A Review on the Anticancer Activity of Carbazole-based Tricyclic Compounds
- Authors: Zhang H.1, Zhang W.1, Zhu M.2, Awadasseid A.1
-
Affiliations:
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology
- ab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology
- Issue: Vol 31, No 30 (2024)
- Pages: 4826-4849
- Section: Anti-Infectives and Infectious Diseases
- URL: https://cijournal.ru/0929-8673/article/view/645026
- DOI: https://doi.org/10.2174/0929867331666230825104254
- ID: 645026
Cite item
Full Text
Abstract
:Cancers are a huge threat to human life and health. Every year, many people suffer and die from various cancers, and numerous resources have been used to combat cancer. Due to several disadvantages of anticancer agents, such as drug-induced side effects, drug resistance, etc., there are still wide gaps in their ability to conquer cancer. Therefore, there is an urgent need to discover and develop many novel chemotypes to suppress cancer. In this review, we mainly focus on the anticancer potency of two representative sorts of carbazole-based compounds: carboline derivatives and diazacarbazole derivatives. Diazacarbazole derivatives, which have not been fully explored yet, might bring us a new vision and a valuable opportunity for overcoming the enormous hurdle we are now facing in the cancer campaign. We also provide several synthetic approaches for constructing the critical skeletons of the carbazole-based tricyclic compounds.
About the authors
Hua Zhang
Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology
Email: info@benthamscience.net
Wen Zhang
Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology
Author for correspondence.
Email: info@benthamscience.net
Mengyu Zhu
ab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology
Email: info@benthamscience.net
Annoor Awadasseid
Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology
Email: info@benthamscience.net
References
- Kumar, S.; Singh, A.; Kumar, K.; Kumar, V. Recent insights into synthetic β-carbolines with anti-cancer activities. Eur. J. Med. Chem., 2017, 142, 48-73. doi: 10.1016/j.ejmech.2017.05.059 PMID: 28583770
- World Health Organization Report. Available from: http:/www.who.int/cancer/en/
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLobocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249. doi: 10.3322/caac.21660 PMID: 33538338
- Petignat, P.; du Bois, A.; Bruchim, I.; Fink, D.; Provencher, D.M. Should intraperitoneal chemotherapy be considered as standard first-line treatment in advanced stage ovarian cancer? Crit. Rev. Oncol. Hematol., 2007, 62(2), 137-147. doi: 10.1016/j.critrevonc.2006.11.009 PMID: 17188887
- Nicolson, M.; Leonard, R.C.F. Adverse effects of cancer chemotherapy. An overview of techniques for avoidance/minimisation. Drug Saf., 1992, 7(5), 316-322. doi: 10.2165/00002018-199207050-00002 PMID: 1418691
- Bukowski, K.; Kciuk, M.; Kontek, R. Mechanisms of multidrug resistance in cancer chemotherapy. Int. J. Mol. Sci., 2020, 21(9), 3233. doi: 10.3390/ijms21093233 PMID: 32370233
- Phour, A.; Gaur, V.; Banerjee, A.; Bhattacharyya, J. Recombinant protein polymers as carriers of chemotherapeutic agents. Adv. Drug Deliv. Rev., 2022, 190, 114544. doi: 10.1016/j.addr.2022.114544 PMID: 36176240
- Schirrmacher, V. From chemotherapy to biological therapy: A review of novel concepts to reduce the side effects of systemic cancer treatment (Review). Int. J. Oncol., 2018, 54(2), 407-419. doi: 10.3892/ijo.2018.4661 PMID: 30570109
- Hussain, M.; Gadgeel, S.; Kucuk, O.; Du, W.; Salwen, W.; Ensley, J. Paclitaxel, cisplatin, and 5-fluorouracil for patients with advanced or recurrent squamous cell carcinoma of the head and neck. Cancer, 1999, 86(11), 2364-2369. doi: 10.1002/(SICI)1097-0142(19991201)86:113.0.CO;2-3 PMID: 10590379
- Abu Samaan, T.M.; Samec, M.; Liskova, A.; Kubatka, P.; Büsselberg, D. Paclitaxels mechanistic and clinical effects on breast cancer. Biomolecules, 2019, 9(12), 789. doi: 10.3390/biom9120789 PMID: 31783552
- Gornstein, E.L.; Schwarz, T.L. Neurotoxic mechanisms of paclitaxel are local to the distal axon and independent of transport defects. Exp. Neurol., 2017, 288, 153-166. doi: 10.1016/j.expneurol.2016.11.015 PMID: 27894788
- Du, X.; Khan, A.R.; Fu, M.; Ji, J.; Yu, A.; Zhai, G. Current development in the formulations of non-injection administration of paclitaxel. Int. J. Pharm., 2018, 542(1-2), 242-252. doi: 10.1016/j.ijpharm.2018.03.030 PMID: 29555439
- Thomas, A.C.G. Neurological adverse effects of cancer chemotherapy. Adverse Drug React. Bull., 2013, 278(1), 1071-1074. doi: 10.1097/FAD.0b013e32835ed7b5
- Wu, Q.; Yang, Z.; Nie, Y.; Shi, Y.; Fan, D. Multi-drug resistance in cancer chemotherapeutics: Mechanisms and lab approaches. Cancer Lett., 2014, 347(2), 159-166. doi: 10.1016/j.canlet.2014.03.013 PMID: 24657660
- Assaraf, Y.G.; Brozovic, A.; Gonçalves, A.C.; Jurkovicova, D.; Linē, A.; Machuqueiro, M.; Saponara, S.; Sarmento-Ribeiro, A.B.; Xavier, C.P.R.; Vasconcelos, M.H. The multi-factorial nature of clinical multidrug resistance in cancer. Drug Resist. Updat., 2019, 46, 100645. doi: 10.1016/j.drup.2019.100645 PMID: 31585396
- Cegielski, J.P.; Dalton, T.; Yagui, M.; Wattanaamornkiet, W.; Volchenkov, G.V.; Via, L.E.; Van Der Walt, M.; Tupasi, T.; Smith, S.E.; Odendaal, R.; Leimane, V.; Kvasnovsky, C.; Kuznetsova, T.; Kurbatova, E.; Kummik, T.; Kuksa, L.; Kliiman, K.; Kiryanova, E.V.; Kim, H.; Kim, C.; Kazennyy, B.Y.; Jou, R.; Huang, W.L.; Ershova, J.; Erokhin, V.V.; Diem, L.; Contreras, C.; Cho, S.N.; Chernousova, L.N.; Chen, M.P.; Caoili, J.C.; Bayona, J.; Akksilp, S.; Calahuanca, G.Y.; Wolfgang, M.; Viiklepp, P.; Vasilieva, I.A.; Taylor, A.; Tan, K.; Suarez, C.; Sture, I.; Somova, T.; Smirnova, T.G.; Sigman, E.; Skenders, G.; Sitti, W.; Shamputa, I.C.; Riekstina, V.; Pua, K.R.; Therese, M.; Perez, C.; Park, S.; Norvaisha, I.; Nemtsova, E.S.; Min, S.; Metchock, B.; Levina, K.; Lei, Y-C.; Lee, J.; Larionova, E.E.; Lancaster, J.; Jeon, D.; Jave, O.; Khorosheva, T.; Hwang, S.H.; Huang, A.S-E.; Gler, M.T.; Dravniece, G.; Eum, S.; Demikhova, O.V.; Degtyareva, I.; Danilovits, M.; Cirula, A.; Cho, E.; Cai, Y.; Brand, J.; Bonilla, C.; Barry, C.E.; Asencios, L.; Andreevskaya, S.N.; Akksilp, R. Extensive drug resistance acquired during treatment of multidrug-resistant tuberculosis. Clin. Infect. Dis., 2014, 59(8), 1049-1063. doi: 10.1093/cid/ciu572 PMID: 25057101
- Stavrovskaya, A.A. Cellular mechanisms of multidrug resistance of tumor cells. Biochemistry. Biokhimiia, 2000, 65(1), 95-106.
- Catalano, A.; Iacopetta, D.; Ceramella, J.; Scumaci, D.; Giuzio, F.; Saturnino, C.; Aquaro, S.; Rosano, C.; Sinicropi, M.S. Multidrug Resistance (MDR): A widespread phenomenon in pharmacological therapies. Molecules, 2022, 27(3), 616. doi: 10.3390/molecules27030616 PMID: 35163878
- Yang, X.; Liu, K. P-gp inhibition-based strategies for modulating pharmacokinetics of anticancer drugs: An update. Curr. Drug Metab., 2016, 17(8), 806-826. doi: 10.2174/1389200217666160629112717 PMID: 27364832
- Ling, V. P-glycoprotein: Its role in drug resistance. Am. J. Med., 1995, 99(6), 31s-34s. doi: 10.1016/S0002-9343(99)80283-6 PMID: 8585532
- Mollazadeh, S.; Sahebkar, A.; Hadizadeh, F.; Behravan, J.; Arabzadeh, S. Structural and functional aspects of P-glycoprotein and its inhibitors. Life Sci., 2018, 214, 118-123. doi: 10.1016/j.lfs.2018.10.048 PMID: 30449449
- Cancer Management in Man: Chemotherapy, Biological Therapy, Hyperthermia and Supporting Measures; Springer: Dordrecht, 2011.
- Tomar, M.S.; Kumar, A.; Srivastava, C.; Shrivastava, A. Elucidating the mechanisms of temozolomide resistance in gliomas and the strategies to overcome the resistance. Biochim. Biophys. Acta Rev. Cancer, 2021, 1876(2), 188616. doi: 10.1016/j.bbcan.2021.188616 PMID: 34419533
- Pommier, Y.; Pharm, D.; Fesen, M.R.; Fujimori, A.; Bertrand, R.; Solary, E.; Kohlhagen, G.; Kohn, K.W. Cellular determinants of sensitivity and resistance to DNA topoisomerase inhibitors. Cancer Invest., 1994, 12(5), 530-542. doi: 10.3109/07357909409021413 PMID: 7922710
- Robert, J.; Larsen, A.K. Drug resistance to topoisomerase II inhibitors. Biochimie, 1998, 80(3), 247-254. doi: 10.1016/S0300-9084(98)80007-2 PMID: 9615864
- Casorelli, I.; Bossa, C.; Bignami, M. DNA damage and repair in human cancer: Molecular mechanisms and contribution to therapy-related leukemias. Int. J. Environ. Res. Public Health, 2012, 9(8), 2636-2657. doi: 10.3390/ijerph9082636 PMID: 23066388
- Wray, J.; Williamson, E.A.; Sheema, S.; Lee, S.H.; Libby, E.; Willman, C.L.; Nickoloff, J.A.; Hromas, R. Metnase mediates chromosome decatenation in acute leukemia cells. Blood, 2009, 114(9), 1852-1858. doi: 10.1182/blood-2008-08-175760 PMID: 19458360
- Wray, J.; Williamson, E.A.; Royce, M.; Shaheen, M.; Beck, B.D.; Lee, S.H.; Nickoloff, J.A.; Hromas, R. Metnase mediates resistance to topoisomerase II inhibitors in breast cancer cells. PLoS One, 2009, 4(4), e5323. doi: 10.1371/journal.pone.0005323 PMID: 19390626
- Costantino, L.; Barlocco, D. Designed multiple ligands: Basic research vs clinical outcomes. Curr. Med. Chem., 2012, 19(20), 3353-3387. doi: 10.2174/092986712801215883 PMID: 22680630
- Swinney, D.C.; Anthony, J. How were new medicines discovered? Nat. Rev. Drug Discov., 2011, 10(7), 507-519. doi: 10.1038/nrd3480 PMID: 21701501
- Kucuksayan, E.; Ozben, T. Hybrid compounds as multitarget directed anticancer agents. Curr. Top. Med. Chem., 2017, 17(8), 907-918. doi: 10.2174/1568026616666160927155515 PMID: 27697050
- Oliveira Pedrosa, M.; Duarte da Cruz, R.; Oliveira Viana, J.; de Moura, R.; Ishiki, H.; Barbosa Filho, J.; Diniz, M.; Scotti, M.; Scotti, L.; Bezerra Mendonca, F. Hybrid compounds as direct multitarget ligands: A review. Curr. Top. Med. Chem., 2017, 17(9), 1044-1079. doi: 10.2174/1568026616666160927160620 PMID: 27697048
- Alam, M.M.; Hassan, A.H.E.; Kwon, Y.H.; Lee, H.J.; Kim, N.Y.; Min, K.H.; Lee, S.Y.; Kim, D.H.; Lee, Y.S. Design, synthesis and evaluation of alkylphosphocholine-gefitinib conjugates as multitarget anticancer agents. Arch. Pharm. Res., 2018, 41(1), 35-45. doi: 10.1007/s12272-017-0977-z PMID: 29094267
- Chen, Z.; Han, L.; Xu, M.; Xu, Y.; Qian, X. Rationally designed multitarget anticancer agents. Curr. Med. Chem., 2013, 20(13), 1694-1714. doi: 10.2174/0929867311320130009 PMID: 23410168
- Xi, J.J.; He, R.Y.; Zhang, J.K.; Cai, Z.B.; Zhuang, R.X.; Zhao, Y.M.; Shao, Y.D.; Pan, X.W.; Shi, T.T.; Dong, Z.J.; Liu, S.R.; Kong, L.M. Design, synthesis, and biological evaluation of novel 3-(thiophen-2-ylthio)pyridine derivatives as potential multitarget anticancer agents. Arch. Pharm., 2019, 352(8), 1900024. doi: 10.1002/ardp.201900024 PMID: 31338897
- Zhang, L.; Shan, Y.; Ji, X.; Zhu, M.; Li, C.; Sun, Y.; Si, R.; Pan, X.; Wang, J.; Ma, W.; Dai, B.; Wang, B.; Zhang, J. Discovery and evaluation of triple inhibitors of VEGFR-2, TIE-2 and EphB4 as anti-angiogenic and anti-cancer agents. Oncotarget, 2017, 8(62), 104745-104760. doi: 10.18632/oncotarget.20065 PMID: 29285210
- Wang, J.; Zhang, L.; Pan, X.; Dai, B.; Sun, Y.; Li, C.; Zhang, J. Discovery of multi-target receptor tyrosine kinase inhibitors as novel anti-angiogenesis agents. Sci. Rep., 2017, 7(1), 45145. doi: 10.1038/srep45145 PMID: 28332573
- Kaise, A.; Ohta, K.; Endo, Y. Novel p-carborane-containing multitarget anticancer agents inspired by the metabolism of 17β-estradiol. Bioorg. Med. Chem., 2017, 25(24), 6371-6378. doi: 10.1016/j.bmc.2017.10.006 PMID: 29054710
- Gu, W.; Wang, S. Synthesis and antimicrobial activities of novel 1H-dibenzoa,ccarbazoles from dehydroabietic acid. Eur. J. Med. Chem., 2010, 45(10), 4692-4696. doi: 10.1016/j.ejmech.2010.07.038 PMID: 20702006
- Yaqub, G.; Hannan, A.; Akbar, E.; Usman, M.; Hamid, A.; Sadiq, Z.; Iqbal, M. Synthesis, antibacterial, and antifungal activities of novel pyridazino carbazoles. J. Chem., 2013, 2013, 1-7. doi: 10.1155/2013/818739
- Zhang, F.F.; Gan, L.L.; Zhou, C.H. Synthesis, antibacterial and antifungal activities of some carbazole derivatives. Bioorg. Med. Chem. Lett., 2010, 20(6), 1881-1884. doi: 10.1016/j.bmcl.2010.01.159 PMID: 20176480
- Gu, W.; Qiao, C.; Wang, S.F.; Hao, Y.; Miao, T.T. Synthesis and biological evaluation of novel N-substituted 1H-dibenzoa,ccarbazole derivatives of dehydroabietic acid as potential antimicrobial agents. Bioorg. Med. Chem. Lett., 2014, 24(1), 328-331. doi: 10.1016/j.bmcl.2013.11.009 PMID: 24300736
- Bandgar, B.P.; Adsul, L.K.; Chavan, H.V.; Jalde, S.S.; Shringare, S.N.; Shaikh, R.; Meshram, R.J.; Gacche, R.N.; Masand, V. Synthesis, biological evaluation, and docking studies of 3-(substituted)-aryl-5-(9-methyl-3-carbazole)-1H-2-pyrazolines as potent anti-inflammatory and antioxidant agents. Bioorg. Med. Chem. Lett., 2012, 22(18), 5839-5844. doi: 10.1016/j.bmcl.2012.07.080 PMID: 22901385
- Bashir, M.; Bano, A.; Ijaz, A.; Chaudhary, B. Recent developments and biological activities of n-substituted carbazole derivatives: A review. Molecules, 2015, 20(8), 13496-13517. doi: 10.3390/molecules200813496 PMID: 26213906
- Tsutsumi, L.S.; Gündisch, D.; Sun, D. Carbazole scaffold in medicinal chemistry and natural products: A review from 2010-2015. Curr. Top. Med. Chem., 2016, 16(11), 1290-1313. doi: 10.2174/1568026615666150915112647 PMID: 26369811
- Cao, R.; Peng, W.; Wang, Z.; Xu, A. beta-Carboline alkaloids: biochemical and pharmacological functions. Curr. Med. Chem., 2007, 14(4), 479-500. doi: 10.2174/092986707779940998 PMID: 17305548
- Mineno, M.; Sera, M.; Ueda, T.; Mizufune, H.; Zanka, A.; OBryan, C.; Brown, J.; Scorah, N. Integrated cross-coupling strategy for an α-carboline-based Aurora B kinase inhibitor. J. Org. Chem., 2015, 80(3), 1564-1568. doi: 10.1021/jo502489x PMID: 25616084
- Chauhan, S.S.; Singh, A.K.; Meena, S.; Lohani, M.; Singh, A.; Arya, R.K.; Cheruvu, S.H.; Sarkar, J.; Gayen, J.R.; Datta, D.; Chauhan, P.M.S. Synthesis of novel β-carboline based chalcones with high cytotoxic activity against breast cancer cells. Bioorg. Med. Chem. Lett., 2014, 24(13), 2820-2824. doi: 10.1016/j.bmcl.2014.04.109 PMID: 24844196
- Lim, J.; Taoka, B.; Otte, R.D.; Spencer, K.; Dinsmore, C.J.; Altman, M.D.; Chan, G.; Rosenstein, C.; Sharma, S.; Su, H.P.; Szewczak, A.A.; Xu, L.; Yin, H.; Zugay-Murphy, J.; Marshall, C.G.; Young, J.R. Discovery of 1-amino-5H-pyrido4,3-bindol-4-carboxamide inhibitors of Janus kinase 2 (JAK2) for the treatment of myeloproliferative disorders. J. Med. Chem., 2011, 54(20), 7334-7349. doi: 10.1021/jm200909u PMID: 21942426
- Abboud, M.; Aubert, E.; Mamane, V. Double N-arylation reaction of polyhalogenated 4,4′-bipyridines. Expedious synthesis of functionalized 2,7-diazacarbazoles. Beilstein J. Org. Chem., 2012, 8, 253-258. doi: 10.3762/bjoc.8.26 PMID: 22423292
- Abboud, M.; Mamane, V.; Aubert, E.; Lecomte, C.; Fort, Y. Synthesis of polyhalogenated 4,4′-bipyridines via a simple dimerization procedure. J. Org. Chem., 2010, 75(10), 3224-3231. doi: 10.1021/jo100152e PMID: 20426403
- Joan, D.H.; J, G.l.; Karen, W. 1,7-Diazacarbazoles and their use in the treatment of cancer. WO Patent 073263, 2011.
- Alekseyev, R.S.; Kurkin, A.V.; Yurovskaya, M.A. The Piloty-Robinson reaction of N-substituted piperidin-4-one azines. A novel route for the synthesis of 3,6-diazacarbazole. Chem. Heterocycl. Compd., 2011, 47(5), 584-596. doi: 10.1007/s10593-011-0802-4
- Lunagariya, N.A.; Gohil, V.M.; Kushwah, V.; Neelagiri, S.; Jain, S.; Singh, S.; Bhutani, K.K. Design, synthesis and biological evaluation of 1,3,6-trisubstituted β-carboline derivatives for cytotoxic and anti-leishmanial potential. Bioorg. Med. Chem. Lett., 2016, 26(3), 789-794. doi: 10.1016/j.bmcl.2015.12.095 PMID: 26791014
- Kamal, A.; Narasimha Rao, M.P.; Swapna, P.; Srinivasulu, V.; Bagul, C.; Shaik, A.B.; Mullagiri, K.; Kovvuri, J.; Reddy, V.S.; Vidyasagar, K.; Nagesh, N. Synthesis of β-carbolinebenzimidazole conjugates using lanthanum nitrate as a catalyst and their biological evaluation. Org. Biomol. Chem., 2014, 12(15), 2370-2387. doi: 10.1039/C3OB42236D PMID: 24604306
- Kovvuri, J.; Nagaraju, B.; Nayak, V.L.; Akunuri, R.; Rao, M.P.N.; Ajitha, A.; Nagesh, N.; Kamal, A. Design, synthesis and biological evaluation of new β-carboline-bisindole compounds as DNA binding, photocleavage agents and topoisomerase I inhibitors. Eur. J. Med. Chem., 2018, 143, 1563-1577. doi: 10.1016/j.ejmech.2017.10.054 PMID: 29129513
- Sathish, M.; Kavitha, B.; Nayak, V.L.; Tangella, Y.; Ajitha, A.; Nekkanti, S.; Alarifi, A.; Shankaraiah, N.; Nagesh, N.; Kamal, A. Synthesis of podophyllotoxin linked β-carboline congeners as potential anticancer agents and DNA topoisomerase II inhibitors. Eur. J. Med. Chem., 2018, 144, 557-571. doi: 10.1016/j.ejmech.2017.12.055 PMID: 29289881
- Shankaraiah, N.; Siraj, K.P.; Nekkanti, S.; Srinivasulu, V.; Sharma, P.; Senwar, K.R.; Sathish, M.; Vishnuvardhan, M.V.P.S.; Ramakrishna, S.; Jadala, C.; Nagesh, N.; Kamal, A. DNA-binding affinity and anticancer activity of β-carbolinechalcone conjugates as potential DNA intercalators: Molecular modelling and synthesis. Bioorg. Chem., 2015, 59, 130-139. doi: 10.1016/j.bioorg.2015.02.007 PMID: 25771335
- Kamal, A.; Sathish, M.; Nayak, V.L.; Srinivasulu, V.; Kavitha, B.; Tangella, Y.; Thummuri, D.; Bagul, C.; Shankaraiah, N.; Nagesh, N. Design and synthesis of dithiocarbamate linked β-carboline derivatives: DNA topoisomerase II inhibition with DNA binding and apoptosis inducing ability. Bioorg. Med. Chem., 2015, 23(17), 5511-5526. doi: 10.1016/j.bmc.2015.07.037 PMID: 26264845
- Shuai, K.; Liu, B. Regulation of JAKSTAT signalling in the immune system. Nat. Rev. Immunol., 2003, 3(11), 900-911. doi: 10.1038/nri1226 PMID: 14668806
- Valentino, L.; Pierre, J. JAK/STAT signal transduction: Regulators and implication in hematological malignancies. Biochem. Pharmacol., 2006, 71(6), 713-721. doi: 10.1016/j.bcp.2005.12.017 PMID: 16426581
- Baxter, E.J.; Scott, L.M.; Campbell, P.J.; East, C.; Fourouclas, N.; Swanton, S.; Vassiliou, G.S.; Bench, A.J.; Boyd, E.M.; Curtin, N.; Scott, M.A.; Erber, W.N.; Green, A.R. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet, 2005, 365(9464), 1054-1061. doi: 10.1016/S0140-6736(05)71142-9 PMID: 15781101
- Kralovics, R.; Passamonti, F.; Buser, A.S.; Teo, S.S.; Tiedt, R.; Passweg, J.R.; Tichelli, A.; Cazzola, M.; Skoda, R.C. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N. Engl. J. Med., 2005, 352(17), 1779-1790. doi: 10.1056/NEJMoa051113 PMID: 15858187
- Vinayal, P.A.; G, B.D.; Qingjie, L.; L, J.W.; Harold, M.; Guifen, Z.; Kurt, Z. Carbazole and carboline kinase inhibitors. WO Patent 080474, 2010.
- Merry, C.; Fu, K.; Wang, J.; Yeh, I.J.; Zhang, Y. Targeting the checkpoint kinase Chk1 in cancer therapy. Cell Cycle, 2010, 9(2), 279-283. doi: 10.4161/cc.9.2.10445 PMID: 20023404
- Ma, C.X.; Janetka, J.W.; Piwnica-Worms, H. Death by releasing the breaks: CHK1 inhibitors as cancer therapeutics. Trends Mol. Med., 2011, 17(2), 88-96. doi: 10.1016/j.molmed.2010.10.009 PMID: 21087899
- Goto, H.; Izawa, I.; Li, P.; Inagaki, M. Novel regulation of checkpoint kinase 1: Is checkpoint kinase 1 a good candidate for anti-cancer therapy? Cancer Sci., 2012, 103(7), 1195-1200. doi: 10.1111/j.1349-7006.2012.02280.x PMID: 22435685
- Shumaila, A.M.; Puranik, V.G.; Kusurkar, R.S. Diastereoselective synthesis of tetrasubstituted-octahydro-3, 6-diazacarbazoles and tetrasubstituted-3, 6-diazacarbazoles via double PictetSpengler reaction. Tetrahedron Lett., 2011, 52(21), 2661-2663.
- Gazzard, L.; Appleton, B.; Chapman, K.; Chen, H.; Clark, K.; Drobnick, J.; Goodacre, S.; Halladay, J.; Lyssikatos, J.; Schmidt, S.; Sideris, S.; Wiesmann, C.; Williams, K.; Wu, P.; Yen, I.; Malek, S. Discovery of the 1,7-diazacarbazole class of inhibitors of checkpoint kinase 1. Bioorg. Med. Chem. Lett., 2014, 24(24), 5704-5709. doi: 10.1016/j.bmcl.2014.10.063 PMID: 25453805
- Uckun, F.M.; Tibbles, H.E.; Vassilev, A.O. Brutons tyrosine kinase as a new therapeutic target. Anticancer. Agents Med. Chem., 2007, 7(6), 624-632. doi: 10.2174/187152007784111331 PMID: 18045057
- Mohamed, A.J.; Nore, B.F.; Christensson, B.; Smith, C.I. Signalling of Brutons tyrosine kinase, Btk. Scand. J. Immunol., 1999, 49(2), 113-118. doi: 10.1046/j.1365-3083.1999.00504.x PMID: 10075013
- Buggy, J.J.; Elias, L. Bruton tyrosine kinase (BTK) and its role in B-cell malignancy. Int. Rev. Immunol., 2012, 31(2), 119-132. doi: 10.3109/08830185.2012.664797 PMID: 22449073
- Kim, H.O. Development of BTK inhibitors for the treatment of B-cell malignancies. Arch. Pharm. Res., 2019, 42(2), 171-181. doi: 10.1007/s12272-019-01124-1 PMID: 30706214
- Gayko, U.; Fung, M.; Clow, F.; Sun, S.; Faust, E.; Price, S.; James, D.; Doyle, M.; Bari, S.; Zhuang, S.H. Development of the Brutons tyrosine kinase inhibitor ibrutinib for B cell malignancies. Ann. N. Y. Acad. Sci., 2015, 1358(1), 82-94. doi: 10.1111/nyas.12878 PMID: 26348626
- Lee, C.S.; Rattu, M.A.; Kim, S.S. A review of a novel, Brutons tyrosine kinase inhibitor, ibrutinib. J. Oncol. Pharm. Pract., 2016, 22(1), 92-104. doi: 10.1177/1078155214561281 PMID: 25425007
- Jian, L.; Joseph, K.; Ronald, K.; Xiaolei, G.; Babu, B.S.; Younong, Y.; Hao, W.; Shilan, L.; Chundao, Y. Azacarbazole BTK inhibitors. WO Patent 164284, 2016.
- Chunjian, L.; James, L. Carboline carboxamide compounds useful as kinase inhibitors. WO Patent 159857, 2011.
- Hunter, W.S. Tricyclic atropisomer compounds. WO 2016/065222, 2016.
- Belkina, A.C.; Denis, G.V. BET domain co-regulators in obesity, inflammation and cancer. Nat. Rev. Cancer, 2012, 12(7), 465-477. doi: 10.1038/nrc3256 PMID: 22722403
- Ran, X.; Zhao, Y.; Liu, L.; Bai, L.; Yang, C.Y.; Zhou, B.; Meagher, J.L.; Chinnaswamy, K.; Stuckey, J.A.; Wang, S. Structure-based design of γ-carboline analogues as potent and specific bet bromodomain inhibitors. J. Med. Chem., 2015, 58(12), 4927-4939. doi: 10.1021/acs.jmedchem.5b00613 PMID: 26080064
- Fung, J.J.; Kosaka, A.; Shan, X.; Danet-Desnoyers, G.; Gormally, M.; Owen, K. Registered report: Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukemia. eLife, 2015, 4, e08997. doi: 10.7554/eLife.08997 PMID: 26327698
- Asangani, I.A.; Dommeti, V.L.; Wang, X.; Malik, R.; Cieslik, M.; Yang, R.; Escara-Wilke, J.; Wilder-Romans, K.; Dhanireddy, S.; Engelke, C.; Iyer, M.K.; Jing, X.; Wu, Y.M.; Cao, X.; Qin, Z.S.; Wang, S.; Feng, F.Y.; Chinnaiyan, A.M. Therapeutic targeting of BET bromodomain proteins in castration-resistant prostate cancer. Nature, 2014, 510(7504), 278-282. doi: 10.1038/nature13229 PMID: 24759320
- Stathis, A.; Quesnel, B.; Amorim, S.; Thieblemont, C.; Zucca, E.; Raffoux, E.; Dombret, H.; Peng, Y.; Palumbo, A.; Vey, N.; Thomas, X.; Michallet, M.; Gomez-Roca, C.; Recher, C.; Karlin, L.; Yee, K.; Rezai, K.; Preudhomme, C.; Facon, T.; Herait, P. 5LBA Results of a first-in-man phase I trial assessing OTX015, an orally available BET-bromodomain (BRD) inhibitor, in advanced hematologic malignancies. Eur. J. Cancer, 2014, 50, 196. doi: 10.1016/S0959-8049(14)70726-9
- Vázquez, R.; Riveiro, M.E.; Astorgues-Xerri, L.; Odore, E.; Rezai, K.; Erba, E.; Panini, N.; Rinaldi, A.; Kwee, I.; Beltrame, L.; Bekradda, M.; Cvitkovic, E.; Bertoni, F.; Frapolli, R.; DIncalci, M. The bromodomain inhibitor OTX015 (MK-8628) exerts anti-tumor activity in triple-negative breast cancer models as single agent and in combination with everolimus. Oncotarget, 2017, 8(5), 7598-7613. doi: 10.18632/oncotarget.13814 PMID: 27935867
- A, Q.C.; S, H.L.; D, H.M. Tricyclic compounds as anticancer agents. WO Patent 183114, 2016.
- Norris Derek, J.; Wayne, V. Tricyclic compounds as anticancer agents. WO Patent 183118, 2016.
- Jijun, L. Tricyclic compound for bromodomain-containing protein inhibitor and preparation, pharmaceutical composition, and application thereof. WO Patent 133681, 2017.
- Shankaraiah, N.; Jadala, C.; Nekkanti, S.; Senwar, K.R.; Nagesh, N.; Shrivastava, S.; Naidu, V.G.M.; Sathish, M.; Kamal, A. Design and synthesis of C3-tethered 1,2,3-triazolo-β-carboline derivatives: Anticancer activity, DNA-binding ability, viscosity and molecular modeling studies. Bioorg. Chem., 2016, 64, 42-50. doi: 10.1016/j.bioorg.2015.11.005 PMID: 26657602
- Sheng, J.; Gan, J.; Huang, Z. Structure-based DNA-targeting strategies with small molecule ligands for drug discovery. Med. Res. Rev., 2013, 33(5), 1119-1173. doi: 10.1002/med.21278 PMID: 23633219
- Delgado, J.L.; Hsieh, C.M.; Chan, N.L.; Hiasa, H. Topoisomerases as anticancer targets. Biochem. J., 2018, 475(2), 373-398. doi: 10.1042/BCJ20160583 PMID: 29363591
- Deveau, A.M.; Labroli, M.A.; Dieckhaus, C.M.; Barthen, M.T.; Smith, K.S.; Macdonald, T.L. The synthesis of amino-acid functionalized β-Carbolines as topoisomerase II inhibitors. Bioorg. Med. Chem. Lett., 2001, 11(10), 1251-1255. doi: 10.1016/S0960-894X(01)00136-6 PMID: 11392530
- Zhao, M.; Bi, L.; Wang, W.; Wang, C.; Baudy-Floch, M.; Ju, J.; Peng, S. Synthesis and cytotoxic activities of β-carboline amino acid ester conjugates. Bioorg. Med. Chem., 2006, 14(20), 6998-7010. doi: 10.1016/j.bmc.2006.06.021 PMID: 16806943
- Chaniyara, R.; Tala, S.; Chen, C.W.; Zang, X.; Kakadiya, R.; Lin, L.F.; Chen, C.H.; Chien, S.I.; Chou, T.C.; Tsai, T.H.; Lee, T.C.; Shah, A.; Su, T.L. Novel antitumor indolizino6,7-bindoles with multiple modes of action: DNA cross-linking and topoisomerase I and II inhibition. J. Med. Chem., 2013, 56(4), 1544-1563. doi: 10.1021/jm301788a PMID: 23360284
- Chikamori, K.; Grozav, A.G.; Kozuki, T.; Grabowski, D.; Ganapathi, R.; Ganapathi, M.K. DNA topoisomerase II enzymes as molecular targets for cancer chemotherapy. Curr. Cancer Drug Targets, 2010, 10(7), 758-771. doi: 10.2174/156800910793605785 PMID: 20578986
- Christodoulou, M.S.; Zarate, M.; Ricci, F.; Damia, G.; Pieraccini, S.; Dapiaggi, F.; Sironi, M.; Lo Presti, L.; García-Argáez, A.N.; Dalla Via, L.; Passarella, D. 4-(1,2-diarylbut-1-en-1-yl)isobutyranilide derivatives as inhibitors of topoisomerase II. Eur. J. Med. Chem., 2016, 118, 79-89. doi: 10.1016/j.ejmech.2016.03.090 PMID: 27128175
- Kwon, H.B.; Park, C.; Jeon, K.H.; Lee, E.; Park, S.E.; Jun, K.Y.; Kadayat, T.M.; Thapa, P.; Karki, R.; Na, Y.; Park, M.S.; Rho, S.B.; Lee, E.S.; Kwon, Y. A series of novel terpyridine-skeleton molecule derivants inhibit tumor growth and metastasis by targeting topoisomerases. J. Med. Chem., 2015, 58(3), 1100-1122. doi: 10.1021/jm501023q PMID: 25603122
- Choudhary, C.; Kumar, C.; Gnad, F.; Nielsen, M.L.; Rehman, M.; Walther, T.C.; Olsen, J.V.; Mann, M. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science, 2009, 325(5942), 834-840. doi: 10.1126/science.1175371 PMID: 19608861
- Chan, A.M.; Fletcher, S. Shifting the paradigm in treating multi-factorial diseases: polypharmacological co-inhibitors of HDAC6. RSC Med. Chem., 2021, 12(2), 178-196. doi: 10.1039/D0MD00286K PMID: 34046608
- Bolden, J.E.; Peart, M.J.; Johnstone, R.W. Anticancer activities of histone deacetylase inhibitors. Nat. Rev. Drug Discov., 2006, 5(9), 769-784. doi: 10.1038/nrd2133 PMID: 16955068
- Li, W.; Sun, Z. Mechanism of action for HDAC inhibitors-insights from omics approaches. Int. J. Mol. Sci., 2019, 20(7), 1616. doi: 10.3390/ijms20071616 PMID: 30939743
- Nakagawa, M.; Oda, Y.; Eguchi, T.; Aishima, S.I.; Yao, T.; Hosoi, F.; Basaki, Y.; Ono, M.; Kuwano, M.; Tanaka, M.; Tsuneyoshi, M. Expression profile of class I histone deacetylases in human cancer tissues. Oncol. Rep., 2007, 18(4), 769-774. doi: 10.3892/or.18.4.769 PMID: 17786334
- Ling, Y.; Guo, J.; Yang, Q.; Zhu, P.; Miao, J.; Gao, W.; Peng, Y.; Yang, J.; Xu, K.; Xiong, B.; Liu, G.; Tao, J.; Luo, L.; Zhu, Q.; Zhang, Y. Development of novel β-carboline-based hydroxamate derivatives as HDAC inhibitors with antiproliferative and antimetastatic activities in human cancer cells. Eur. J. Med. Chem., 2018, 144, 398-409. doi: 10.1016/j.ejmech.2017.12.061 PMID: 29288941
- Gryder, B.E.; Sodji, Q.H.; Oyelere, A.K. Targeted cancer therapy: giving histone deacetylase inhibitors all they need to succeed. Future Med. Chem., 2012, 4(4), 505-524. doi: 10.4155/fmc.12.3 PMID: 22416777
- Zhang, H.; Shang, Y.P.; Chen, H.; Li, J. Histone deacetylases function as novel potential therapeutic targets for cancer. Hepatol. Res., 2017, 47(2), 149-159. doi: 10.1111/hepr.12757 PMID: 27457249
- Namballa, H.K.; Anchi, P.; Lakshmi Manasa, K.; Soni, J.P.; Godugu, C.; Shankaraiah, N.; Kamal, A. β-Carboline tethered cinnamoyl 2-aminobenzamides as class I selective HDAC inhibitors: Design, synthesis, biological activities and modelling studies. Bioorg. Chem., 2021, 117, 105461. doi: 10.1016/j.bioorg.2021.105461 PMID: 34753060
- Hamilton, E.; Infante, J.R. Targeting CDK4/6 in patients with cancer. Cancer Treat. Rev., 2016, 45, 129-138. doi: 10.1016/j.ctrv.2016.03.002 PMID: 27017286
- Li, D.; Liu, W.; Huang, Y.; Liu, M.; Tian, C.; Lu, H.; Jia, H.; Xu, Z.; Ding, H.; Zhao, Q. Facile synthesis of C1-substituted β-carbolines as CDK4 inhibitors for the treatment of cancer. Bioorg. Chem., 2022, 121, 105659. doi: 10.1016/j.bioorg.2022.105659 PMID: 35180487
- Venkataramana Reddy, P.O.; Hridhay, M.; Nikhil, K.; Khan, S.; Jha, P.N.; Shah, K.; Kumar, D. Synthesis and investigations into the anticancer and antibacterial activity studies of β-carboline chalcones and their bromide salts. Bioorg. Med. Chem. Lett., 2018, 28(8), 1278-1282. doi: 10.1016/j.bmcl.2018.03.033 PMID: 29573910
- Chen, J.; Liu, T.; Wu, R.; Lou, J.; Dong, X.; He, Q.; Yang, B.; Hu, Y. Design, synthesis, and biological evaluation of novel γ-carboline ketones as anticancer agents. Eur. J. Med. Chem., 2011, 46(4), 1343-1347. doi: 10.1016/j.ejmech.2011.01.057 PMID: 21342735
- Cao, R.; Guan, X.; Shi, B.; Chen, Z.; Ren, Z.; Peng, W.; Song, H. Design, synthesis and 3D-QSAR of β-carboline derivatives as potent antitumor agents. Eur. J. Med. Chem., 2010, 45(6), 2503-2515. doi: 10.1016/j.ejmech.2010.02.036 PMID: 20304536
- Shankaraiah, N.; Nekkanti, S.; Chudasama, K.J.; Senwar, K.R.; Sharma, P.; Jeengar, M.K.; Naidu, V.G.M.; Srinivasulu, V.; Srinivasulu, G.; Kamal, A. Design, synthesis and anticancer evaluation of tetrahydro-β-carboline-hydantoin hybrids. Bioorg. Med. Chem. Lett., 2014, 24(23), 5413-5417. doi: 10.1016/j.bmcl.2014.10.038 PMID: 25453799
- Kamal, A.; Srinivasulu, V.; Nayak, V.L.; Sathish, M.; Shankaraiah, N.; Bagul, C.; Reddy, N.V.S.; Rangaraj, N.; Nagesh, N. Design and synthesis of C3-pyrazole/chalcone-linked beta-carboline hybrids: antitopoisomerase I, DNA-interactive, and apoptosis-inducing anticancer agents. ChemMedChem, 2014, 9(9), 2084-2098. doi: 10.1002/cmdc.201300406 PMID: 24470122
- Jha, A.M.; Singh, A.C.; Bharti, M.K. Clastogenicity of carbazole in mouse bone marrow cells in vivo. Mutat. Res. Genet. Toxicol. Environ. Mutagen., 2002, 521(1-2), 11-17. doi: 10.1016/S1383-5718(02)00210-3 PMID: 12437999
- Dang, Z.; Xu, S.; Zhang, H.; Gui, W.; Zhao, Y.; Duan, L.; Hu, W. In vitro and in vivo efficacies of carbazole aminoalcohols in the treatment of alveolar echinococcosis. Acta Trop., 2018, 185, 138-143. doi: 10.1016/j.actatropica.2018.05.007 PMID: 29746870
- Patel, O.P.S.; Mishra, A.; Maurya, R.; Saini, D.; Pandey, J.; Taneja, I.; Raju, K.S.R.; Kanojiya, S.; Shukla, S.K.; Srivastava, M.N.; Wahajuddin, M.; Tamrakar, A.K.; Srivastava, A.K.; Yadav, P.P. Naturally occurring carbazole alkaloids from Murraya koenigii as potential antidiabetic agents. J. Nat. Prod., 2016, 79(5), 1276-1284. doi: 10.1021/acs.jnatprod.5b00883 PMID: 27136692
- Ghobadian, R.; Esfandyari, R.; Nadri, H.; Moradi, A.; Mahdavi, M.; Akbarzadeh, T.; Khaleghzadeh-Ahangar, H.; Edraki, N.; Sharifzadeh, M.; Amini, M. Design, synthesis, in vivo and in vitro studies of 1,2,3,4-tetrahydro-9H-carbazole derivatives, highly selective and potent butyrylcholinesterase inhibitors. Mol. Divers., 2020, 24(1), 211-223. doi: 10.1007/s11030-019-09943-6 PMID: 30927138
Supplementary files
