Therapeutic and Diagnostic Agents based on Bioactive Endogenous and Exogenous Coordination Compounds
- Autores: Kostova I.1
-
Afiliações:
- Department of Chemistry, Faculty of Pharmacy,, Medical University-Sofia,
- Edição: Volume 31, Nº 3 (2024)
- Páginas: 358-386
- Seção: Anti-Infectives and Infectious Diseases
- URL: https://cijournal.ru/0929-8673/article/view/645021
- DOI: https://doi.org/10.2174/0929867330666230321110018
- ID: 645021
Citar
Texto integral
Resumo
Metal-based coordination compounds have very special place in bioinorganic chemistry because of their different structural arrangements and significant application in medicine. Rapid progress in this field increasingly enables the targeted design and synthesis of metal-based pharmaceutical agents that fulfill valuable roles as diagnostic or therapeutic agents. Various coordination compounds have important biological functions, both those initially present in the body (endogenous) and those entering the organisms from the external environment (exogenous): vitamins, drugs, toxic substances, etc. In the therapeutic and diagnostic practice, both the essential for all living organisms and the trace metals are used in metal-containing coordination compounds. In the current review, the most important functional biologically active compounds were classified group by group according to the position of the elements in the periodic table.
Sobre autores
Irena Kostova
Department of Chemistry, Faculty of Pharmacy,, Medical University-Sofia,
Autor responsável pela correspondência
Email: info@benthamscience.net
Bibliografia
- Franz, K.J.; Metzler-Nolte, N. Introduction: Metals in medicine. Chem. Rev., 2019, 119(2), 727-729. doi: 10.1021/acs.chemrev.8b00685 PMID: 30990707
- Heuer-Jungemann, A.; Feliu, N.; Bakaimi, I.; Hamaly, M.; Alkilany, A.; Chakraborty, I.; Masood, A.; Casula, M.F.; Kostopoulou, A.; Oh, E.; Susumu, K.; Stewart, M.H.; Medintz, I.L.; Stratakis, E.; Parak, W.J.; Kanaras, A.G. The role of ligands in the chemical synthesis and applications of inorganic nanoparticles. Chem. Rev., 2019, 119(8), 4819-4880. doi: 10.1021/acs.chemrev.8b00733 PMID: 30920815
- Barry, N.P.E.; Sadler, P.J. Exploration of the medical periodic table: towards new targets. Chem. Commun., 2013, 49(45), 5106-5131. doi: 10.1039/c3cc41143e PMID: 23636600
- Barry, N.P.E.; Sadler, P.J. 100 years of metal coordination chemistry: From Alfred Werner to anticancer metallodrugs. Pure Appl. Chem., 2014, 86(12), 1897-1910. doi: 10.1515/pac-2014-0504
- Boros, E.; Dyson, P.J.; Gasser, G. Classification of metal-based drugs according to their mechanisms of action. Chem., 2020, 6(1), 41-60. doi: 10.1016/j.chempr.2019.10.013 PMID: 32864503
- Wang, Z.; Sun, Q.; Liu, B.; Kuang, Y.; Gulzar, A.; He, F.; Gai, S.; Yang, P.; Lin, J. Recent advances in porphyrin-based MOFs for cancer therapy and diagnosis therapy. Coord. Chem. Rev., 2021, 439, 213945. doi: 10.1016/j.ccr.2021.213945
- Nandanwar, S.K.; Kim, H.J. Anticancer and antibacterial activity of transition metal complexes. Chemist. Select, 2019, 4(5), 1706-1721. doi: 10.1002/slct.201803073
- Gasser, G. Metal complexes and medicine: A successful combination. Chimia, 2015, 69(7-8), 442-446. doi: 10.2533/chimia.2015.442
- Shekhar, S.; Khan, A.M.; Sharma, S.; Sharma, B.; Sarkar, A. Schiff base metallodrugs in antimicrobial and anticancer chemotherapy applications: A comprehensive review. Emergent Mater., 2022, 5(2), 279-293. doi: 10.1007/s42247-021-00234-1
- Mjos, K.D.; Orvig, C. Metallodrugs in medicinal inorganic chemistry. Chem. Rev., 2014, 114(8), 4540-4563. doi: 10.1021/cr400460s PMID: 24456146
- Simpson, P.V.; Desai, N.M.; Casari, I.; Massi, M.; Falasca, M. Metal-based antitumor compounds: Beyond cisplatin. Future Med. Chem., 2019, 11(2), 119-135. doi: 10.4155/fmc-2018-0248 PMID: 30644327
- Zhang, Z.; Sang, W.; Xie, L.; Dai, Y. Metal-organic frameworks for multimodal bioimaging and synergistic cancer chemotherapy. Coord. Chem. Rev., 2019, 399, 213022. doi: 10.1016/j.ccr.2019.213022
- Wang, X.; Wang, X.; Jin, S.; Muhammad, N.; Guo, Z. Stimuli-responsive therapeutic metallodrugs. Chem. Rev., 2019, 119(2), 1138-1192. doi: 10.1021/acs.chemrev.8b00209 PMID: 30299085
- Chohan, Z.H.; Shad, H.A.; Youssoufi, M.H.; Ben Hadda, T. Some new biologically active metal-based sulfonamide. Eur. J. Med. Chem., 2010, 45(7), 2893-2901. doi: 10.1016/j.ejmech.2010.03.014 PMID: 20362358
- Frei, A.; Zuegg, J.; Elliott, A.G.; Baker, M.; Braese, S.; Brown, C.; Chen, F.; G Dowson, C.; Dujardin, G.; Jung, N.; King, A.P.; Mansour, A.M.; Massi, M.; Moat, J.; Mohamed, H.A.; Renfrew, A.K.; Rutledge, P.J.; Sadler, P.J.; Todd, M.H.; Willans, C.E.; Wilson, J.J.; Cooper, M.A.; Blaskovich, M.A.T. Metal complexes as a promising source for new antibiotics. Chem. Sci., 2020, 11(10), 2627-2639. doi: 10.1039/C9SC06460E PMID: 32206266
- Kostova, I.; Soni, R.K. Bioinorganic Chemistry; Ed.; Shree Publishers & Distributors: Delhi, India, 2011, ISBN: 978- 81-8329-420-1. Available from: https://www.researchgate.net/publication/265421074_BIOINORGANIC_CHEMISTRY
- Goswami, A.K.; Kostova, I. Medicinal and Biological Inorganic Chemistry; De Gruyter: Berlin, Boston, 2022. doi: 10.1515/9781501516115
- Daniel, C.; Gourlaouen, C. Structural and optical properties of metal-nitrosyl complexes. Molecules, 2019, 24(20), 3638. doi: 10.3390/molecules24203638 PMID: 31600965
- Stepanenko, I.; Zalibera, M.; Schaniel, D.; Telser, J.; Arion, V.B. Ruthenium-nitrosyl complexes as NO-releasing molecules, potential anticancer drugs, and photoswitches based on linkage isomerism. Dalton Trans., 2022, 51(14), 5367-5393. doi: 10.1039/D2DT00290F PMID: 35293410
- Wu, W.Y.; Liaw, W.F. Nitric oxide reduction forming hyponitrite triggered by metal-containing complexes. J. Chin. Chem. Soc., 2020, 67(2), 206-212. doi: 10.1002/jccs.201900473
- Roskoski, R. Jr Properties of FDA-approved small molecule protein kinase inhibitors. Pharmacol. Res., 2019, 144, 19-50. doi: 10.1016/j.phrs.2019.03.006 PMID: 30877063
- Chen, K.; Arnold, F.H. Engineering new catalytic activities in enzymes. Nat. Catal., 2020, 3(3), 203-213. doi: 10.1038/s41929-019-0385-5
- Schlenk, R.F.; Weber, D.; Fiedler, W.; Salih, H.R.; Wulf, G.; Salwender, H.; Schroeder, T.; Kindler, T.; Lübbert, M.; Wolf, D.; Westermann, J.; Kraemer, D.; Götze, K.S.; Horst, H.A.; Krauter, J.; Girschikofsky, M.; Ringhoffer, M.; Südhoff, T.; Held, G.; Derigs, H.G.; Schroers, R.; Greil, R.; Grießhammer, M.; Lange, E.; Burchardt, A.; Martens, U.; Hertenstein, B.; Marretta, L.; Heuser, M.; Thol, F.; Gaidzik, V.I.; Herr, W.; Krzykalla, J.; Benner, A.; Döhner, K.; Ganser, A.; Paschka, P.; Döhner, H. Midostaurin added to chemotherapy and continued single-agent maintenance therapy in acute myeloid leukemia with FLT3-ITD. Blood, 2019, 133(8), 840-851. doi: 10.1182/blood-2018-08-869453 PMID: 30563875
- Silva, A.; Alexandre, J.; Souza, J.; Neto, J.; de Sousa Júnior, P.; Rocha, M.; dos Santos, J. The chemistry and applications of metalorganic frameworks (MOFs) as industrial enzyme immobilization systems. Molecules, 2022, 27(14), 4529. doi: 10.3390/molecules27144529 PMID: 35889401
- Kumar, S.; Rulhania, S.; Jaswal, S.; Monga, V. Recent advances in the medicinal chemistry of carbonic anhydrase inhibitors. Eur. J. Med. Chem., 2021, 209, 112923. doi: 10.1016/j.ejmech.2020.112923 PMID: 33121862
- Priamvada, G.S.; Divyadarshini, D.S.; Voora, R. Use of thiazides to treat hypertension and advanced CKD. Curr. Cardiol. Rep., 2022, 24(12), 2131-2137. doi: 10.1007/s11886-022-01817-y PMID: 36301404
- Bhuyan, B.J.; Mugesh, G. Synthesis, characterization and antioxidant activity of angiotensin converting enzyme inhibitors. Org. Biomol. Chem., 2011, 9(5), 1356-1365. doi: 10.1039/C0OB00823K PMID: 21186397
- Joyner, J.C.; Hocharoen, L.; Cowan, J.A. Targeted catalytic inactivation of angiotensin converting enzyme by lisinopril-coupled transition-metal chelates. J. Am. Chem. Soc., 2012, 134(7), 3396-3410. doi: 10.1021/ja208791f PMID: 22200082
- Gomes, L.M.F.; Bataglioli, J.C.; Storr, T. Metal complexes that bind to the amyloid-β peptide of relevance to Alzheimers disease. Coord. Chem. Rev., 2020, 412, 213255. doi: 10.1016/j.ccr.2020.213255
- Wong, R.J.; Vreman, H.J.; Schulz, S.; Kalish, F.S.; Pierce, N.W.; Stevenson, D.K. In vitro inhibition of heme oxygenase isoenzymes by metalloporphyrins. J. Perinatol., 2011, 31(S1), S35-S41. doi: 10.1038/jp.2010.173 PMID: 21448202
- Shurlygina, A.V.; Rachkovskaya, L.N.; Robinson, M.V.; Kotlyarova, A.A.; Korolev, M.A.; Letyagin, A.Y. The possibilities of safe lithium therapy in the treatment of neurological and psychoemotional disorders. CNS Neurol. Disord., 2021, 9, 171.
- Wierońska, J.M.; Cieślik, P.; Kalinowski, L. Nitric oxide-dependent pathways as critical factors in the consequences and recovery after brain ischemic hypoxia. Biomolecules, 2021, 11(8), 1097. doi: 10.3390/biom11081097 PMID: 34439764
- Rao, R.N.; Chanda, K. 2-Aminopyridine an unsung hero in drug discovery. Chem. Commun., 2022, 58(3), 343-382. doi: 10.1039/D1CC04602K PMID: 34904599
- Liang, J.; Sun, D.; Yang, Y.; Li, M.; Li, H.; Chen, L. Discovery of metal-based complexes as promising antimicrobial agents. Eur. J. Med. Chem., 2021, 224, 113696. doi: 10.1016/j.ejmech.2021.113696 PMID: 34274828
- Mirzadeh, N.; Reddy, T.S.; Bhargava, S.K. Advances in diphosphine ligand-containing gold complexes as anticancer agents. Coord. Chem. Rev., 2019, 388, 343-359. doi: 10.1016/j.ccr.2019.02.027
- Martins, P.G.A.; Mori, M.; Chiaradia-Delatorre, L.D.; Menegatti, A.C.O.; Mascarello, A.; Botta, B.; Benítez, J.; Gambino, D.; Terenzi, H. Exploring Oxidovanadium(IV) Complexes as YopH Inhibitors: Mechanism of Action and Modeling Studies. ACS Med. Chem. Lett., 2015, 6(10), 1035-1040. doi: 10.1021/acsmedchemlett.5b00267 PMID: 26617957
- Ayipo, Y.O.; Osunniran, W.A.; Babamale, H.F.; Ayinde, M.O.; Mordi, M.N. Metalloenzyme mimicry and modulation strategies to conquer antimicrobial resistance: Metalligand coordination perspectives. Coord. Chem. Rev., 2022, 453, 214317. doi: 10.1016/j.ccr.2021.214317
- Tang, Q.; Cao, S.; Ma, T.; Xiang, X.; Luo, H.; Borovskikh, P.; Rodriguez, R.D.; Guo, Q.; Qiu, L.; Cheng, C. Engineering biofunctional enzyme-mimics for catalytic therapeutics and diagnostics. Adv. Funct. Mater., 2021, 31(7), 2007475. doi: 10.1002/adfm.202007475
- Wang, J.; Bao, M.; Wei, T.; Wang, Z.; Dai, Z. Bimetallic metalorganic framework for enzyme immobilization by biomimetic mineralization: Constructing a mimic enzyme and simultaneously immobilizing natural enzymes. Anal. Chim. Acta, 2020, 1098, 148-154. doi: 10.1016/j.aca.2019.11.039 PMID: 31948578
- Völker, T.; Meggers, E. Transition-metal-mediated uncaging in living human cells an emerging alternative to photolabile protecting groups. Curr. Opin. Chem. Biol., 2015, 25, 48-54. doi: 10.1016/j.cbpa.2014.12.021 PMID: 25561021
- Wen, J.; Sawmiller, D.; Wheeldon, B.; Tan, J. A review for lithium: Pharmacokinetics, drug design, and toxicity. CNS Neurol. Disord. Drug Targets, 2019, 18(10), 769-778. doi: 10.2174/1871527318666191114095249 PMID: 31724518
- Doeppner, T.R.; Haupt, M.; Bähr, M. Lithium beyond psychiatric indications: the reincarnation of a new old drug. Neural Regen. Res., 2021, 16(12), 2383-2387. doi: 10.4103/1673-5374.313015 PMID: 33907010
- Krasnovskaya, O.; Naumov, A.; Guk, D.; Gorelkin, P.; Erofeev, A.; Beloglazkina, E.; Majouga, A. Copper coordination compounds as biologically active agents. Int. J. Mol. Sci., 2020, 21(11), 3965. doi: 10.3390/ijms21113965 PMID: 32486510
- Ge, E.J.; Bush, A.I.; Casini, A.; Cobine, P.A.; Cross, J.R.; DeNicola, G.M.; Dou, Q.P.; Franz, K.J.; Gohil, V.M.; Gupta, S.; Kaler, S.G.; Lutsenko, S.; Mittal, V.; Petris, M.J.; Polishchuk, R.; Ralle, M.; Schilsky, M.L.; Tonks, N.K.; Vahdat, L.T.; Van Aelst, L.; Xi, D.; Yuan, P.; Brady, D.C.; Chang, C.J. Connecting copper and cancer: From transition metal signalling to metalloplasia. Nat. Rev. Cancer, 2022, 22(2), 102-113. doi: 10.1038/s41568-021-00417-2 PMID: 34764459
- Trammell, R.; Rajabimoghadam, K.; Garcia-Bosch, I. Copper-promoted functionalization of organic molecules: from biologically relevant Cu/O2 model systems to organometallic transformations. Chem. Rev., 2019, 119(4), 2954-3031. doi: 10.1021/acs.chemrev.8b00368 PMID: 30698952
- Hussain, A.; AlAjmi, M.F.; Rehman, M.T.; Amir, S.; Husain, F.M.; Alsalme, A.; Siddiqui, M.A.; AlKhedhairy, A.A.; Khan, R.A. Copper(II) complexes as potential anticancer and Nonsteroidal anti-inflammatory agents: In vitro and in vivo studies. Sci. Rep., 2019, 9(1), 5237. doi: 10.1038/s41598-019-41063-x PMID: 30918270
- Boulguemh, I.E.; Beghidja, A.; Khattabi, L.; Long, J.; Beghidja, C. Monomeric and dimeric copper (II) complexes based on bidentate Nʹ-(propan-2-ylidene) thiophene carbohydrazide Schiff base ligand: Synthesis, structure, magnetic properties, antioxidant and anti-Alzheimer activities. Inorg. Chim. Acta, 2020, 507, 119519. doi: 10.1016/j.ica.2020.119519
- Ayipo, Y.O.; Obaleye, J.A.; Badeggi, U.M. Novel metal complexes of mixed piperaquine-acetaminophen and piperaquine-acetylsalicylic acid: Synthesis, characterization and antimicrobial activities. J. Turkish Chem. Soc., Section A. Chemistry, 2016, 4(1), 313-326. doi: 10.18596/jotcsa.287331
- Saddam Hossain, M.; Zakaria, C.M.; Kudrat-E-Zahan, M. Metal complexes as potential antimicrobial agent: A review. American J. Heterocyc. Chemist., 2018, 4(1), 1-21. doi: 10.11648/j.ajhc.20180401.11
- El-Ghamry, H.A.; Fathalla, S.K.; Gaber, M. Synthesis, structural characterization and molecular modelling of bidentate azo dye metal complexes: DNA interaction to antimicrobial and anticancer activities. Appl. Organomet. Chem., 2018, 32(3), e4136. doi: 10.1002/aoc.4136
- Gomes da Silva Dantas, F.; Araújo de Almeida-Apolonio, A.; Pires de Araújo, R.; Regiane Vizolli Favarin, L.; Fukuda de Castilho, P.; de Oliveira Galvão, F.; Inez Estivalet Svidzinski, T.; Antônio Casagrande, G.; Mari Pires de Oliveira, K. Promising copper(II) complex as antifungal and antibiofilm drug against yeast infection. Molecules, 2018, 23(8), 1856. doi: 10.3390/molecules23081856 PMID: 30049937
- Kukushkina, E.A.; Hossain, S.I.; Sportelli, M.C.; Ditaranto, N.; Picca, R.A.; Cioffi, N. Ag-based synergistic antimicrobial composites. A critical review. Nanomaterials, 2021, 11(7), 1687. doi: 10.3390/nano11071687 PMID: 34199123
- Khan, S.; Alhumaydhi, F.A.; Ibrahim, M.M.; Alqahtani, A.; Alshamrani, M.; Alruwaili, A.S.; Khan, S. Recent advances and therapeutic journey of Schiff base complexes with selected metals (Pt, Pd, Ag, Au) as potent anticancer agents: A review. Anti-Cancer. Agents Med. Chem., 2022, 22(18), 3086-3096.
- Trotter, K.D.; Owojaiye, O.; Meredith, S.P.; Keating, P.E.; Spicer, M.D.; Reglinski, J.; Spickett, C.M. The interaction of silver(II) complexes with biological macromolecules and antioxidants. Biometals, 2019, 32(4), 627-640. doi: 10.1007/s10534-019-00198-0 PMID: 31098734
- Liang, X.; Luan, S.; Yin, Z.; He, M.; He, C.; Yin, L.; Zou, Y.; Yuan, Z.; Li, L.; Song, X.; Lv, C.; Zhang, W. Recent advances in the medical use of silver complex. Eur. J. Med. Chem., 2018, 157, 62-80. doi: 10.1016/j.ejmech.2018.07.057 PMID: 30075403
- Yuan, Q.; Zhao, Y.; Cai, P.; He, Z.; Gao, F.; Zhang, J.; Gao, X. Dose-dependent efficacy of gold clusters on rheumatoid arthritis therapy. ACS Omega, 2019, 4(9), 14092-14099. doi: 10.1021/acsomega.9b02003 PMID: 31497728
- Souza Pereira, C.; Costa Quadros, H.; Magalhaes Moreira, D.R.; Castro, W.; Santos De Deus Da Silva, R.I.; Botelho Pereira Soares, M.; Fontinha, D.; Prudêncio, M.; Schmitz, V.; Dos Santos, H.F.; Gendrot, M.; Fonta, I.; Mosnier, J.; Pradines, B.; Navarro, M. A novel hybrid of chloroquine and primaquine linked by gold (I): Multitarget and multiphase antiplasmodial agent. Chem. Med. Chem., 2021, 16(4), 662-678. doi: 10.1002/cmdc.202000653 PMID: 33231370
- Yeo, C.; Ooi, K.; Tiekink, E. Gold-based medicine: A paradigm shift in anti-cancer therapy? Molecules, 2018, 23(6), 1410. doi: 10.3390/molecules23061410 PMID: 29891764
- Kostova, I. Gold coordination complexes as anticancer agents. Anticancer. Agents Med. Chem., 2006, 6(1), 19-32. doi: 10.2174/187152006774755500 PMID: 16475924
- Mora, M.; Gimeno, M.C.; Visbal, R. Recent advances in goldNHC complexes with biological properties. Chem. Soc. Rev., 2019, 48(2), 447-462. doi: 10.1039/C8CS00570B PMID: 30474097
- Schmidt, C.; Karge, B.; Misgeld, R.; Prokop, A.; Franke, R.; Brönstrup, M.; Ott, I. Gold(I) NHC complexes: antiproliferative activity, cellular uptake, inhibition of mammalian and bacterial thioredoxin reductases, and Gram-positive directed antibacterial effects. Chemistry, 2017, 23(8), 1869-1880. doi: 10.1002/chem.201604512 PMID: 27865002
- Svahn, N.; Moro, A.J.; Roma-Rodrigues, C.; Puttreddy, R.; Rissanen, K.; Baptista, P.V.; Fernandes, A.R.; Lima, J.C.; Rodríguez, L. The important role of the nuclearity, rigidity, and solubility of phosphane ligands in the biological activity of gold (I) complexes. Chemistry, 2018, 24(55), 14654-14667. doi: 10.1002/chem.201802547 PMID: 30063270
- Gil-Rubio, J.; Vicente, J. The coordination and supramolecular chemistry of gold metalloligands. Chemistry, 2018, 24(1), 32-46. doi: 10.1002/chem.201703574 PMID: 29027722
- Schwalfenberg, G.K.; Genuis, S.J. The importance of magnesium in clinical healthcare. Scientifica, 2017, 2017, 4179326. doi: 10.1155/2017/4179326 PMID: 29093983
- Glasdam, S.M.; Glasdam, S.; Peters, G.H. The Importance of magnesium in the human body: A systematic literature review. Adv. Clin. Chem., 2016, 73, 169-193. doi: 10.1016/bs.acc.2015.10.002 PMID: 26975973
- Case, D.R.; Zubieta, J.; P. Doyle, R. The coordination chemistry of bio-relevant ligands and their magnesium complexes. Molecules, 2020, 25(14), 3172. doi: 10.3390/molecules25143172 PMID: 32664540
- Aiello, D.; Carnamucio, F.; Cordaro, M.; Foti, C.; Napoli, A.; Giuffrè, O. Ca2+ complexation with relevant bioligands in aqueous solution: A speciation study with implications for biological fluids. Front Chem., 2021, 9, 640219. doi: 10.3389/fchem.2021.640219 PMID: 33718329
- Kochańczyk, T.; Drozd, A.; Krężel, A. Relationship between the architecture of zinc coordination and zinc binding affinity in proteins insights into zinc regulation. Metallomics, 2015, 7(2), 244-257. doi: 10.1039/C4MT00094C PMID: 25255078
- Arise, R.O.; Elizabeth, S.N.; Farohunbi, S.T.; Nafiu, M.O.; Tella, A.C. Mechanochemical synthesis, in vivo anti-malarial and safety evaluation of amodiaquine-zinc complex. Acta Facultat. Medic. Naissensis, 2017, 34(3), 221-233. doi: 10.1515/afmnai-2017-0024
- Pellei, M.; Del Bello, F.; Porchia, M.; Santini, C. Zinc coordination complexes as anticancer agents. Coord. Chem. Rev., 2021, 445, 214088. doi: 10.1016/j.ccr.2021.214088
- Govil, N.; Jana, B. A review on aluminum, gallium and indium complexes of (Ph2-nacnac) ligand. Inorg. Chim. Acta, 2021, 515, 120037. doi: 10.1016/j.ica.2020.120037
- de Albuquerque Wanderley Sales, V.; Timóteo, T.R.R.; da Silva, N.M.; de Melo, C.G.; Ferreira, A.S.; de Oliveira, M.V.G.; de Oliveira Silva, E.; dos Santos Mendes, L.M.; Rolim, L.A.; Neto, P.J.R. A systematic review of the anti-inflammatory effects of gallium compounds. Curr. Med. Chem., 2021, 28(10), 2062-2076. doi: 10.2174/0929867327666200525160556 PMID: 32484099
- Peng, X.X.; Gao, S.; Zhang, J.L. Gallium (III) complexes in cancer chemotherapy. Eur. J. Inorg. Chem., 2022, 6, e202100953.
- Choudhary, N.; Guadalupe Jaraquemada-Peláez, M.; Zarschler, K.; Wang, X.; Radchenko, V.; Kubeil, M.; Stephan, H.; Orvig, C. Chelation in one fell swoop: Optimizing ligands for smaller radiometal ions. Inorg. Chem., 2020, 59(8), 5728-5741. doi: 10.1021/acs.inorgchem.0c00509 PMID: 32242663
- Beraldo, H. Pharmacological applications of non-radioactive indium(III) complexes: A field yet to be explored. Coord. Chem. Rev., 2020, 419, 213375. doi: 10.1016/j.ccr.2020.213375
- Kostova, I. Lanthanides as anticancer agents. Curr. Med. Chem. Anticancer Agents, 2005, 5(6), 591-602. doi: 10.2174/156801105774574694 PMID: 16305481
- Panichev, A.M. Rare earth elements: Review of medical and biological properties and their abundance in the rock materials and mineralized spring waters in the context of animal and human geophagia reasons evaluation. Achievem. Life Sci., 2015, 9(2), 95-103. doi: 10.1016/j.als.2015.12.001
- Ascenzi, P.; Bettinelli, M.; Boffi, A.; Botta, M.; De Simone, G.; Luchinat, C.; Marengo, E.; Mei, H.; Aime, S. Rare earth elements (REE) in biology and medicine. Rend. Lincei Sci. Fis. Nat., 2020, 31(3), 821-833. doi: 10.1007/s12210-020-00930-w
- Menchikov, L.G.; Ignatenko, M.A. Biological activity of organogermanium compounds (a review). Pharm. Chem. J., 2013, 46(11), 635-638. doi: 10.1007/s11094-013-0860-2
- Shah, S.; Ashfaq, M.; Waseem, A.; Ahmed, M.; Najam, T.; Shaheen, S.; Rivera, G. Synthesis and biological activities of organotin (IV) complexes as antitumoral and antimicrobial agents. A review. Mini Rev. Med. Chem., 2015, 15(5), 406-426. doi: 10.2174/138955751505150408142958 PMID: 25910654
- Santos, M.M.; Bastos, P.; Catela, I.; Zalewska, K.; Branco, L.C. recent advances of metallocenes for medicinal chemistry. Mini Rev. Med. Chem., 2017, 17(9), 771-784. doi: 10.2174/1389557516666161031141620 PMID: 27804886
- Fernández-Vega, L.; Ruiz Silva, V.A.; Domínguez-González, T.M.; Claudio-Betancourt, S.; Toro-Maldonado, R.E.; Capre Maso, L.C.; Sanabria Ortiz, K.; Pérez-Verdejo, J.A.; Román González, J.; Rosado-Fraticelli, G.T.; Pagán Meléndez, F.; Betancourt Santiago, F.M.; Rivera-Rivera, D.A.; Martínez Navarro, C.; Bruno Chardón, A.C.; Vera, A.O.; Tinoco, A.D. Evaluating ligand modifications of the titanocene and auranofin moieties for the development of more potent anticancer drugs. Inorganics, 2020, 8(2), 10. doi: 10.3390/inorganics8020010 PMID: 34046448
- Buettner, K.M.; Valentine, A.M. Bioinorganic chemistry of titanium. Chem. Rev., 2012, 112(3), 1863-1881. doi: 10.1021/cr1002886 PMID: 22074443
- Arzoumanidis, G.G. New antitumor organotitanium complexes with a pendant biologically active diazo group. Fine Chem. Engin, 2022, 3, 171-P181. doi: 10.37256/fce.3220221820
- Giusti, L.; Landaeta, V.R.; Vanni, M.; Kelly, J.A.; Wolf, R.; Caporali, M. Coordination chemistry of elemental phosphorus. Coord. Chem. Rev., 2021, 441, 213927. doi: 10.1016/j.ccr.2021.213927
- Al Zoubi, W.; Kim, M.J.; Salih Al-Hamdani, A.A.; Kim, Y.G.; Ko, Y.G. Phosphorus-based Schiff bases and their complexes as non-toxic antioxidants: Structureactivity relationship and mechanism of action. Appl. Organomet. Chem., 2019, 33(11), e5210. doi: 10.1002/aoc.5210
- Caminade, A.M.; Ouali, A.; Laurent, R.; Turrin, C.O.; Majoral, J.P. Coordination chemistry with phosphorus dendrimers. Applications as catalysts, for materials, and in biology. Coord. Chem. Rev., 2016, 308, 478-497. doi: 10.1016/j.ccr.2015.06.007
- Galezowska, J.; Gumienna-Kontecka, E. Phosphonates, their complexes and bio-applications: A spectrum of surprising diversity. Coord. Chem. Rev., 2012, 256(1-2), 105-124. doi: 10.1016/j.ccr.2011.07.002
- Zhao, Y.F.; Han, B.; Chen, J.; Jiang, Y. Penta-coordinate phosphorus compounds and biochemistry. Phosphorus Sulfur Silicon Relat. Elem., 2002, 177(6-7), 1391-1396. doi: 10.1080/10426500212228
- Ramaekers, B.L.T.; Riemsma, R.; Grimm, S.; Fayter, D.; Deshpande, S.; Armstrong, N.; Witlox, W.; Pouwels, X.; Duffy, S.; Worthy, G.; Kleijnen, J.; Joore, M.A. Arsenic trioxide for treating acute promyelocytic leukaemia: an evidence review group perspective of a NICE single technology appraisal. Pharmaco. Econ., 2019, 37(7), 887-894. doi: 10.1007/s40273-018-0738-y PMID: 30426463
- Shetu, S.A.; Sanchez-Palestino, L.M.; Rivera, G.; Bandyopadhyay, D. Medicinal bismuth: Bismuth-organic frameworks as pharmaceutically privileged compounds. Tetrahedron, 2022, 129, 133117. doi: 10.1016/j.tet.2022.133117
- Ong, Y.C.; Roy, S.; Andrews, P.C.; Gasser, G. Metal compounds against neglected tropical diseases. Chem. Rev., 2019, 119(2), 730-796. doi: 10.1021/acs.chemrev.8b00338 PMID: 30507157
- Mukherjee, B.; Mukherjee, K.; Nanda, P.; Mukhopadhayay, R.; Ravichandiran, V.; Bhattacharyya, S.N.; Roy, S. Probing the molecular mechanism of aggressive infection by antimony resistant Leishmania donovani. Cytokine, 2021, 145, 155245. doi: 10.1016/j.cyto.2020.155245 PMID: 32861564
- Treviño, S.; Díaz, A.; Sánchez-Lara, E.; Sanchez-Gaytan, B.L.; Perez-Aguilar, J.M.; González-Vergara, E. Vanadium in biological action: chemical, pharmacological aspects, and metabolic implications in diabetes mellitus. Biol. Trace Elem. Res., 2019, 188(1), 68-98. doi: 10.1007/s12011-018-1540-6 PMID: 30350272
- Rehder, D. The role of vanadium in biology. Metallomics, 2015, 7(5), 730-742. doi: 10.1039/C4MT00304G PMID: 25608665
- Dong, Y.; Stewart, T.; Zhang, Y.; Shi, M.; Tan, C.; Li, X.; Yuan, L.; Mehrotra, A.; Zhang, J.; Yang, X. Anti-diabetic vanadyl complexes reduced Alzheimers disease pathology independent of amyloid plaque deposition. Sci. China Life Sci., 2019, 62(1), 126-139. doi: 10.1007/s11427-018-9350-1 PMID: 30136058
- Arroyo Negrete, M.A.; Wrobel, K.; Yanez Barrientos, E.; Corrales Escobosa, A.R.; Enciso Donis, I.; Wrobel, K. Determination of chromium(III) picolinate in dietary supplements by flow injection - electrospray ionization - tandem mass spectrometry, using cobalt(II) picolinate as internal standard. Talanta, 2022, 240, 123161. doi: 10.1016/j.talanta.2021.123161 PMID: 34953383
- Bartholomäus, R.; Irwin, J.A.; Shi, L.; Smith, S.M.; Levina, A.; Lay, P.A. Isolation, characterization, and nuclease activity of biologically relevant chromium(V) complexes with monosaccharides and model diols. Likely intermediates in chromium-induced cancers. Inorg. Chem., 2013, 52(8), 4282-4292. doi: 10.1021/ic3022408 PMID: 23531300
- Pavesi, T.; Moreira, J.C. Mechanisms and individuality in chromium toxicity in humans. J. Appl. Toxicol., 2020, 40(9), 1183-1197. doi: 10.1002/jat.3965 PMID: 32166774
- DesMarias, T.L.; Costa, M. Mechanisms of chromiuminduced toxicity. Curr. Opin. Toxicol., 2019, 14, 1-7. doi: 10.1016/j.cotox.2019.05.003 PMID: 31511838
- Maret, W. Chromium supplementation in human health, metabolic syndrome, and diabetes. Met. Ions Life Sci., 2019, 19, 231-252. doi: 10.1515/9783110527872-009 PMID: 30855110
- Li, Y.; Fang, M.; Xu, Z.; Li, X. Tetrathiomolybdate as an old drug in a new use: As a chemotherapeutic sensitizer for non-small cell lung cancer. J. Inorg. Biochem., 2022, 233, 111865. doi: 10.1016/j.jinorgbio.2022.111865 PMID: 35623139
- Wang, X.; Wei, S.; Zhao, C.; Li, X.; Jin, J.; Shi, X.; Su, Z.; Li, J.; Wang, J. Promising application of polyoxometalates in the treatment of cancer, infectious diseases and Alzheimers disease. Eur. J. Biochem., 2022, 27(4-5), 405-419. doi: 10.1007/s00775-022-01942-7 PMID: 35713714
- Okamoto, Y.; Kojima, R.; Schwizer, F.; Bartolami, E.; Heinisch, T.; Matile, S.; Fussenegger, M.; Ward, T.R. A cell-penetrating artificial metalloenzyme regulates a gene switch in a designer mammalian cell. Nat. Commun., 2018, 9(1), 1943. doi: 10.1038/s41467-018-04440-0 PMID: 29769518
- Kitada, M.; Xu, J.; Ogura, Y.; Monno, I.; Koya, D. Manganese superoxide dismutase dysfunction and the pathogenesis of kidney disease. Front. Physiol., 2020, 11, 755. doi: 10.3389/fphys.2020.00755 PMID: 32760286
- Miriyala, S.; Spasojevic, I.; Tovmasyan, A.; Salvemini, D.; Vujaskovic, Z.; St Clair, D.; Batinic-Haberle, I. Manganese superoxide dismutase, MnSOD and its mimics. Biochim. Biophys. Acta, 2012, 1822(5), 794-814. doi: 10.1016/j.bbadis.2011.12.002 PMID: 22198225
- Belani, K.G.; Hottinger, D.G.; Beebe, D.S.; Kozhimannil, T.; Prielipp, R.C. Sodium nitroprusside in 2014: A clinical concepts review. J. Anaesthesiol. Clin. Pharmacol., 2014, 30(4), 462-471. doi: 10.4103/0970-9185.142799 PMID: 25425768
- Ripeckyj, A.; Kosmopoulos, M.; Shekar, K.; Carlson, C.; Kalra, R.; Rees, J.; Aufderheide, T.P.; Bartos, J.A.; Yannopoulos, D. Sodium nitroprussideenhanced cardiopulmonary resuscitation improves blood flow by pulmonary vasodilation leading to higher oxygen requirements. JACC Basic Transl. Sci., 2020, 5(2), 183-192. doi: 10.1016/j.jacbts.2019.11.010 PMID: 32140624
- Handtke, S.; Thiele, T. Large and small platelets(When) do they differ? J. Thromb. Haemost., 2020, 18(6), 1256-1267. doi: 10.1111/jth.14788 PMID: 32108994
- Jaouen, G.; Vessières, A.; Top, S. Ferrocifen type anti cancer drugs. Chem. Soc. Rev., 2015, 44(24), 8802-8817. doi: 10.1039/C5CS00486A PMID: 26486993
- Hagen, H.; Marzenell, P.; Jentzsch, E.; Wenz, F.; Veldwijk, M.R.; Mokhir, A. Aminoferrocene-based prodrugs activated by reactive oxygen species. J. Med. Chem., 2012, 55(2), 924-934. doi: 10.1021/jm2014937 PMID: 22185340
- Snegur, L.V. Modern trends in bio-organometallic ferrocene chemistry. Inorganics, 2022, 10(12), 226. doi: 10.3390/inorganics10120226
- Peter, S.; Aderibigbe, B.A. Ferrocene-based compounds with antimalaria/anticancer activity. Molecules, 2019, 24(19), 3604. doi: 10.3390/molecules24193604 PMID: 31591298
- Roux, C.; Biot, C. Ferrocene-based antimalarials. Future Med. Chem., 2012, 4(6), 783-797. doi: 10.4155/fmc.12.26 PMID: 22530641
- Xiao, J.; Sun, Z.; Kong, F.; Gao, F. Current scenario of ferrocene-containing hybrids for antimalarial activity. Eur. J. Med. Chem., 2020, 185, 111791. doi: 10.1016/j.ejmech.2019.111791 PMID: 31669852
- Ludwig, B.S.; Correia, J.D.G.; Kühn, F.E. Ferrocene derivatives as anti-infective agents. Coord. Chem. Rev., 2019, 396, 22-48. doi: 10.1016/j.ccr.2019.06.004
- Dubar, F.; Khalife, J.; Brocard, J.; Dive, D.; Biot, C. Ferroquine, an ingenious antimalarial drug: thoughts on the mechanism of action. Molecules, 2008, 13(11), 2900-2907. doi: 10.3390/molecules13112900 PMID: 19020475
- Dive, D.; Biot, C. Ferroquine as an oxidative shock antimalarial. Curr. Top. Med. Chem., 2014, 14(14), 1684-1692. doi: 10.2174/1568026614666140808122329 PMID: 25116581
- Herrmann, C.; Salas, P.F.; Cawthray, J.F.; de Kock, C.; Patrick, B.O.; Smith, P.J.; Adam, M.J.; Orvig, C. 1,1′-Disubstituted ferrocenyl carbohydrate chloroquine conjugates as potential antimalarials. Organometallics, 2012, 31(16), 5736-5747. doi: 10.1021/om300354x
- Peigneguy, F.; Allain, M.; Cougnon, C.; Frère, P.; Siegler, B.; Bressy, C.; Gohier, F. Syntheses and NMR and XRD studies of carbo-hydrateferrocene conjugates. New J. Chem., 2019, 43(24), 9706-9710. doi: 10.1039/C9NJ01563A
- Patra, M.; Gasser, G.; Metzler-Nolte, N. Small organometallic compounds as antibacterial agents. Dalton Trans., 2012, 41(21), 6350-6358. doi: 10.1039/c2dt12460b PMID: 22411216
- Begum, W.; Rai, S.; Banerjee, S.; Bhattacharjee, S.; Mondal, M.H.; Bhattarai, A.; Saha, B. A comprehensive review on the sources, essentiality and toxicological profile of nickel. RSC Advances, 2022, 12(15), 9139-9153. doi: 10.1039/D2RA00378C PMID: 35424851
- Maroney, M.J.; Ciurli, S. Nonredox nickel enzymes. Chem. Rev., 2014, 114(8), 4206-4228. doi: 10.1021/cr4004488 PMID: 24369791
- Boer, J.L.; Mulrooney, S.B.; Hausinger, R.P. Nickel-dependent metalloenzymes. Arch. Biochem. Biophys., 2014, 544, 142-152. doi: 10.1016/j.abb.2013.09.002 PMID: 24036122
- Das, K.K.; Das, S.N.; Dhundasi, S.A. Nickel, its adverse health effects & oxidative stress. Indian J. Med. Res., 2008, 128(4), 412-425. PMID: 19106437
- Renfrew, A.K.; ONeill, E.S.; Hambley, T.W.; New, E.J. Harnessing the properties of cobalt coordination complexes for biological application. Coord. Chem. Rev., 2018, 375, 221-233. doi: 10.1016/j.ccr.2017.11.027
- Heffern, M.C.; Yamamoto, N.; Holbrook, R.J.; Eckermann, A.L.; Meade, T.J. Cobalt derivatives as promising therapeutic agents. Curr. Opin. Chem. Biol., 2013, 17(2), 189-196. doi: 10.1016/j.cbpa.2012.11.019 PMID: 23270779
- Bonaccorso, C.; Marzo, T.; La Mendola, D. Biological applications of thiocarbohydrazones and their metal complexes: A perspective review. Pharmaceuticals, 2019, 13(1), 4. doi: 10.3390/ph13010004 PMID: 31881715
- Kostova, I. Platinum complexes as anticancer agents. Recent Patents Anticancer Drug Discov., 2006, 1(1), 1-22. doi: 10.2174/157489206775246458 PMID: 18221023
- Johnstone, T.C.; Suntharalingam, K.; Lippard, S.J. The next generation of platinum drugs: targeted Pt(II) agents, nanoparticle delivery, and Pt(IV) prodrugs. Chem. Rev., 2016, 116(5), 3436-3486. doi: 10.1021/acs.chemrev.5b00597 PMID: 26865551
- Ghosh, S. Cisplatin: The first metal based anticancer drug. Bioorg. Chem., 2019, 88, 102925. doi: 10.1016/j.bioorg.2019.102925 PMID: 31003078
- Gibson, D. Platinum(IV) anticancer prodrugs hypotheses and facts. Dalton Trans., 2016, 45(33), 12983-12991. doi: 10.1039/C6DT01414C PMID: 27214873
- Alassadi, S.; Pisani, M.J.; Wheate, N.J. A chemical perspective on the clinical use of platinum-based anticancer drugs. Dalton Trans., 2022, 51(29), 10835-10846. doi: 10.1039/D2DT01875F PMID: 35781551
- Evin Eskicioglu, H.; Olgun, Y.; Aktaş, T.C.; Aktas, S.; Kolatan, E.; Serinan, E.; Altun, Z.; Kirkim, G.; Yilmaz, O.; Olgun, N. Comparison of cytotoxic and ototoxic effects of lipoplatin and cisplatin in neuroblastoma in vivo tumor model. J. Int. Adv. Otol., 2022, 18(5), 392-398. doi: 10.5152/iao.2022.21268 PMID: 36063095
- Jahromi, E.Z.; Divsalar, A.; Saboury, A.A.; Khaleghizadeh, S.; Mansouri-Torshizi, H.; Kostova, I. Palladium complexes: new candidates for anti-cancer drugs. J. Indian Chem. Soc., 2016, 13(5), 967-989. doi: 10.1007/s13738-015-0804-8
- Coverdale, J.; Laroiya-McCarron, T.; Romero-Canelón, I. Designing ruthenium anticancer drugs: What have we learnt from the key drug candidates? Inorganics, 2019, 7(3), 31. doi: 10.3390/inorganics7030031
- Lee, S.Y.; Kim, C.Y.; Nam, T.G. Ruthenium complexes as anticancer agents: A brief history and perspectives. Drug Des. Devel. Ther., 2020, 14, 5375-5392. doi: 10.2147/DDDT.S275007 PMID: 33299303
- Kenny, R.G.; Marmion, C.J. Toward multi-targeted platinum and ruthenium drugsa new paradigm in cancer drug treatment regimens? Chem. Rev., 2019, 119(2), 1058-1137. doi: 10.1021/acs.chemrev.8b00271 PMID: 30640441
- Kostova, I. Ruthenium complexes as anticancer agents. Curr. Med. Chem., 2006, 13(9), 1085-1107. doi: 10.2174/092986706776360941 PMID: 16611086
- Messori, L.; Camarri, M.; Ferraro, T.; Gabbiani, C.; Franceschini, D. Promising in vitro anti-alzheimer properties for a ruthenium(III) complex. ACS Med. Chem. Lett., 2013, 4(3), 329-332. doi: 10.1021/ml3003567 PMID: 24900669
- Mbaba, M.; Golding, T.M.; Smith, G.S. Recent advances in the biological investigation of organometallic platinum-group metal (Ir, Ru, Rh, Os, Pd, Pt) complexes as antimalarial agents. Molecules, 2020, 25(22), 5276. doi: 10.3390/molecules25225276 PMID: 33198217
- Navarro, M.; Castro, W.; Madamet, M.; Amalvict, R.; Benoit, N.; Pradines, B. Metal-chloroquine derivatives as possible anti-malarial drugs: Evaluation of anti-malarial activity and mode of action. Malar. J., 2014, 13(1), 471. doi: 10.1186/1475-2875-13-471 PMID: 25470995
- Butler, J.A.; Britten, N.S. Ruthenium metallotherapeutics: Novel approaches to combatting parasitic infections. Curr. Med. Chem., 2022, 29(31), 5159-5178. doi: 10.2174/0929867329666220401105444 PMID: 35366762
- Hubin, T.J.; Amoyaw, P.N.A.; Roewe, K.D.; Simpson, N.C.; Maples, R.D.; Carder Freeman, T.N.; Cain, A.N.; Le, J.G.; Archibald, S.J.; Khan, S.I.; Tekwani, B.L.; Khan, M.O.F. Synthesis and antimalarial activity of metal complexes of cross-bridged tetraazamacrocyclic ligands. Bioorg. Med. Chem., 2014, 22(13), 3239-3244. doi: 10.1016/j.bmc.2014.05.003 PMID: 24857776
- Kwiatkowski, S.; Knap, B.; Przystupski, D.; Saczko, J.; Kędzierska, E.; Knap-Czop, K.; Kotlińska, J.; Michel, O.; Kotowski, K.; Kulbacka, J. Photodynamic therapy mechanisms, photosensitizers and combinations. Biomed. Pharmacother., 2018, 106, 1098-1107. doi: 10.1016/j.biopha.2018.07.049 PMID: 30119176
- Duan, K.; Liu, B.; Li, C.; Zhang, H.; Yu, T.; Qu, J.; Zhou, M.; Chen, L.; Meng, S.; Hu, Y.; Peng, C.; Yuan, M.; Huang, J.; Wang, Z.; Yu, J.; Gao, X.; Wang, D.; Yu, X.; Li, L.; Zhang, J.; Wu, X.; Li, B.; Xu, Y.; Chen, W.; Peng, Y.; Hu, Y.; Lin, L.; Liu, X.; Huang, S.; Zhou, Z.; Zhang, L.; Wang, Y.; Zhang, Z.; Deng, K.; Xia, Z.; Gong, Q.; Zhang, W.; Zheng, X.; Liu, Y.; Yang, H.; Zhou, D.; Yu, D.; Hou, J.; Shi, Z.; Chen, S.; Chen, Z.; Zhang, X.; Yang, X. Effectiveness of convalescent plasma therapy in severe COVID-19 patients. Proc. Natl. Acad. Sci. USA, 2020, 117(17), 9490-9496. doi: 10.1073/pnas.2004168117 PMID: 32253318
- Wiehe, A.; OBrien, J.M.; Senge, M.O. Trends and targets in antiviral phototherapy. Photochem. Photobiol. Sci., 2019, 18(11), 2565-2612. doi: 10.1039/c9pp00211a PMID: 31397467
- Conrado, P.C.V.; Sakita, K.M.; Arita, G.S.; Galinari, C.B.; Gonçalves, R.S.; Lopes, L.D.G.; Lonardoni, M.V.C.; Teixeira, J.J.V.; Bonfim-Mendonça, P.S.; Kioshima, E.S. A systematic review of photodynamic therapy as an antiviral treatment: Potential guidance for dealing with SARS-CoV-2. Photodiagn. Photodyn. Ther., 2021, 34, 102221. doi: 10.1016/j.pdpdt.2021.102221 PMID: 33601001
- Costa, L.; Faustino, M.A.F.; Neves, M.G.P.M.S.; Cunha, .; Almeida, A. Photodynamic inactivation of mammalian viruses and bacteriophages. Viruses, 2012, 4(7), 1034-1074. doi: 10.3390/v4071034 PMID: 22852040
- Wang, J.; Potocny, A.M.; Rosenthal, J.; Day, E.S. Gold nanoshell-linear tetrapyrrole conjugates for near infrared-activated dual photodynamic and photothermal therapies. ACS Omega, 2020, 5(1), 926-940. doi: 10.1021/acsomega.9b04150 PMID: 31956847
- Moore, C.M.; Azzouzi, A.R.; Barret, E.; Villers, A.; Muir, G.H.; Barber, N.J.; Bott, S.; Trachtenberg, J.; Arumainayagam, N.; Gaillac, B.; Allen, C.; Schertz, A.; Emberton, M.; Barret, E. Determination of optimal drug dose and light dose index to achieve minimally invasive focal ablation of localised prostate cancer using WST11-vascular-targeted photodynamic (VTP) therapy. BJU Int., 2015, 116(6), 888-896. doi: 10.1111/bju.12816 PMID: 24841929
- Maggioni, D.; Galli, M.; DAlfonso, L.; Inverso, D.; Dozzi, M.V.; Sironi, L.; Iannacone, M.; Collini, M.; Ferruti, P.; Ranucci, E.; DAlfonso, G. A luminescent poly(amidoamine)-iridium complex as a new singlet-oxygen sensitizer for photodynamic therapy. Inorg. Chem., 2015, 54(2), 544-553. doi: 10.1021/ic502378z PMID: 25554822
- Abrahamse, H.; Hamblin, M.R. New photosensitizers for photodynamic therapy. Biochem. J., 2016, 473(4), 347-364. doi: 10.1042/BJ20150942 PMID: 26862179
- Knoll, J.D.; Turro, C. Control and utilization of ruthenium and rhodium metal complex excited states for photoactivated cancer therapy. Coord. Chem. Rev., 2015, 282-283, 110-126. doi: 10.1016/j.ccr.2014.05.018 PMID: 25729089
- Falk-Mahapatra, R.; Gollnick, S.O. Photodynamic therapy and immunity: An update. Photochem. Photobiol., 2020, 96(3), 550-559. doi: 10.1111/php.13253 PMID: 32128821
- McKenzie, L.K.; Bryant, H.E.; Weinstein, J.A. Transition metal complexes as photosensitisers in one- and two-photon photodynamic therapy. Coord. Chem. Rev., 2019, 379, 2-29. doi: 10.1016/j.ccr.2018.03.020
- van Straten, D.; Mashayekhi, V.; de Bruijn, H.; Oliveira, S.; Robinson, D. Oncologic photodynamic therapy: basic principles, current clinical status and future directions. Cancers, 2017, 9(12), 19. doi: 10.3390/cancers9020019 PMID: 28218708
- Monro, S.; Colón, K.L.; Yin, H.; Roque, J., III; Konda, P.; Gujar, S.; Thummel, R.P.; Lilge, L.; Cameron, C.G.; McFarland, S.A. Transition metal complexes and photodynamic therapy from a tumorcentered approach: Challenges, opportunities, and highlights from the development of TLD1433. Chem. Rev., 2019, 119(2), 797-828. doi: 10.1021/acs.chemrev.8b00211 PMID: 30295467
- Chen, Y.; Guan, R.; Zhang, C.; Huang, J.; Ji, L.; Chao, H. Two-photon luminescent metal complexes for bioimaging and cancer phototherapy. Coord. Chem. Rev., 2016, 310, 16-40. doi: 10.1016/j.ccr.2015.09.010
- Shi, G.; Monro, S.; Colpitts, J.; Fong, J.; Kasimova, K.; Yin, H.; DeCoste, R.; Spencer, C. Ru(II) dyads derived from a-oligothiophenes: a new class of potent and versatile photosensitizers for PDT. Coord. Chem. Rev., 2014, 282283, 127-138.
- Zhang, P.; Huang, H. Future potential of osmium complexes as anticancer drug candidates, photosensitizers and organelle-targeted probes. Dalton Trans., 2018, 47(42), 14841-14854. doi: 10.1039/C8DT03432J PMID: 30325378
- Heinemann, F.; Karges, J.; Gasser, G. Critical overview of the use of Ru(II) polypyridyl complexes as photosensitizers in one-photon and two-photon photodynamic therapy. Acc. Chem. Res., 2017, 50(11), 2727-2736. doi: 10.1021/acs.accounts.7b00180 PMID: 29058879
- Jakubaszek, M.; Goud, B.; Ferrari, S.; Gasser, G. Mechanisms of action of Ru(II) polypyridyl complexes in living cells upon light irradiation. Chem. Commun., 2018, 54(93), 13040-13059. doi: 10.1039/C8CC05928D PMID: 30398487
- Mari, C.; Pierroz, V.; Ferrari, S.; Gasser, G. Combination of Ru(II) complexes and light: new frontiers in cancer therapy. Chem. Sci., 2015, 6(5), 2660-2686. doi: 10.1039/C4SC03759F PMID: 29308166
- Poynton, F.E.; Bright, S.A.; Blasco, S.; Williams, D.C.; Kelly, J.M.; Gunnlaugsson, T. The development of ruthenium(II) polypyridyl complexes and conjugates for in vitro cellular and in vivo applications. Chem. Soc. Rev., 2017, 46(24), 7706-7756. doi: 10.1039/C7CS00680B PMID: 29177281
- Zeng, L.; Gupta, P.; Chen, Y.; Wang, E.; Ji, L.; Chao, H.; Chen, Z.S. The development of anticancer ruthenium(II) complexes: from single molecule compounds to nanomaterials. Chem. Soc. Rev., 2017, 46(19), 5771-5804. doi: 10.1039/C7CS00195A PMID: 28654103
- Huang, H.; Banerjee, S.; Sadler, P.J. Recent advances in the design of targeted iridium(III) photosensitizers for photodynamic therapy. Chem. Bio. Chem, 2018, 19(15), 1574-1589. doi: 10.1002/cbic.201800182 PMID: 30019476
- Boros, E.; Packard, A.B. Radioactive transition metals for imaging and therapy. Chem. Rev., 2019, 119(2), 870-901. doi: 10.1021/acs.chemrev.8b00281 PMID: 30299088
- Kostelnik, T.I.; Orvig, C. Radioactive main group and rare earth metals for imaging and therapy. Chem. Rev., 2019, 119(2), 902-956. doi: 10.1021/acs.chemrev.8b00294 PMID: 30379537
- Price, E.W.; Orvig, C. Matching chelators to radiometals for radiopharmaceuticals. Chem. Soc. Rev., 2014, 43(1), 260-290. doi: 10.1039/C3CS60304K PMID: 24173525
- Ayesa, S.L.; Schembri, G.P. Is 67gallium dead? A retrospective review of 67 gallium imaging in a single tertiary referral centre. Nucl. Med. Commun., 2021, 42(4), 378-388. doi: 10.1097/MNM.0000000000001342 PMID: 33323867
- Harnden, A.C.; Parker, D.; Rogers, N.J. Employing paramagnetic shift for responsive MRI probes. Coord. Chem. Rev., 2019, 383, 30-42. doi: 10.1016/j.ccr.2018.12.012
- Rogosnitzky, M.; Branch, S. Gadolinium-based contrast agent toxicity: a review of known and proposed mechanisms. Biometals, 2016, 29(3), 365-376. doi: 10.1007/s10534-016-9931-7 PMID: 27053146
- Fatima, A.; Ahmad, M.W.; Al Saidi, A.K.A.; Choudhury, A.; Chang, Y.; Lee, G.H. Recent advances in gadolinium-based contrast agents for bioimaging applications. Nanomaterials, 2021, 11(9), 2449. doi: 10.3390/nano11092449 PMID: 34578765
- Wahsner, J.; Gale, E.M.; Rodríguez-Rodríguez, A.; Caravan, P. Chemistry of MRI contrast agents: current challenges and new frontiers. Chem. Rev., 2019, 119(2), 957-1057. doi: 10.1021/acs.chemrev.8b00363 PMID: 30350585
- Boros, E.; Gale, E.M.; Caravan, P. MR imaging probes: Design and applications. Dalton Trans., 2015, 44(11), 4804-4818. doi: 10.1039/C4DT02958E PMID: 25376893
- Heffern, M.C.; Matosziuk, L.M.; Meade, T.J. Lanthanide probes for bioresponsive imaging. Chem. Rev., 2014, 114(8), 4496-4539. doi: 10.1021/cr400477t PMID: 24328202
- Webster, A.M.; Peacock, A.F.A. De novo designed coiled coils as scaffolds for lanthanides, including novel imaging agents with a twist. Chem. Commun., 2021, 57(56), 6851-6862. doi: 10.1039/D1CC02013G PMID: 34151325
- Loving, G.S.; Mukherjee, S.; Caravan, P. Redox-activated manganese-based MR contrast agent. J. Am. Chem. Soc., 2013, 135(12), 4620-4623. doi: 10.1021/ja312610j PMID: 23510406
- Bao, G. Lanthanide complexes for drug delivery and therapeutics. J. Lumin., 2020, 228, 117622. doi: 10.1016/j.jlumin.2020.117622
Arquivos suplementares
