Therapeutic and Diagnostic Agents based on Bioactive Endogenous and Exogenous Coordination Compounds


Citar

Texto integral

Resumo

Metal-based coordination compounds have very special place in bioinorganic chemistry because of their different structural arrangements and significant application in medicine. Rapid progress in this field increasingly enables the targeted design and synthesis of metal-based pharmaceutical agents that fulfill valuable roles as diagnostic or therapeutic agents. Various coordination compounds have important biological functions, both those initially present in the body (endogenous) and those entering the organisms from the external environment (exogenous): vitamins, drugs, toxic substances, etc. In the therapeutic and diagnostic practice, both the essential for all living organisms and the trace metals are used in metal-containing coordination compounds. In the current review, the most important functional biologically active compounds were classified group by group according to the position of the elements in the periodic table.

Sobre autores

Irena Kostova

Department of Chemistry, Faculty of Pharmacy,, Medical University-Sofia,

Autor responsável pela correspondência
Email: info@benthamscience.net

Bibliografia

  1. Franz, K.J.; Metzler-Nolte, N. Introduction: Metals in medicine. Chem. Rev., 2019, 119(2), 727-729. doi: 10.1021/acs.chemrev.8b00685 PMID: 30990707
  2. Heuer-Jungemann, A.; Feliu, N.; Bakaimi, I.; Hamaly, M.; Alkilany, A.; Chakraborty, I.; Masood, A.; Casula, M.F.; Kostopoulou, A.; Oh, E.; Susumu, K.; Stewart, M.H.; Medintz, I.L.; Stratakis, E.; Parak, W.J.; Kanaras, A.G. The role of ligands in the chemical synthesis and applications of inorganic nanoparticles. Chem. Rev., 2019, 119(8), 4819-4880. doi: 10.1021/acs.chemrev.8b00733 PMID: 30920815
  3. Barry, N.P.E.; Sadler, P.J. Exploration of the medical periodic table: towards new targets. Chem. Commun., 2013, 49(45), 5106-5131. doi: 10.1039/c3cc41143e PMID: 23636600
  4. Barry, N.P.E.; Sadler, P.J. 100 years of metal coordination chemistry: From Alfred Werner to anticancer metallodrugs. Pure Appl. Chem., 2014, 86(12), 1897-1910. doi: 10.1515/pac-2014-0504
  5. Boros, E.; Dyson, P.J.; Gasser, G. Classification of metal-based drugs according to their mechanisms of action. Chem., 2020, 6(1), 41-60. doi: 10.1016/j.chempr.2019.10.013 PMID: 32864503
  6. Wang, Z.; Sun, Q.; Liu, B.; Kuang, Y.; Gulzar, A.; He, F.; Gai, S.; Yang, P.; Lin, J. Recent advances in porphyrin-based MOFs for cancer therapy and diagnosis therapy. Coord. Chem. Rev., 2021, 439, 213945. doi: 10.1016/j.ccr.2021.213945
  7. Nandanwar, S.K.; Kim, H.J. Anticancer and antibacterial activity of transition metal complexes. Chemist. Select, 2019, 4(5), 1706-1721. doi: 10.1002/slct.201803073
  8. Gasser, G. Metal complexes and medicine: A successful combination. Chimia, 2015, 69(7-8), 442-446. doi: 10.2533/chimia.2015.442
  9. Shekhar, S.; Khan, A.M.; Sharma, S.; Sharma, B.; Sarkar, A. Schiff base metallodrugs in antimicrobial and anticancer chemotherapy applications: A comprehensive review. Emergent Mater., 2022, 5(2), 279-293. doi: 10.1007/s42247-021-00234-1
  10. Mjos, K.D.; Orvig, C. Metallodrugs in medicinal inorganic chemistry. Chem. Rev., 2014, 114(8), 4540-4563. doi: 10.1021/cr400460s PMID: 24456146
  11. Simpson, P.V.; Desai, N.M.; Casari, I.; Massi, M.; Falasca, M. Metal-based antitumor compounds: Beyond cisplatin. Future Med. Chem., 2019, 11(2), 119-135. doi: 10.4155/fmc-2018-0248 PMID: 30644327
  12. Zhang, Z.; Sang, W.; Xie, L.; Dai, Y. Metal-organic frameworks for multimodal bioimaging and synergistic cancer chemotherapy. Coord. Chem. Rev., 2019, 399, 213022. doi: 10.1016/j.ccr.2019.213022
  13. Wang, X.; Wang, X.; Jin, S.; Muhammad, N.; Guo, Z. Stimuli-responsive therapeutic metallodrugs. Chem. Rev., 2019, 119(2), 1138-1192. doi: 10.1021/acs.chemrev.8b00209 PMID: 30299085
  14. Chohan, Z.H.; Shad, H.A.; Youssoufi, M.H.; Ben Hadda, T. Some new biologically active metal-based sulfonamide. Eur. J. Med. Chem., 2010, 45(7), 2893-2901. doi: 10.1016/j.ejmech.2010.03.014 PMID: 20362358
  15. Frei, A.; Zuegg, J.; Elliott, A.G.; Baker, M.; Braese, S.; Brown, C.; Chen, F.; G Dowson, C.; Dujardin, G.; Jung, N.; King, A.P.; Mansour, A.M.; Massi, M.; Moat, J.; Mohamed, H.A.; Renfrew, A.K.; Rutledge, P.J.; Sadler, P.J.; Todd, M.H.; Willans, C.E.; Wilson, J.J.; Cooper, M.A.; Blaskovich, M.A.T. Metal complexes as a promising source for new antibiotics. Chem. Sci., 2020, 11(10), 2627-2639. doi: 10.1039/C9SC06460E PMID: 32206266
  16. Kostova, I.; Soni, R.K. Bioinorganic Chemistry; Ed.; Shree Publishers & Distributors: Delhi, India, 2011, ISBN: 978- 81-8329-420-1. Available from: https://www.researchgate.net/publication/265421074_BIOINORGANIC_CHEMISTRY
  17. Goswami, A.K.; Kostova, I. Medicinal and Biological Inorganic Chemistry; De Gruyter: Berlin, Boston, 2022. doi: 10.1515/9781501516115
  18. Daniel, C.; Gourlaouen, C. Structural and optical properties of metal-nitrosyl complexes. Molecules, 2019, 24(20), 3638. doi: 10.3390/molecules24203638 PMID: 31600965
  19. Stepanenko, I.; Zalibera, M.; Schaniel, D.; Telser, J.; Arion, V.B. Ruthenium-nitrosyl complexes as NO-releasing molecules, potential anticancer drugs, and photoswitches based on linkage isomerism. Dalton Trans., 2022, 51(14), 5367-5393. doi: 10.1039/D2DT00290F PMID: 35293410
  20. Wu, W.Y.; Liaw, W.F. Nitric oxide reduction forming hyponitrite triggered by metal-containing complexes. J. Chin. Chem. Soc., 2020, 67(2), 206-212. doi: 10.1002/jccs.201900473
  21. Roskoski, R. Jr Properties of FDA-approved small molecule protein kinase inhibitors. Pharmacol. Res., 2019, 144, 19-50. doi: 10.1016/j.phrs.2019.03.006 PMID: 30877063
  22. Chen, K.; Arnold, F.H. Engineering new catalytic activities in enzymes. Nat. Catal., 2020, 3(3), 203-213. doi: 10.1038/s41929-019-0385-5
  23. Schlenk, R.F.; Weber, D.; Fiedler, W.; Salih, H.R.; Wulf, G.; Salwender, H.; Schroeder, T.; Kindler, T.; Lübbert, M.; Wolf, D.; Westermann, J.; Kraemer, D.; Götze, K.S.; Horst, H.A.; Krauter, J.; Girschikofsky, M.; Ringhoffer, M.; Südhoff, T.; Held, G.; Derigs, H.G.; Schroers, R.; Greil, R.; Grießhammer, M.; Lange, E.; Burchardt, A.; Martens, U.; Hertenstein, B.; Marretta, L.; Heuser, M.; Thol, F.; Gaidzik, V.I.; Herr, W.; Krzykalla, J.; Benner, A.; Döhner, K.; Ganser, A.; Paschka, P.; Döhner, H. Midostaurin added to chemotherapy and continued single-agent maintenance therapy in acute myeloid leukemia with FLT3-ITD. Blood, 2019, 133(8), 840-851. doi: 10.1182/blood-2018-08-869453 PMID: 30563875
  24. Silva, A.; Alexandre, J.; Souza, J.; Neto, J.; de Sousa Júnior, P.; Rocha, M.; dos Santos, J. The chemistry and applications of metal–organic frameworks (MOFs) as industrial enzyme immobilization systems. Molecules, 2022, 27(14), 4529. doi: 10.3390/molecules27144529 PMID: 35889401
  25. Kumar, S.; Rulhania, S.; Jaswal, S.; Monga, V. Recent advances in the medicinal chemistry of carbonic anhydrase inhibitors. Eur. J. Med. Chem., 2021, 209, 112923. doi: 10.1016/j.ejmech.2020.112923 PMID: 33121862
  26. Priamvada, G.S.; Divyadarshini, D.S.; Voora, R. Use of thiazides to treat hypertension and advanced CKD. Curr. Cardiol. Rep., 2022, 24(12), 2131-2137. doi: 10.1007/s11886-022-01817-y PMID: 36301404
  27. Bhuyan, B.J.; Mugesh, G. Synthesis, characterization and antioxidant activity of angiotensin converting enzyme inhibitors. Org. Biomol. Chem., 2011, 9(5), 1356-1365. doi: 10.1039/C0OB00823K PMID: 21186397
  28. Joyner, J.C.; Hocharoen, L.; Cowan, J.A. Targeted catalytic inactivation of angiotensin converting enzyme by lisinopril-coupled transition-metal chelates. J. Am. Chem. Soc., 2012, 134(7), 3396-3410. doi: 10.1021/ja208791f PMID: 22200082
  29. Gomes, L.M.F.; Bataglioli, J.C.; Storr, T. Metal complexes that bind to the amyloid-β peptide of relevance to Alzheimer’s disease. Coord. Chem. Rev., 2020, 412, 213255. doi: 10.1016/j.ccr.2020.213255
  30. Wong, R.J.; Vreman, H.J.; Schulz, S.; Kalish, F.S.; Pierce, N.W.; Stevenson, D.K. In vitro inhibition of heme oxygenase isoenzymes by metalloporphyrins. J. Perinatol., 2011, 31(S1), S35-S41. doi: 10.1038/jp.2010.173 PMID: 21448202
  31. Shurlygina, A.V.; Rachkovskaya, L.N.; Robinson, M.V.; Kotlyarova, A.A.; Korolev, M.A.; Letyagin, A.Y. The possibilities of safe lithium therapy in the treatment of neurological and psychoemotional disorders. CNS Neurol. Disord., 2021, 9, 171.
  32. Wierońska, J.M.; Cieślik, P.; Kalinowski, L. Nitric oxide-dependent pathways as critical factors in the consequences and recovery after brain ischemic hypoxia. Biomolecules, 2021, 11(8), 1097. doi: 10.3390/biom11081097 PMID: 34439764
  33. Rao, R.N.; Chanda, K. 2-Aminopyridine – an unsung hero in drug discovery. Chem. Commun., 2022, 58(3), 343-382. doi: 10.1039/D1CC04602K PMID: 34904599
  34. Liang, J.; Sun, D.; Yang, Y.; Li, M.; Li, H.; Chen, L. Discovery of metal-based complexes as promising antimicrobial agents. Eur. J. Med. Chem., 2021, 224, 113696. doi: 10.1016/j.ejmech.2021.113696 PMID: 34274828
  35. Mirzadeh, N.; Reddy, T.S.; Bhargava, S.K. Advances in diphosphine ligand-containing gold complexes as anticancer agents. Coord. Chem. Rev., 2019, 388, 343-359. doi: 10.1016/j.ccr.2019.02.027
  36. Martins, P.G.A.; Mori, M.; Chiaradia-Delatorre, L.D.; Menegatti, A.C.O.; Mascarello, A.; Botta, B.; Benítez, J.; Gambino, D.; Terenzi, H. Exploring Oxidovanadium(IV) Complexes as YopH Inhibitors: Mechanism of Action and Modeling Studies. ACS Med. Chem. Lett., 2015, 6(10), 1035-1040. doi: 10.1021/acsmedchemlett.5b00267 PMID: 26617957
  37. Ayipo, Y.O.; Osunniran, W.A.; Babamale, H.F.; Ayinde, M.O.; Mordi, M.N. Metalloenzyme mimicry and modulation strategies to conquer antimicrobial resistance: Metalligand coordination perspectives. Coord. Chem. Rev., 2022, 453, 214317. doi: 10.1016/j.ccr.2021.214317
  38. Tang, Q.; Cao, S.; Ma, T.; Xiang, X.; Luo, H.; Borovskikh, P.; Rodriguez, R.D.; Guo, Q.; Qiu, L.; Cheng, C. Engineering biofunctional enzyme-mimics for catalytic therapeutics and diagnostics. Adv. Funct. Mater., 2021, 31(7), 2007475. doi: 10.1002/adfm.202007475
  39. Wang, J.; Bao, M.; Wei, T.; Wang, Z.; Dai, Z. Bimetallic metal–organic framework for enzyme immobilization by biomimetic mineralization: Constructing a mimic enzyme and simultaneously immobilizing natural enzymes. Anal. Chim. Acta, 2020, 1098, 148-154. doi: 10.1016/j.aca.2019.11.039 PMID: 31948578
  40. Völker, T.; Meggers, E. Transition-metal-mediated uncaging in living human cells — an emerging alternative to photolabile protecting groups. Curr. Opin. Chem. Biol., 2015, 25, 48-54. doi: 10.1016/j.cbpa.2014.12.021 PMID: 25561021
  41. Wen, J.; Sawmiller, D.; Wheeldon, B.; Tan, J. A review for lithium: Pharmacokinetics, drug design, and toxicity. CNS Neurol. Disord. Drug Targets, 2019, 18(10), 769-778. doi: 10.2174/1871527318666191114095249 PMID: 31724518
  42. Doeppner, T.R.; Haupt, M.; Bähr, M. Lithium beyond psychiatric indications: the reincarnation of a new old drug. Neural Regen. Res., 2021, 16(12), 2383-2387. doi: 10.4103/1673-5374.313015 PMID: 33907010
  43. Krasnovskaya, O.; Naumov, A.; Guk, D.; Gorelkin, P.; Erofeev, A.; Beloglazkina, E.; Majouga, A. Copper coordination compounds as biologically active agents. Int. J. Mol. Sci., 2020, 21(11), 3965. doi: 10.3390/ijms21113965 PMID: 32486510
  44. Ge, E.J.; Bush, A.I.; Casini, A.; Cobine, P.A.; Cross, J.R.; DeNicola, G.M.; Dou, Q.P.; Franz, K.J.; Gohil, V.M.; Gupta, S.; Kaler, S.G.; Lutsenko, S.; Mittal, V.; Petris, M.J.; Polishchuk, R.; Ralle, M.; Schilsky, M.L.; Tonks, N.K.; Vahdat, L.T.; Van Aelst, L.; Xi, D.; Yuan, P.; Brady, D.C.; Chang, C.J. Connecting copper and cancer: From transition metal signalling to metalloplasia. Nat. Rev. Cancer, 2022, 22(2), 102-113. doi: 10.1038/s41568-021-00417-2 PMID: 34764459
  45. Trammell, R.; Rajabimoghadam, K.; Garcia-Bosch, I. Copper-promoted functionalization of organic molecules: from biologically relevant Cu/O2 model systems to organometallic transformations. Chem. Rev., 2019, 119(4), 2954-3031. doi: 10.1021/acs.chemrev.8b00368 PMID: 30698952
  46. Hussain, A.; AlAjmi, M.F.; Rehman, M.T.; Amir, S.; Husain, F.M.; Alsalme, A.; Siddiqui, M.A.; AlKhedhairy, A.A.; Khan, R.A. Copper(II) complexes as potential anticancer and Nonsteroidal anti-inflammatory agents: In vitro and in vivo studies. Sci. Rep., 2019, 9(1), 5237. doi: 10.1038/s41598-019-41063-x PMID: 30918270
  47. Boulguemh, I.E.; Beghidja, A.; Khattabi, L.; Long, J.; Beghidja, C. Monomeric and dimeric copper (II) complexes based on bidentate Nʹ-(propan-2-ylidene) thiophene carbohydrazide Schiff base ligand: Synthesis, structure, magnetic properties, antioxidant and anti-Alzheimer activities. Inorg. Chim. Acta, 2020, 507, 119519. doi: 10.1016/j.ica.2020.119519
  48. Ayipo, Y.O.; Obaleye, J.A.; Badeggi, U.M. Novel metal complexes of mixed piperaquine-acetaminophen and piperaquine-acetylsalicylic acid: Synthesis, characterization and antimicrobial activities. J. Turkish Chem. Soc., Section A. Chemistry, 2016, 4(1), 313-326. doi: 10.18596/jotcsa.287331
  49. Saddam Hossain, M.; Zakaria, C.M.; Kudrat-E-Zahan, M. Metal complexes as potential antimicrobial agent: A review. American J. Heterocyc. Chemist., 2018, 4(1), 1-21. doi: 10.11648/j.ajhc.20180401.11
  50. El-Ghamry, H.A.; Fathalla, S.K.; Gaber, M. Synthesis, structural characterization and molecular modelling of bidentate azo dye metal complexes: DNA interaction to antimicrobial and anticancer activities. Appl. Organomet. Chem., 2018, 32(3), e4136. doi: 10.1002/aoc.4136
  51. Gomes da Silva Dantas, F.; Araújo de Almeida-Apolonio, A.; Pires de Araújo, R.; Regiane Vizolli Favarin, L.; Fukuda de Castilho, P.; de Oliveira Galvão, F.; Inez Estivalet Svidzinski, T.; Antônio Casagrande, G.; Mari Pires de Oliveira, K. Promising copper(II) complex as antifungal and antibiofilm drug against yeast infection. Molecules, 2018, 23(8), 1856. doi: 10.3390/molecules23081856 PMID: 30049937
  52. Kukushkina, E.A.; Hossain, S.I.; Sportelli, M.C.; Ditaranto, N.; Picca, R.A.; Cioffi, N. Ag-based synergistic antimicrobial composites. A critical review. Nanomaterials, 2021, 11(7), 1687. doi: 10.3390/nano11071687 PMID: 34199123
  53. Khan, S.; Alhumaydhi, F.A.; Ibrahim, M.M.; Alqahtani, A.; Alshamrani, M.; Alruwaili, A.S.; Khan, S. Recent advances and therapeutic journey of Schiff base complexes with selected metals (Pt, Pd, Ag, Au) as potent anticancer agents: A review. Anti-Cancer. Agents Med. Chem., 2022, 22(18), 3086-3096.
  54. Trotter, K.D.; Owojaiye, O.; Meredith, S.P.; Keating, P.E.; Spicer, M.D.; Reglinski, J.; Spickett, C.M. The interaction of silver(II) complexes with biological macromolecules and antioxidants. Biometals, 2019, 32(4), 627-640. doi: 10.1007/s10534-019-00198-0 PMID: 31098734
  55. Liang, X.; Luan, S.; Yin, Z.; He, M.; He, C.; Yin, L.; Zou, Y.; Yuan, Z.; Li, L.; Song, X.; Lv, C.; Zhang, W. Recent advances in the medical use of silver complex. Eur. J. Med. Chem., 2018, 157, 62-80. doi: 10.1016/j.ejmech.2018.07.057 PMID: 30075403
  56. Yuan, Q.; Zhao, Y.; Cai, P.; He, Z.; Gao, F.; Zhang, J.; Gao, X. Dose-dependent efficacy of gold clusters on rheumatoid arthritis therapy. ACS Omega, 2019, 4(9), 14092-14099. doi: 10.1021/acsomega.9b02003 PMID: 31497728
  57. Souza Pereira, C.; Costa Quadros, H.; Magalhaes Moreira, D.R.; Castro, W.; Santos De Deus Da Silva, R.I.; Botelho Pereira Soares, M.; Fontinha, D.; Prudêncio, M.; Schmitz, V.; Dos Santos, H.F.; Gendrot, M.; Fonta, I.; Mosnier, J.; Pradines, B.; Navarro, M. A novel hybrid of chloroquine and primaquine linked by gold (I): Multitarget and multiphase antiplasmodial agent. Chem. Med. Chem., 2021, 16(4), 662-678. doi: 10.1002/cmdc.202000653 PMID: 33231370
  58. Yeo, C.; Ooi, K.; Tiekink, E. Gold-based medicine: A paradigm shift in anti-cancer therapy? Molecules, 2018, 23(6), 1410. doi: 10.3390/molecules23061410 PMID: 29891764
  59. Kostova, I. Gold coordination complexes as anticancer agents. Anticancer. Agents Med. Chem., 2006, 6(1), 19-32. doi: 10.2174/187152006774755500 PMID: 16475924
  60. Mora, M.; Gimeno, M.C.; Visbal, R. Recent advances in gold–NHC complexes with biological properties. Chem. Soc. Rev., 2019, 48(2), 447-462. doi: 10.1039/C8CS00570B PMID: 30474097
  61. Schmidt, C.; Karge, B.; Misgeld, R.; Prokop, A.; Franke, R.; Brönstrup, M.; Ott, I. Gold(I) NHC complexes: antiproliferative activity, cellular uptake, inhibition of mammalian and bacterial thioredoxin reductases, and Gram-positive directed antibacterial effects. Chemistry, 2017, 23(8), 1869-1880. doi: 10.1002/chem.201604512 PMID: 27865002
  62. Svahn, N.; Moro, A.J.; Roma-Rodrigues, C.; Puttreddy, R.; Rissanen, K.; Baptista, P.V.; Fernandes, A.R.; Lima, J.C.; Rodríguez, L. The important role of the nuclearity, rigidity, and solubility of phosphane ligands in the biological activity of gold (I) complexes. Chemistry, 2018, 24(55), 14654-14667. doi: 10.1002/chem.201802547 PMID: 30063270
  63. Gil-Rubio, J.; Vicente, J. The coordination and supramolecular chemistry of gold metalloligands. Chemistry, 2018, 24(1), 32-46. doi: 10.1002/chem.201703574 PMID: 29027722
  64. Schwalfenberg, G.K.; Genuis, S.J. The importance of magnesium in clinical healthcare. Scientifica, 2017, 2017, 4179326. doi: 10.1155/2017/4179326 PMID: 29093983
  65. Glasdam, S.M.; Glasdam, S.; Peters, G.H. The Importance of magnesium in the human body: A systematic literature review. Adv. Clin. Chem., 2016, 73, 169-193. doi: 10.1016/bs.acc.2015.10.002 PMID: 26975973
  66. Case, D.R.; Zubieta, J.; P. Doyle, R. The coordination chemistry of bio-relevant ligands and their magnesium complexes. Molecules, 2020, 25(14), 3172. doi: 10.3390/molecules25143172 PMID: 32664540
  67. Aiello, D.; Carnamucio, F.; Cordaro, M.; Foti, C.; Napoli, A.; Giuffrè, O. Ca2+ complexation with relevant bioligands in aqueous solution: A speciation study with implications for biological fluids. Front Chem., 2021, 9, 640219. doi: 10.3389/fchem.2021.640219 PMID: 33718329
  68. Kochańczyk, T.; Drozd, A.; Krężel, A. Relationship between the architecture of zinc coordination and zinc binding affinity in proteins – insights into zinc regulation. Metallomics, 2015, 7(2), 244-257. doi: 10.1039/C4MT00094C PMID: 25255078
  69. Arise, R.O.; Elizabeth, S.N.; Farohunbi, S.T.; Nafiu, M.O.; Tella, A.C. Mechanochemical synthesis, in vivo anti-malarial and safety evaluation of amodiaquine-zinc complex. Acta Facultat. Medic. Naissensis, 2017, 34(3), 221-233. doi: 10.1515/afmnai-2017-0024
  70. Pellei, M.; Del Bello, F.; Porchia, M.; Santini, C. Zinc coordination complexes as anticancer agents. Coord. Chem. Rev., 2021, 445, 214088. doi: 10.1016/j.ccr.2021.214088
  71. Govil, N.; Jana, B. A review on aluminum, gallium and indium complexes of (Ph2-nacnac) ligand. Inorg. Chim. Acta, 2021, 515, 120037. doi: 10.1016/j.ica.2020.120037
  72. de Albuquerque Wanderley Sales, V.; Timóteo, T.R.R.; da Silva, N.M.; de Melo, C.G.; Ferreira, A.S.; de Oliveira, M.V.G.; de Oliveira Silva, E.; dos Santos Mendes, L.M.; Rolim, L.A.; Neto, P.J.R. A systematic review of the anti-inflammatory effects of gallium compounds. Curr. Med. Chem., 2021, 28(10), 2062-2076. doi: 10.2174/0929867327666200525160556 PMID: 32484099
  73. Peng, X.X.; Gao, S.; Zhang, J.L. Gallium (III) complexes in cancer chemotherapy. Eur. J. Inorg. Chem., 2022, 6, e202100953.
  74. Choudhary, N.; Guadalupe Jaraquemada-Peláez, M.; Zarschler, K.; Wang, X.; Radchenko, V.; Kubeil, M.; Stephan, H.; Orvig, C. Chelation in one fell swoop: Optimizing ligands for smaller radiometal ions. Inorg. Chem., 2020, 59(8), 5728-5741. doi: 10.1021/acs.inorgchem.0c00509 PMID: 32242663
  75. Beraldo, H. Pharmacological applications of non-radioactive indium(III) complexes: A field yet to be explored. Coord. Chem. Rev., 2020, 419, 213375. doi: 10.1016/j.ccr.2020.213375
  76. Kostova, I. Lanthanides as anticancer agents. Curr. Med. Chem. Anticancer Agents, 2005, 5(6), 591-602. doi: 10.2174/156801105774574694 PMID: 16305481
  77. Panichev, A.M. Rare earth elements: Review of medical and biological properties and their abundance in the rock materials and mineralized spring waters in the context of animal and human geophagia reasons evaluation. Achievem. Life Sci., 2015, 9(2), 95-103. doi: 10.1016/j.als.2015.12.001
  78. Ascenzi, P.; Bettinelli, M.; Boffi, A.; Botta, M.; De Simone, G.; Luchinat, C.; Marengo, E.; Mei, H.; Aime, S. Rare earth elements (REE) in biology and medicine. Rend. Lincei Sci. Fis. Nat., 2020, 31(3), 821-833. doi: 10.1007/s12210-020-00930-w
  79. Menchikov, L.G.; Ignatenko, M.A. Biological activity of organogermanium compounds (a review). Pharm. Chem. J., 2013, 46(11), 635-638. doi: 10.1007/s11094-013-0860-2
  80. Shah, S.; Ashfaq, M.; Waseem, A.; Ahmed, M.; Najam, T.; Shaheen, S.; Rivera, G. Synthesis and biological activities of organotin (IV) complexes as antitumoral and antimicrobial agents. A review. Mini Rev. Med. Chem., 2015, 15(5), 406-426. doi: 10.2174/138955751505150408142958 PMID: 25910654
  81. Santos, M.M.; Bastos, P.; Catela, I.; Zalewska, K.; Branco, L.C. recent advances of metallocenes for medicinal chemistry. Mini Rev. Med. Chem., 2017, 17(9), 771-784. doi: 10.2174/1389557516666161031141620 PMID: 27804886
  82. Fernández-Vega, L.; Ruiz Silva, V.A.; Domínguez-González, T.M.; Claudio-Betancourt, S.; Toro-Maldonado, R.E.; Capre Maso, L.C.; Sanabria Ortiz, K.; Pérez-Verdejo, J.A.; Román González, J.; Rosado-Fraticelli, G.T.; Pagán Meléndez, F.; Betancourt Santiago, F.M.; Rivera-Rivera, D.A.; Martínez Navarro, C.; Bruno Chardón, A.C.; Vera, A.O.; Tinoco, A.D. Evaluating ligand modifications of the titanocene and auranofin moieties for the development of more potent anticancer drugs. Inorganics, 2020, 8(2), 10. doi: 10.3390/inorganics8020010 PMID: 34046448
  83. Buettner, K.M.; Valentine, A.M. Bioinorganic chemistry of titanium. Chem. Rev., 2012, 112(3), 1863-1881. doi: 10.1021/cr1002886 PMID: 22074443
  84. Arzoumanidis, G.G. New antitumor organotitanium complexes with a pendant biologically active diazo group. Fine Chem. Engin, 2022, 3, 171-P181. doi: 10.37256/fce.3220221820
  85. Giusti, L.; Landaeta, V.R.; Vanni, M.; Kelly, J.A.; Wolf, R.; Caporali, M. Coordination chemistry of elemental phosphorus. Coord. Chem. Rev., 2021, 441, 213927. doi: 10.1016/j.ccr.2021.213927
  86. Al Zoubi, W.; Kim, M.J.; Salih Al-Hamdani, A.A.; Kim, Y.G.; Ko, Y.G. Phosphorus-based Schiff bases and their complexes as non-toxic antioxidants: Structure–activity relationship and mechanism of action. Appl. Organomet. Chem., 2019, 33(11), e5210. doi: 10.1002/aoc.5210
  87. Caminade, A.M.; Ouali, A.; Laurent, R.; Turrin, C.O.; Majoral, J.P. Coordination chemistry with phosphorus dendrimers. Applications as catalysts, for materials, and in biology. Coord. Chem. Rev., 2016, 308, 478-497. doi: 10.1016/j.ccr.2015.06.007
  88. Galezowska, J.; Gumienna-Kontecka, E. Phosphonates, their complexes and bio-applications: A spectrum of surprising diversity. Coord. Chem. Rev., 2012, 256(1-2), 105-124. doi: 10.1016/j.ccr.2011.07.002
  89. Zhao, Y.F.; Han, B.; Chen, J.; Jiang, Y. Penta-coordinate phosphorus compounds and biochemistry. Phosphorus Sulfur Silicon Relat. Elem., 2002, 177(6-7), 1391-1396. doi: 10.1080/10426500212228
  90. Ramaekers, B.L.T.; Riemsma, R.; Grimm, S.; Fayter, D.; Deshpande, S.; Armstrong, N.; Witlox, W.; Pouwels, X.; Duffy, S.; Worthy, G.; Kleijnen, J.; Joore, M.A. Arsenic trioxide for treating acute promyelocytic leukaemia: an evidence review group perspective of a NICE single technology appraisal. Pharmaco. Econ., 2019, 37(7), 887-894. doi: 10.1007/s40273-018-0738-y PMID: 30426463
  91. Shetu, S.A.; Sanchez-Palestino, L.M.; Rivera, G.; Bandyopadhyay, D. Medicinal bismuth: Bismuth-organic frameworks as pharmaceutically privileged compounds. Tetrahedron, 2022, 129, 133117. doi: 10.1016/j.tet.2022.133117
  92. Ong, Y.C.; Roy, S.; Andrews, P.C.; Gasser, G. Metal compounds against neglected tropical diseases. Chem. Rev., 2019, 119(2), 730-796. doi: 10.1021/acs.chemrev.8b00338 PMID: 30507157
  93. Mukherjee, B.; Mukherjee, K.; Nanda, P.; Mukhopadhayay, R.; Ravichandiran, V.; Bhattacharyya, S.N.; Roy, S. Probing the molecular mechanism of aggressive infection by antimony resistant Leishmania donovani. Cytokine, 2021, 145, 155245. doi: 10.1016/j.cyto.2020.155245 PMID: 32861564
  94. Treviño, S.; Díaz, A.; Sánchez-Lara, E.; Sanchez-Gaytan, B.L.; Perez-Aguilar, J.M.; González-Vergara, E. Vanadium in biological action: chemical, pharmacological aspects, and metabolic implications in diabetes mellitus. Biol. Trace Elem. Res., 2019, 188(1), 68-98. doi: 10.1007/s12011-018-1540-6 PMID: 30350272
  95. Rehder, D. The role of vanadium in biology. Metallomics, 2015, 7(5), 730-742. doi: 10.1039/C4MT00304G PMID: 25608665
  96. Dong, Y.; Stewart, T.; Zhang, Y.; Shi, M.; Tan, C.; Li, X.; Yuan, L.; Mehrotra, A.; Zhang, J.; Yang, X. Anti-diabetic vanadyl complexes reduced Alzheimer’s disease pathology independent of amyloid plaque deposition. Sci. China Life Sci., 2019, 62(1), 126-139. doi: 10.1007/s11427-018-9350-1 PMID: 30136058
  97. Arroyo Negrete, M.A.; Wrobel, K.; Yanez Barrientos, E.; Corrales Escobosa, A.R.; Enciso Donis, I.; Wrobel, K. Determination of chromium(III) picolinate in dietary supplements by flow injection - electrospray ionization - tandem mass spectrometry, using cobalt(II) picolinate as internal standard. Talanta, 2022, 240, 123161. doi: 10.1016/j.talanta.2021.123161 PMID: 34953383
  98. Bartholomäus, R.; Irwin, J.A.; Shi, L.; Smith, S.M.; Levina, A.; Lay, P.A. Isolation, characterization, and nuclease activity of biologically relevant chromium(V) complexes with monosaccharides and model diols. Likely intermediates in chromium-induced cancers. Inorg. Chem., 2013, 52(8), 4282-4292. doi: 10.1021/ic3022408 PMID: 23531300
  99. Pavesi, T.; Moreira, J.C. Mechanisms and individuality in chromium toxicity in humans. J. Appl. Toxicol., 2020, 40(9), 1183-1197. doi: 10.1002/jat.3965 PMID: 32166774
  100. DesMarias, T.L.; Costa, M. Mechanisms of chromiuminduced toxicity. Curr. Opin. Toxicol., 2019, 14, 1-7. doi: 10.1016/j.cotox.2019.05.003 PMID: 31511838
  101. Maret, W. Chromium supplementation in human health, metabolic syndrome, and diabetes. Met. Ions Life Sci., 2019, 19, 231-252. doi: 10.1515/9783110527872-009 PMID: 30855110
  102. Li, Y.; Fang, M.; Xu, Z.; Li, X. Tetrathiomolybdate as an old drug in a new use: As a chemotherapeutic sensitizer for non-small cell lung cancer. J. Inorg. Biochem., 2022, 233, 111865. doi: 10.1016/j.jinorgbio.2022.111865 PMID: 35623139
  103. Wang, X.; Wei, S.; Zhao, C.; Li, X.; Jin, J.; Shi, X.; Su, Z.; Li, J.; Wang, J. Promising application of polyoxometalates in the treatment of cancer, infectious diseases and Alzheimer’s disease. Eur. J. Biochem., 2022, 27(4-5), 405-419. doi: 10.1007/s00775-022-01942-7 PMID: 35713714
  104. Okamoto, Y.; Kojima, R.; Schwizer, F.; Bartolami, E.; Heinisch, T.; Matile, S.; Fussenegger, M.; Ward, T.R. A cell-penetrating artificial metalloenzyme regulates a gene switch in a designer mammalian cell. Nat. Commun., 2018, 9(1), 1943. doi: 10.1038/s41467-018-04440-0 PMID: 29769518
  105. Kitada, M.; Xu, J.; Ogura, Y.; Monno, I.; Koya, D. Manganese superoxide dismutase dysfunction and the pathogenesis of kidney disease. Front. Physiol., 2020, 11, 755. doi: 10.3389/fphys.2020.00755 PMID: 32760286
  106. Miriyala, S.; Spasojevic, I.; Tovmasyan, A.; Salvemini, D.; Vujaskovic, Z.; St Clair, D.; Batinic-Haberle, I. Manganese superoxide dismutase, MnSOD and its mimics. Biochim. Biophys. Acta, 2012, 1822(5), 794-814. doi: 10.1016/j.bbadis.2011.12.002 PMID: 22198225
  107. Belani, K.G.; Hottinger, D.G.; Beebe, D.S.; Kozhimannil, T.; Prielipp, R.C. Sodium nitroprusside in 2014: A clinical concepts review. J. Anaesthesiol. Clin. Pharmacol., 2014, 30(4), 462-471. doi: 10.4103/0970-9185.142799 PMID: 25425768
  108. Ripeckyj, A.; Kosmopoulos, M.; Shekar, K.; Carlson, C.; Kalra, R.; Rees, J.; Aufderheide, T.P.; Bartos, J.A.; Yannopoulos, D. Sodium nitroprusside–enhanced cardiopulmonary resuscitation improves blood flow by pulmonary vasodilation leading to higher oxygen requirements. JACC Basic Transl. Sci., 2020, 5(2), 183-192. doi: 10.1016/j.jacbts.2019.11.010 PMID: 32140624
  109. Handtke, S.; Thiele, T. Large and small platelets—(When) do they differ? J. Thromb. Haemost., 2020, 18(6), 1256-1267. doi: 10.1111/jth.14788 PMID: 32108994
  110. Jaouen, G.; Vessières, A.; Top, S. Ferrocifen type anti cancer drugs. Chem. Soc. Rev., 2015, 44(24), 8802-8817. doi: 10.1039/C5CS00486A PMID: 26486993
  111. Hagen, H.; Marzenell, P.; Jentzsch, E.; Wenz, F.; Veldwijk, M.R.; Mokhir, A. Aminoferrocene-based prodrugs activated by reactive oxygen species. J. Med. Chem., 2012, 55(2), 924-934. doi: 10.1021/jm2014937 PMID: 22185340
  112. Snegur, L.V. Modern trends in bio-organometallic ferrocene chemistry. Inorganics, 2022, 10(12), 226. doi: 10.3390/inorganics10120226
  113. Peter, S.; Aderibigbe, B.A. Ferrocene-based compounds with antimalaria/anticancer activity. Molecules, 2019, 24(19), 3604. doi: 10.3390/molecules24193604 PMID: 31591298
  114. Roux, C.; Biot, C. Ferrocene-based antimalarials. Future Med. Chem., 2012, 4(6), 783-797. doi: 10.4155/fmc.12.26 PMID: 22530641
  115. Xiao, J.; Sun, Z.; Kong, F.; Gao, F. Current scenario of ferrocene-containing hybrids for antimalarial activity. Eur. J. Med. Chem., 2020, 185, 111791. doi: 10.1016/j.ejmech.2019.111791 PMID: 31669852
  116. Ludwig, B.S.; Correia, J.D.G.; Kühn, F.E. Ferrocene derivatives as anti-infective agents. Coord. Chem. Rev., 2019, 396, 22-48. doi: 10.1016/j.ccr.2019.06.004
  117. Dubar, F.; Khalife, J.; Brocard, J.; Dive, D.; Biot, C. Ferroquine, an ingenious antimalarial drug: thoughts on the mechanism of action. Molecules, 2008, 13(11), 2900-2907. doi: 10.3390/molecules13112900 PMID: 19020475
  118. Dive, D.; Biot, C. Ferroquine as an oxidative shock antimalarial. Curr. Top. Med. Chem., 2014, 14(14), 1684-1692. doi: 10.2174/1568026614666140808122329 PMID: 25116581
  119. Herrmann, C.; Salas, P.F.; Cawthray, J.F.; de Kock, C.; Patrick, B.O.; Smith, P.J.; Adam, M.J.; Orvig, C. 1,1′-Disubstituted ferrocenyl carbohydrate chloroquine conjugates as potential antimalarials. Organometallics, 2012, 31(16), 5736-5747. doi: 10.1021/om300354x
  120. Peigneguy, F.; Allain, M.; Cougnon, C.; Frère, P.; Siegler, B.; Bressy, C.; Gohier, F. Syntheses and NMR and XRD studies of carbo-hydrate–ferrocene conjugates. New J. Chem., 2019, 43(24), 9706-9710. doi: 10.1039/C9NJ01563A
  121. Patra, M.; Gasser, G.; Metzler-Nolte, N. Small organometallic compounds as antibacterial agents. Dalton Trans., 2012, 41(21), 6350-6358. doi: 10.1039/c2dt12460b PMID: 22411216
  122. Begum, W.; Rai, S.; Banerjee, S.; Bhattacharjee, S.; Mondal, M.H.; Bhattarai, A.; Saha, B. A comprehensive review on the sources, essentiality and toxicological profile of nickel. RSC Advances, 2022, 12(15), 9139-9153. doi: 10.1039/D2RA00378C PMID: 35424851
  123. Maroney, M.J.; Ciurli, S. Nonredox nickel enzymes. Chem. Rev., 2014, 114(8), 4206-4228. doi: 10.1021/cr4004488 PMID: 24369791
  124. Boer, J.L.; Mulrooney, S.B.; Hausinger, R.P. Nickel-dependent metalloenzymes. Arch. Biochem. Biophys., 2014, 544, 142-152. doi: 10.1016/j.abb.2013.09.002 PMID: 24036122
  125. Das, K.K.; Das, S.N.; Dhundasi, S.A. Nickel, its adverse health effects & oxidative stress. Indian J. Med. Res., 2008, 128(4), 412-425. PMID: 19106437
  126. Renfrew, A.K.; O’Neill, E.S.; Hambley, T.W.; New, E.J. Harnessing the properties of cobalt coordination complexes for biological application. Coord. Chem. Rev., 2018, 375, 221-233. doi: 10.1016/j.ccr.2017.11.027
  127. Heffern, M.C.; Yamamoto, N.; Holbrook, R.J.; Eckermann, A.L.; Meade, T.J. Cobalt derivatives as promising therapeutic agents. Curr. Opin. Chem. Biol., 2013, 17(2), 189-196. doi: 10.1016/j.cbpa.2012.11.019 PMID: 23270779
  128. Bonaccorso, C.; Marzo, T.; La Mendola, D. Biological applications of thiocarbohydrazones and their metal complexes: A perspective review. Pharmaceuticals, 2019, 13(1), 4. doi: 10.3390/ph13010004 PMID: 31881715
  129. Kostova, I. Platinum complexes as anticancer agents. Recent Patents Anticancer Drug Discov., 2006, 1(1), 1-22. doi: 10.2174/157489206775246458 PMID: 18221023
  130. Johnstone, T.C.; Suntharalingam, K.; Lippard, S.J. The next generation of platinum drugs: targeted Pt(II) agents, nanoparticle delivery, and Pt(IV) prodrugs. Chem. Rev., 2016, 116(5), 3436-3486. doi: 10.1021/acs.chemrev.5b00597 PMID: 26865551
  131. Ghosh, S. Cisplatin: The first metal based anticancer drug. Bioorg. Chem., 2019, 88, 102925. doi: 10.1016/j.bioorg.2019.102925 PMID: 31003078
  132. Gibson, D. Platinum(IV) anticancer prodrugs – hypotheses and facts. Dalton Trans., 2016, 45(33), 12983-12991. doi: 10.1039/C6DT01414C PMID: 27214873
  133. Alassadi, S.; Pisani, M.J.; Wheate, N.J. A chemical perspective on the clinical use of platinum-based anticancer drugs. Dalton Trans., 2022, 51(29), 10835-10846. doi: 10.1039/D2DT01875F PMID: 35781551
  134. Evin Eskicioglu, H.; Olgun, Y.; Aktaş, T.C.; Aktas, S.; Kolatan, E.; Serinan, E.; Altun, Z.; Kirkim, G.; Yilmaz, O.; Olgun, N. Comparison of cytotoxic and ototoxic effects of lipoplatin and cisplatin in neuroblastoma in vivo tumor model. J. Int. Adv. Otol., 2022, 18(5), 392-398. doi: 10.5152/iao.2022.21268 PMID: 36063095
  135. Jahromi, E.Z.; Divsalar, A.; Saboury, A.A.; Khaleghizadeh, S.; Mansouri-Torshizi, H.; Kostova, I. Palladium complexes: new candidates for anti-cancer drugs. J. Indian Chem. Soc., 2016, 13(5), 967-989. doi: 10.1007/s13738-015-0804-8
  136. Coverdale, J.; Laroiya-McCarron, T.; Romero-Canelón, I. Designing ruthenium anticancer drugs: What have we learnt from the key drug candidates? Inorganics, 2019, 7(3), 31. doi: 10.3390/inorganics7030031
  137. Lee, S.Y.; Kim, C.Y.; Nam, T.G. Ruthenium complexes as anticancer agents: A brief history and perspectives. Drug Des. Devel. Ther., 2020, 14, 5375-5392. doi: 10.2147/DDDT.S275007 PMID: 33299303
  138. Kenny, R.G.; Marmion, C.J. Toward multi-targeted platinum and ruthenium drugs—a new paradigm in cancer drug treatment regimens? Chem. Rev., 2019, 119(2), 1058-1137. doi: 10.1021/acs.chemrev.8b00271 PMID: 30640441
  139. Kostova, I. Ruthenium complexes as anticancer agents. Curr. Med. Chem., 2006, 13(9), 1085-1107. doi: 10.2174/092986706776360941 PMID: 16611086
  140. Messori, L.; Camarri, M.; Ferraro, T.; Gabbiani, C.; Franceschini, D. Promising in vitro anti-alzheimer properties for a ruthenium(III) complex. ACS Med. Chem. Lett., 2013, 4(3), 329-332. doi: 10.1021/ml3003567 PMID: 24900669
  141. Mbaba, M.; Golding, T.M.; Smith, G.S. Recent advances in the biological investigation of organometallic platinum-group metal (Ir, Ru, Rh, Os, Pd, Pt) complexes as antimalarial agents. Molecules, 2020, 25(22), 5276. doi: 10.3390/molecules25225276 PMID: 33198217
  142. Navarro, M.; Castro, W.; Madamet, M.; Amalvict, R.; Benoit, N.; Pradines, B. Metal-chloroquine derivatives as possible anti-malarial drugs: Evaluation of anti-malarial activity and mode of action. Malar. J., 2014, 13(1), 471. doi: 10.1186/1475-2875-13-471 PMID: 25470995
  143. Butler, J.A.; Britten, N.S. Ruthenium metallotherapeutics: Novel approaches to combatting parasitic infections. Curr. Med. Chem., 2022, 29(31), 5159-5178. doi: 10.2174/0929867329666220401105444 PMID: 35366762
  144. Hubin, T.J.; Amoyaw, P.N.A.; Roewe, K.D.; Simpson, N.C.; Maples, R.D.; Carder Freeman, T.N.; Cain, A.N.; Le, J.G.; Archibald, S.J.; Khan, S.I.; Tekwani, B.L.; Khan, M.O.F. Synthesis and antimalarial activity of metal complexes of cross-bridged tetraazamacrocyclic ligands. Bioorg. Med. Chem., 2014, 22(13), 3239-3244. doi: 10.1016/j.bmc.2014.05.003 PMID: 24857776
  145. Kwiatkowski, S.; Knap, B.; Przystupski, D.; Saczko, J.; Kędzierska, E.; Knap-Czop, K.; Kotlińska, J.; Michel, O.; Kotowski, K.; Kulbacka, J. Photodynamic therapy – mechanisms, photosensitizers and combinations. Biomed. Pharmacother., 2018, 106, 1098-1107. doi: 10.1016/j.biopha.2018.07.049 PMID: 30119176
  146. Duan, K.; Liu, B.; Li, C.; Zhang, H.; Yu, T.; Qu, J.; Zhou, M.; Chen, L.; Meng, S.; Hu, Y.; Peng, C.; Yuan, M.; Huang, J.; Wang, Z.; Yu, J.; Gao, X.; Wang, D.; Yu, X.; Li, L.; Zhang, J.; Wu, X.; Li, B.; Xu, Y.; Chen, W.; Peng, Y.; Hu, Y.; Lin, L.; Liu, X.; Huang, S.; Zhou, Z.; Zhang, L.; Wang, Y.; Zhang, Z.; Deng, K.; Xia, Z.; Gong, Q.; Zhang, W.; Zheng, X.; Liu, Y.; Yang, H.; Zhou, D.; Yu, D.; Hou, J.; Shi, Z.; Chen, S.; Chen, Z.; Zhang, X.; Yang, X. Effectiveness of convalescent plasma therapy in severe COVID-19 patients. Proc. Natl. Acad. Sci. USA, 2020, 117(17), 9490-9496. doi: 10.1073/pnas.2004168117 PMID: 32253318
  147. Wiehe, A.; O’Brien, J.M.; Senge, M.O. Trends and targets in antiviral phototherapy. Photochem. Photobiol. Sci., 2019, 18(11), 2565-2612. doi: 10.1039/c9pp00211a PMID: 31397467
  148. Conrado, P.C.V.; Sakita, K.M.; Arita, G.S.; Galinari, C.B.; Gonçalves, R.S.; Lopes, L.D.G.; Lonardoni, M.V.C.; Teixeira, J.J.V.; Bonfim-Mendonça, P.S.; Kioshima, E.S. A systematic review of photodynamic therapy as an antiviral treatment: Potential guidance for dealing with SARS-CoV-2. Photodiagn. Photodyn. Ther., 2021, 34, 102221. doi: 10.1016/j.pdpdt.2021.102221 PMID: 33601001
  149. Costa, L.; Faustino, M.A.F.; Neves, M.G.P.M.S.; Cunha, .; Almeida, A. Photodynamic inactivation of mammalian viruses and bacteriophages. Viruses, 2012, 4(7), 1034-1074. doi: 10.3390/v4071034 PMID: 22852040
  150. Wang, J.; Potocny, A.M.; Rosenthal, J.; Day, E.S. Gold nanoshell-linear tetrapyrrole conjugates for near infrared-activated dual photodynamic and photothermal therapies. ACS Omega, 2020, 5(1), 926-940. doi: 10.1021/acsomega.9b04150 PMID: 31956847
  151. Moore, C.M.; Azzouzi, A.R.; Barret, E.; Villers, A.; Muir, G.H.; Barber, N.J.; Bott, S.; Trachtenberg, J.; Arumainayagam, N.; Gaillac, B.; Allen, C.; Schertz, A.; Emberton, M.; Barret, E. Determination of optimal drug dose and light dose index to achieve minimally invasive focal ablation of localised prostate cancer using WST11-vascular-targeted photodynamic (VTP) therapy. BJU Int., 2015, 116(6), 888-896. doi: 10.1111/bju.12816 PMID: 24841929
  152. Maggioni, D.; Galli, M.; D’Alfonso, L.; Inverso, D.; Dozzi, M.V.; Sironi, L.; Iannacone, M.; Collini, M.; Ferruti, P.; Ranucci, E.; D’Alfonso, G. A luminescent poly(amidoamine)-iridium complex as a new singlet-oxygen sensitizer for photodynamic therapy. Inorg. Chem., 2015, 54(2), 544-553. doi: 10.1021/ic502378z PMID: 25554822
  153. Abrahamse, H.; Hamblin, M.R. New photosensitizers for photodynamic therapy. Biochem. J., 2016, 473(4), 347-364. doi: 10.1042/BJ20150942 PMID: 26862179
  154. Knoll, J.D.; Turro, C. Control and utilization of ruthenium and rhodium metal complex excited states for photoactivated cancer therapy. Coord. Chem. Rev., 2015, 282-283, 110-126. doi: 10.1016/j.ccr.2014.05.018 PMID: 25729089
  155. Falk-Mahapatra, R.; Gollnick, S.O. Photodynamic therapy and immunity: An update. Photochem. Photobiol., 2020, 96(3), 550-559. doi: 10.1111/php.13253 PMID: 32128821
  156. McKenzie, L.K.; Bryant, H.E.; Weinstein, J.A. Transition metal complexes as photosensitisers in one- and two-photon photodynamic therapy. Coord. Chem. Rev., 2019, 379, 2-29. doi: 10.1016/j.ccr.2018.03.020
  157. van Straten, D.; Mashayekhi, V.; de Bruijn, H.; Oliveira, S.; Robinson, D. Oncologic photodynamic therapy: basic principles, current clinical status and future directions. Cancers, 2017, 9(12), 19. doi: 10.3390/cancers9020019 PMID: 28218708
  158. Monro, S.; Colón, K.L.; Yin, H.; Roque, J., III; Konda, P.; Gujar, S.; Thummel, R.P.; Lilge, L.; Cameron, C.G.; McFarland, S.A. Transition metal complexes and photodynamic therapy from a tumorcentered approach: Challenges, opportunities, and highlights from the development of TLD1433. Chem. Rev., 2019, 119(2), 797-828. doi: 10.1021/acs.chemrev.8b00211 PMID: 30295467
  159. Chen, Y.; Guan, R.; Zhang, C.; Huang, J.; Ji, L.; Chao, H. Two-photon luminescent metal complexes for bioimaging and cancer phototherapy. Coord. Chem. Rev., 2016, 310, 16-40. doi: 10.1016/j.ccr.2015.09.010
  160. Shi, G.; Monro, S.; Colpitts, J.; Fong, J.; Kasimova, K.; Yin, H.; DeCoste, R.; Spencer, C. Ru(II) dyads derived from a-oligothiophenes: a new class of potent and versatile photosensitizers for PDT. Coord. Chem. Rev., 2014, 282–283, 127-138.
  161. Zhang, P.; Huang, H. Future potential of osmium complexes as anticancer drug candidates, photosensitizers and organelle-targeted probes. Dalton Trans., 2018, 47(42), 14841-14854. doi: 10.1039/C8DT03432J PMID: 30325378
  162. Heinemann, F.; Karges, J.; Gasser, G. Critical overview of the use of Ru(II) polypyridyl complexes as photosensitizers in one-photon and two-photon photodynamic therapy. Acc. Chem. Res., 2017, 50(11), 2727-2736. doi: 10.1021/acs.accounts.7b00180 PMID: 29058879
  163. Jakubaszek, M.; Goud, B.; Ferrari, S.; Gasser, G. Mechanisms of action of Ru(II) polypyridyl complexes in living cells upon light irradiation. Chem. Commun., 2018, 54(93), 13040-13059. doi: 10.1039/C8CC05928D PMID: 30398487
  164. Mari, C.; Pierroz, V.; Ferrari, S.; Gasser, G. Combination of Ru(II) complexes and light: new frontiers in cancer therapy. Chem. Sci., 2015, 6(5), 2660-2686. doi: 10.1039/C4SC03759F PMID: 29308166
  165. Poynton, F.E.; Bright, S.A.; Blasco, S.; Williams, D.C.; Kelly, J.M.; Gunnlaugsson, T. The development of ruthenium(II) polypyridyl complexes and conjugates for in vitro cellular and in vivo applications. Chem. Soc. Rev., 2017, 46(24), 7706-7756. doi: 10.1039/C7CS00680B PMID: 29177281
  166. Zeng, L.; Gupta, P.; Chen, Y.; Wang, E.; Ji, L.; Chao, H.; Chen, Z.S. The development of anticancer ruthenium(II) complexes: from single molecule compounds to nanomaterials. Chem. Soc. Rev., 2017, 46(19), 5771-5804. doi: 10.1039/C7CS00195A PMID: 28654103
  167. Huang, H.; Banerjee, S.; Sadler, P.J. Recent advances in the design of targeted iridium(III) photosensitizers for photodynamic therapy. Chem. Bio. Chem, 2018, 19(15), 1574-1589. doi: 10.1002/cbic.201800182 PMID: 30019476
  168. Boros, E.; Packard, A.B. Radioactive transition metals for imaging and therapy. Chem. Rev., 2019, 119(2), 870-901. doi: 10.1021/acs.chemrev.8b00281 PMID: 30299088
  169. Kostelnik, T.I.; Orvig, C. Radioactive main group and rare earth metals for imaging and therapy. Chem. Rev., 2019, 119(2), 902-956. doi: 10.1021/acs.chemrev.8b00294 PMID: 30379537
  170. Price, E.W.; Orvig, C. Matching chelators to radiometals for radiopharmaceuticals. Chem. Soc. Rev., 2014, 43(1), 260-290. doi: 10.1039/C3CS60304K PMID: 24173525
  171. Ayesa, S.L.; Schembri, G.P. Is 67gallium dead? A retrospective review of 67 gallium imaging in a single tertiary referral centre. Nucl. Med. Commun., 2021, 42(4), 378-388. doi: 10.1097/MNM.0000000000001342 PMID: 33323867
  172. Harnden, A.C.; Parker, D.; Rogers, N.J. Employing paramagnetic shift for responsive MRI probes. Coord. Chem. Rev., 2019, 383, 30-42. doi: 10.1016/j.ccr.2018.12.012
  173. Rogosnitzky, M.; Branch, S. Gadolinium-based contrast agent toxicity: a review of known and proposed mechanisms. Biometals, 2016, 29(3), 365-376. doi: 10.1007/s10534-016-9931-7 PMID: 27053146
  174. Fatima, A.; Ahmad, M.W.; Al Saidi, A.K.A.; Choudhury, A.; Chang, Y.; Lee, G.H. Recent advances in gadolinium-based contrast agents for bioimaging applications. Nanomaterials, 2021, 11(9), 2449. doi: 10.3390/nano11092449 PMID: 34578765
  175. Wahsner, J.; Gale, E.M.; Rodríguez-Rodríguez, A.; Caravan, P. Chemistry of MRI contrast agents: current challenges and new frontiers. Chem. Rev., 2019, 119(2), 957-1057. doi: 10.1021/acs.chemrev.8b00363 PMID: 30350585
  176. Boros, E.; Gale, E.M.; Caravan, P. MR imaging probes: Design and applications. Dalton Trans., 2015, 44(11), 4804-4818. doi: 10.1039/C4DT02958E PMID: 25376893
  177. Heffern, M.C.; Matosziuk, L.M.; Meade, T.J. Lanthanide probes for bioresponsive imaging. Chem. Rev., 2014, 114(8), 4496-4539. doi: 10.1021/cr400477t PMID: 24328202
  178. Webster, A.M.; Peacock, A.F.A. De novo designed coiled coils as scaffolds for lanthanides, including novel imaging agents with a twist. Chem. Commun., 2021, 57(56), 6851-6862. doi: 10.1039/D1CC02013G PMID: 34151325
  179. Loving, G.S.; Mukherjee, S.; Caravan, P. Redox-activated manganese-based MR contrast agent. J. Am. Chem. Soc., 2013, 135(12), 4620-4623. doi: 10.1021/ja312610j PMID: 23510406
  180. Bao, G. Lanthanide complexes for drug delivery and therapeutics. J. Lumin., 2020, 228, 117622. doi: 10.1016/j.jlumin.2020.117622

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Bentham Science Publishers, 2024