIntyre, T.; Wang, H.; Whitston, D.; Liu, Z.Y.; Hoffmann, E.; Wang, T.; Brown, J.L.; Webster, K.; Omer, C.; Zage, P.E.; Zeng, L.; Zweidler-McKay, P.A. Identification and preclinical characterization of AZ-23, a novel, selective, and orally bioavailable inhibitor of the Trk kinase pathway. Mol. Cancer Ther., 2009, 8(7), 1818-1827. doi: 10.1158/1535-7163.MCT-09-0036 PMID: 19509272
  48. Bavetsias, V.; Sun, C.; Bouloc, N.; Reynisson, J.; Workman, P.; Linardopoulos, S.; McDonald, E. Hit generation and exploration: Imidazo4,5-bpyridine derivatives as inhibitors of Aurora kinases. Bioorg. Med. Chem. Lett., 2007, 17(23), 6567-6571. doi: 10.1016/j.bmcl.2007.09.076 PMID: 17933533
  49. Carvajal, R.D.; Tse, A.; Schwartz, G.K. Aurora kinases: New targets for cancer therapy. Clin. Cancer Res., 2006, 12(23), 6869-6875. doi: 10.1158/1078-0432.CCR-06-1405 PMID: 17145803
  50. Bolanos-Garcia, V.M. Aurora kinases. Int. J. Biochem. Cell Biol., 2005, 37(8), 1572-1577. doi: 10.1016/j.biocel.2005.02.021 PMID: 15896667
  51. Keen, N.; Taylor, S. Aurora-kinase inhibitors as anticancer agents. Nat. Rev. Cancer, 2004, 4(12), 927-936. doi: 10.1038/nrc1502 PMID: 15573114
  52. Becker, W.; Sippl, W. Activation, regulation, and inhibition of DYRK1A. FEBS J., 2011, 278(2), 246-256. doi: 10.1111/j.1742-4658.2010.07956.x PMID: 21126318
  53. Jarhad, D.B.; Mashelkar, K.K.; Kim, H.R.; Noh, M.; Jeong, L.S. Dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) inhibitors as potential therapeutics. J. Med. Chem., 2018, 61(22), 9791-9810. doi: 10.1021/acs.jmedchem.8b00185 PMID: 29985601
  54. Weber, C.; Sipos, M.; Paczal, A.; Balint, B.; Kun, V.; Foloppe, N.; Dokurno, P.; Massey, A.J.; Walmsley, D.L.; Hubbard, R.E.; Murray, J.; Benwell, K.; Edmonds, T.; Demarles, D.; Bruno, A.; Burbridge, M.; Cruzalegui, F.; Kotschy, A. Structure-guided discovery of potent and selective DYRK1A inhibitors. J. Med. Chem., 2021, 64(10), 6745-6764. doi: 10.1021/acs.jmedchem.1c00023 PMID: 33975430
  55. WHO. Neurological Disorders: Public Health Challenges. https://www.who.int/publications/i/item/97892415633692022.
  56. Medina, M.; Avila, J. Glycogen synthase kinase-3 (GSK-3) inhibitors for the treatment of Alzheimer’s disease. Curr. Pharm. Des., 2010, 16(25), 2790-2798. doi: 10.2174/138161210793176581 PMID: 20698823
  57. Hooper, C.; Killick, R.; Lovestone, S. The GSK3 hypothesis of Alzheimer’s disease. J. Neurochem., 2008, 104(6), 1433-1439. doi: 10.1111/j.1471-4159.2007.05194.x PMID: 18088381
  58. Sharma, N.; Singh, A.N. Exploring biomarkers for Alzheimer’s disease. J. Clin. Diagn. Res., 2016, 10(7), KE01-KE06. PMID: 27630867
  59. Mantzavinos, V.; Alexiou, A. Biomarkers for Alzheimer’s disease diagnosis. Curr. Alzheimer Res., 2017, 14(11), 1149-1154. PMID: 28164766
  60. Humpel, C. Identifying and validating biomarkers for Alzheimer’s disease. Trends Biotechnol., 2011, 29(1), 26-32. doi: 10.1016/j.tibtech.2010.09.007 PMID: 20971518
  61. Lee, S.C.; Kim, H.T.; Park, C.H.; Lee, D.Y.; Chang, H.J.; Park, S.; Cho, J.M.; Ro, S.; Suh, Y.G. Design, synthesis and biological evaluation of novel imidazopyridines as potential antidiabetic GSK3β inhibitors. Bioorg. Med. Chem. Lett., 2012, 22(13), 4221-4224. doi: 10.1016/j.bmcl.2012.05.060 PMID: 22672803
  62. Pearson, G.; Robinson, F.; Beers Gibson, T.; Xu, B.E.; Karandikar, M.; Berman, K.; Cobb, M.H. Mitogen-activated protein (MAP) kinase pathways: Regulation and physiological functions. Endocr. Rev., 2001, 22(2), 153-183. PMID: 11294822
  63. Peyssonnaux, C.; Eychène, A. The Raf/MEK/ERK pathway: New concepts of activation. Biol. Cell, 2001, 93(1-2), 53-62. doi: 10.1016/S0248-4900(01)01125-X PMID: 11730323
  64. Newhouse, B.J.; Wenglowsky, S.; Grina, J.; Laird, E.R.; Voegtli, W.C.; Ren, L.; Ahrendt, K.; Buckmelter, A.; Gloor, S.L.; Klopfenstein, N.; Rudolph, J.; Wen, Z.; Li, X.; Feng, B. Imidazo4,5-bpyridine inhibitors of B-Raf kinase. Bioorg. Med. Chem. Lett., 2013, 23(21), 5896-5899. doi: 10.1016/j.bmcl.2013.08.086 PMID: 24042006
  65. An, X.D.; Liu, H.; Xu, Z.L.; Jin, Y.; Peng, X.; Yao, Y.M.; Geng, M.; Long, Y.Q. Discovery of potent 1H-imidazo4,5-bpyridine-based c-Met kinase inhibitors via mechanism-directed structural optimization. Bioorg. Med. Chem. Lett., 2015, 25(3), 708-716. doi: 10.1016/j.bmcl.2014.11.070 PMID: 25529740
  66. Organ, S.L.; Tsao, M.S. An overview of the c-MET signaling pathway. Ther. Adv. Med. Oncol., 2011, 3(1_suppl)(Suppl.), S7-S19. doi: 10.1177/1758834011422556 PMID: 22128289
  67. Chen, D.; Wang, Y.; Ma, Y.; Xiong, B.; Ai, J.; Chen, Y.; Geng, M.; Shen, J. Discovery of 3H-imidazo4,5-bpyridines as potent c-Met kinase inhibitors: Design, synthesis, and biological evaluation. ChemMedChem, 2012, 7(6), 1057-1070. doi: 10.1002/cmdc.201200120 PMID: 22581753
  68. Park, J. K.; Kim, S.; Han, Y. J.; Kim, S. H.; Kang, N. S.; Lee, H.; Park, S. The discovery and the structural basis of an imidazo4,5-bpyridine-based p21-activated kinase 4 inhibitor. Bioorg Med. Chem. Lett., 2016, 26(11), 2580-2583.
  69. Ye, D.Z.; Field, J. PAK signaling in cancer. Cell. Logist., 2012, 2(2), 105-116. doi: 10.4161/cl.21882 PMID: 23162742
  70. Sivilotti, L.; Nistri, A. GABA receptor mechanisms in the central nervous system. Prog. Neurobiol., 1991, 36(1), 35-92. doi: 10.1016/0301-0082(91)90036-Z PMID: 1847747
  71. Watanabe, M.; Maemura, K.; Kanbara, K.; Tamayama, T.; Hayasaki, H. GABA and GABA receptors in the central nervous system and other organs. Int. Rev. Cytol., 2002, 213, 1-47. doi: 10.1016/S0074-7696(02)13011-7 PMID: 11837891
  72. Bormann, J. The ‘ABC’ of GABA receptors. Trends Pharmacol. Sci., 2000, 21(1), 16-19. doi: 10.1016/S0165-6147(99)01413-3 PMID: 10637650
  73. Larsen, J.S.; Amrutkar, D.; Jacobsen, T.A.; Dyhring, T.; Nielsen, K.S.A. GABAA receptor ligand. Int. Patent, 2020, WO2020(053377), A1.
  74. Menniti, F.S.; Faraci, W.S.; Schmidt, C.J. Phosphodiesterases in the CNS: Targets for drug development. Nat. Rev. Drug Discov., 2006, 5(8), 660-670. doi: 10.1038/nrd2058 PMID: 16883304
  75. Siuciak, J.A.; Chapin, D.S.; Harms, J.F.; Lebel, L.A.; McCarthy, S.A.; Chambers, L.; Shrikhande, A.; Wong, S.; Menniti, F.S.; Schmidt, C.J. Inhibition of the striatum-enriched phosphodiesterase PDE10A: A novel approach to the treatment of psychosis. Neuropharmacology, 2006, 51(2), 386-396. doi: 10.1016/j.neuropharm.2006.04.013 PMID: 16780899
  76. Seeger, T.F.; Bartlett, B.; Coskran, T.M.; Culp, J.S.; James, L.C.; Krull, D.L.; Lanfear, J.; Ryan, A.M.; Schmidt, C.J.; Strick, C.A.; Varghese, A.H.; Williams, R.D.; Wylie, P.G.; Menniti, F.S. Immunohistochemical localization of PDE10A in the rat brain. Brain Res., 2003, 985(2), 113-126. doi: 10.1016/S0006-8993(03)02754-9 PMID: 12967715
  77. Hu, E.; Kunz, R.K.; Chen, N.; Rumfelt, S.; Siegmund, A.; Andrews, K.; Chmait, S.; Zhao, S.; Davis, C.; Chen, H.; Lester-Zeiner, D.; Ma, J.; Biorn, C.; Shi, J.; Porter, A.; Treanor, J.; Allen, J.R. Design, optimization, and biological evaluation of novel keto-benzimidazoles as potent and selective inhibitors of phosphodiesterase 10A (PDE10A). J. Med. Chem., 2013, 56(21), 8781-8792. doi: 10.1021/jm401234w PMID: 24102193
  78. Lucas, J.A.; Hawkins, N.J.; Fraaije, B.A. The evolution of fungicide resistance. Adv. Appl. Microbiol., 2015, 90, 29-92. doi: 10.1016/bs.aambs.2014.09.001 PMID: 25596029
  79. Wu, D.; Liu, M.; Li, Z.; Dang, M.; Liu, X.; Li, J.; Huang, L.; Ren, Y.; Zhang, Z.; Liu, W.; Liu, A. Synthesis and fungicidal activity of novel imidazo4,5-bpyridine derivatives. Heterocycl. Commun., 2019, 25(1), 8-14. doi: 10.1515/hc-2019-0003
  80. Liu, M.; Quan, C.; Dang, M.; Ren, Y.; Ren, J.; Xiang, J.; Liu, X.; He, L.; Liu, W.; Liu, A. Design, synthesis, and activity of novel i4,5-bpyridine derivatives. J. Heterocycl. Chem., 2018, 55(9), 2061-2068. doi: 10.1002/jhet.3243
  81. Lukasik, P.M.; Elabar, S.; Lam, F.; Shao, H.; Liu, X.; Abbas, A.Y.; Wang, S. Synthesis and biological evaluation of imidazo4,5-bpyridine and 4-heteroaryl-pyrimidine derivatives as anti-cancer agents. Eur. J. Med. Chem., 2012, 57, 311-322. doi: 10.1016/j.ejmech.2012.09.034 PMID: 23085105
  82. Sudre, P.; ten Dam, G.; Kochi, A. Tuberculosis: A global overview of the situation today. Bull. World Health Organ., 1992, 70(2), 149-159. PMID: 1600578
  83. Gawad, J.; Bonde, C. Synthesis, biological evaluation and molecular docking studies of 6-(4-nitrophenoxy)-1H-imidazo4,5-bpyridine derivatives as novel antitubercular agents: Future DprE1 inhibitors. Chem. Cent. J., 2018, 12(1), 138. doi: 10.1186/s13065-018-0515-1 PMID: 30569203
  84. Locarnini, S.; Littlejohn, M.; Aziz, M.N.; Yuen, L. Possible origins and evolution of the hepatitis B virus (HBV). Semin. Cancer Biol., 2013, 23(6), 561-575. doi: 10.1016/j.semcancer.2013.08.006 PMID: 24013024
  85. Lavanchy, D. Worldwide epidemiology of HBV infection, disease burden, and vaccine prevention. J. Clin. Virol., 2005, 34(Suppl. 1), S1-S3. doi: 10.1016/S1386-6532(05)00384-7 PMID: 16461208
  86. Datta, S. An overview of molecular epidemiology of hepatitis B virus (HBV) in India. Virol. J., 2008, 5(1), 156. doi: 10.1186/1743-422X-5-156 PMID: 19099581
  87. Gerasi, M.; Frakolaki, E.; Papadakis, G.; Chalari, A.; Lougiakis, N.; Marakos, P.; Pouli, N.; Vassilaki, N. Design, synthesis and anti-HBV activity evaluation of new substituted imidazo4,5-bpyridines. Bioorg. Chem., 2020, 98, 103580. doi: 10.1016/j.bioorg.2020.103580 PMID: 32005482
  88. Boček, I.; Starčević, K.; Novak Jovanović, I.; Vianello, R.; Hranjec, M. Novel imidazo4,5-bpyridine derived acrylonitriles: A combined experimental and computational study of their antioxidative potential. J. Mol. Liq., 2021, 342, 117527. doi: 10.1016/j.molliq.2021.117527
  89. Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": The FRAP assay. Anal. Biochem., 1996, 239(1), 70-76. doi: 10.1006/abio.1996.0292 PMID: 8660627

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Bentham Science Publishers, 2024