Promises and Pitfalls of Calcineurin Inhibitors in COVID-19: A Systematic Review and Meta-analysis of Controlled Trials

  • Авторы: Heydari B.1, Sahebnasagh A.2, Omrani M.A.3, Azimi S.4, Dehghani M.H.5, Salehi-Abargouei A.6, Farman F.3, Saghafi F.7
  • Учреждения:
    1. Department of Clinical Pharmacy, School of Pharmacy, Shahid Sadoughi University of Medical Sciences and Health Services
    2. Department of Internal Medicine, Clinical Research Center, North Khorasan University of Medical Sciences
    3. Pharmaceutical Sciences Research Center, School of Pharmacy, Student Research Committee, Shahid Sadoughi University of Medical Sciences and Health Services
    4. Student Research Committee, Department of Clinical Pharmacy, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences
    5. Department of Anesthesiology and Critical Care, Shahid Rahnemoun Hospital, Shahid Sadoughi University of Medical Sciences
    6. Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences and Health Services
    7. Department of Clinical Pharmacy, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Shahid Sadoughi University of Medical Sciences and Health Services
  • Выпуск: Том 31, № 29 (2024)
  • Страницы: 4745-4755
  • Раздел: Anti-Infectives and Infectious Diseases
  • URL: https://cijournal.ru/0929-8673/article/view/645012
  • DOI: https://doi.org/10.2174/0109298673264362231022150520
  • ID: 645012

Цитировать

Полный текст

Аннотация

Objective::Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes a violent attack on the body that leads to multi-organ failure and death in COVID-19 patients. The aim of this study was to systematically review the existing literature on the potential benefits of calcineurin inhibitors (CIs) as anti-vascular endothelial growth factor (VEGF) agents in improving the clinical outcomes of COVID-19 patients.

Methods::We searched various databases, including PubMed, Scopus, ISI Web of Science, Google Scholar, Cochrane databases, and ClinicalTrials.gov from 31st December, 2019, to 3rd February, 2023, for relevant controlled trials. The quality of the evidence was assessed using the Cochrane Collaboration tool. Comprehensive Meta-Analysis Software was used for the statistical analyses using a random-effects model.

Results::Three trials enrolling 293 participants were reviewed in the present systematic review and meta-analysis. The results showed CIs to lead to a significant reduction in mortality rate [risk ratio (RR): 0.598, 95% CI: 0.404-0.885, P-value = 0.010] with a low between-study heterogeneity (Cochrane Q test: I2 = 0.000%, P-value = 0.371). Pooled analysis of two studies (84 patients) illustrated that CIs could not significantly increase the rate of hospital discharge (RR: 1.161, 95% CI: 0.764-1.764, P-value = 0.485) and heterogeneity was not significant (Cochrane Q test: I2 = 26.798%, P-value = 0.242).

Conclusion::CIs are able to inhibit the virus nucleocapsid protein so that they can prevent replication and respiratory tract tissue damage caused by SARS-CoV-2. Based on the characteristics mentioned in detail, CIs can play a potential therapeutic role for COVID-19 patients.

Об авторах

Behrooz Heydari

Department of Clinical Pharmacy, School of Pharmacy, Shahid Sadoughi University of Medical Sciences and Health Services

Email: info@benthamscience.net

Adeleh Sahebnasagh

Department of Internal Medicine, Clinical Research Center, North Khorasan University of Medical Sciences

Email: info@benthamscience.net

Mohammad Omrani

Pharmaceutical Sciences Research Center, School of Pharmacy, Student Research Committee, Shahid Sadoughi University of Medical Sciences and Health Services

Email: info@benthamscience.net

Saeed Azimi

Student Research Committee, Department of Clinical Pharmacy, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences

Email: info@benthamscience.net

Mohammad Dehghani

Department of Anesthesiology and Critical Care, Shahid Rahnemoun Hospital, Shahid Sadoughi University of Medical Sciences

Email: info@benthamscience.net

Amin Salehi-Abargouei

Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences and Health Services

Email: info@benthamscience.net

Farnoosh Farman

Pharmaceutical Sciences Research Center, School of Pharmacy, Student Research Committee, Shahid Sadoughi University of Medical Sciences and Health Services

Email: info@benthamscience.net

Fatemeh Saghafi

Department of Clinical Pharmacy, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Shahid Sadoughi University of Medical Sciences and Health Services

Автор, ответственный за переписку.
Email: info@benthamscience.net

Список литературы

  1. Rabi, F.A.; Al Zoubi, M.S.; Kasasbeh, G.A.; Salameh, D.M.; Al-Nasser, A.D. SARS-CoV-2 and coronavirus disease 2019: What we know so far. Pathogens., 2020, 9(3), 231. doi: 10.3390/pathogens9030231 PMID: 32245083
  2. Cui, J.; Li, F.; Shi, Z.L. Origin and evolution of pathogenic coronaviruses. Nat. Rev. Microbiol., 2019, 17(3), 181-192. doi: 10.1038/s41579-018-0118-9 PMID: 30531947
  3. Zhou, P.; Fan, H.; Lan, T.; Yang, X.L.; Shi, W.F.; Zhang, W.; Zhu, Y.; Zhang, Y.W.; Xie, Q.M.; Mani, S.; Zheng, X.S.; Li, B.; Li, J.M.; Guo, H.; Pei, G.Q.; An, X.P.; Chen, J.W.; Zhou, L.; Mai, K.J.; Wu, Z.X.; Li, D.; Anderson, D.E.; Zhang, L.B.; Li, S.Y.; Mi, Z.Q.; He, T.T.; Cong, F.; Guo, P.J.; Huang, R.; Luo, Y.; Liu, X.L.; Chen, J.; Huang, Y.; Sun, Q.; Zhang, X.L.L.; Wang, Y.Y.; Xing, S.Z.; Chen, Y.S.; Sun, Y.; Li, J.; Daszak, P.; Wang, L.F.; Shi, Z.L.; Tong, Y.G.; Ma, J.Y. Fatal swine acute diarrhoea syndrome caused by an HKU2-related coronavirus of bat origin. Nature., 2018, 556(7700), 255-258. doi: 10.1038/s41586-018-0010-9 PMID: 29618817
  4. Zhou, P; Yang, X-L; Wang, X-G; Hu, B; Zhang, L; Zhang, W A pneumonia outbreak associated with a new coronavirus of probable bat origin. nature., 2020, 579(7798), 270-273. doi: 10.1038/s41586-020-2012-7 PMID: 32015507
  5. Sahebnasagh, A.; Mojtahedzadeh, M.; Najmeddin, F.; Najafi, A.; Safdari, M.; Rezai Ghaleno, H.; Habtemariam, S.; Berindan-Neagoe, I.; Nabavi, S.M. A perspective on erythropoietin as a potential adjuvant therapy for acute lung injury/acute respiratory distress syndrome in patients with COVID-19. Arch. Med. Res., 2020, 51(7), 631-635. doi: 10.1016/j.arcmed.2020.08.002 PMID: 32863034
  6. Reiner, Ž.; Hatamipour, M.; Banach, M.; Pirro, M.; Al-Rasadi, K.; Jamialahmadi, T.; Radenkovic, D.; Montecucco, F.; Sahebkar, A. Statins and the COVID-19 main protease: in silico evidence on direct interaction. Arch. Med. Sci., 2020, 16(3), 490-496. doi: 10.5114/aoms.2020.94655 PMID: 32399094
  7. Habtemariam, S.; Nabavi, S.F.; Banach, M.; Berindan-Neagoe, I.; Sarkar, K.; Sil, P.C.; Nabavi, S.M. Should we try SARS-CoV-2 helicase inhibitors for COVID-19 therapy? Arch. Med. Res., 2020, 51(7), 733-735. doi: 10.1016/j.arcmed.2020.05.024
  8. Mehta, P.; McAuley, D.F.; Brown, M.; Sanchez, E.; Tattersall, R.S.; Manson, J.J. COVID-19: Consider cytokine storm syndromes and immunosuppression. Lancet., 2020, 395(10229), 1033-1034. doi: 10.1016/S0140-6736(20)30628-0 PMID: 32192578
  9. Rodriguez-Cubillo, B.; de la Higuera, M.A.M.; Lucena, R.; Franci, E.V.; Hurtado, M.; Romero, N.C.; Moreno, A.R.; Valencia, D.; Velo, M.; Fornie, I.S.; Sanchez-Fructuoso, A.I. Should cyclosporine be useful in renal transplant recipients affected by SARS-CoV-2?. Am. J. Transplant., 2020, 20(11), 3173-3181. doi: 10.1111/ajt.16141 PMID: 32529737
  10. Shimabukuro-Vornhagen, A.; Gödel, P.; Subklewe, M.; Stemmler, H.J.; Schlößer, H.A.; Schlaak, M.; Kochanek, M.; Böll, B.; von Bergwelt-Baildon, M.S. Cytokine release syndrome. J. Immunother. Cancer., 2018, 6(1), 56. doi: 10.1186/s40425-018-0343-9 PMID: 29907163
  11. Zhou, D.; Dai, S.M.; Tong, Q. COVID-19: A recommendation to examine the effect of hydroxychloroquine in preventing infection and progression. J. Antimicrob. Chemother., 2020, 75(7), 1667-1670. doi: 10.1093/jac/dkaa114 PMID: 32196083
  12. Bhaskar, S.; Sinha, A.; Banach, M.; Mittoo, S.; Weissert, R.; Kass, J.S.; Rajagopal, S.; Pai, A.R.; Kutty, S. Cytokine storm in COVID-19-immunopathological mechanisms, clinical considerations, and therapeutic approaches: The reprogram consortium position paper. Front. Immunol., 2020, 11, 1648. doi: 10.3389/fimmu.2020.01648 PMID: 32754159
  13. Cismaru, A.C.; Cismaru, L.G.; Nabavi, S.; Berindan-Neagoe, I.; Clementi, E.; Banach, M. Game of crowning season 8: RAS and reproductive hormones in COVID-19-can we end this viral series?. Arch. Med. Sci., 16(1) doi: 10.5114/aoms.2020.96604 PMID: 33747262
  14. Li, X.; Geng, M.; Peng, Y.; Meng, L.; Lu, S. Molecular immune pathogenesis and diagnosis of COVID-19. J. Pharm. Anal., 2020, 10(2), 102-108. doi: 10.1016/j.jpha.2020.03.001 PMID: 32282863
  15. Chen, L.; Zhao, J.; Peng, J.; Li, X.; Deng, X.; Geng, Z.; Shen, Z.; Guo, F.; Zhang, Q.; Jin, Y.; Wang, L.; Wang, S. Detection of SARS-CoV-2 in saliva and characterization of oral symptoms in COVID-19 patients. Cell Prolif., 2020, 53(12), e12923. doi: 10.1111/cpr.12923 PMID: 33073910
  16. Lai, C.C.; Ko, W.C.; Lee, P.I.; Jean, S.S.; Hsueh, P.R. Extra-respiratory manifestations of COVID-19. Int. J. Antimicrob. Agents., 2020, 56(2), 106024. doi: 10.1016/j.ijantimicag.2020.106024 PMID: 32450197
  17. Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; Cheng, Z.; Yu, T.; Xia, J.; Wei, Y.; Wu, W.; Xie, X.; Yin, W.; Li, H.; Liu, M.; Xiao, Y.; Gao, H.; Guo, L.; Xie, J.; Wang, G.; Jiang, R.; Gao, Z.; Jin, Q.; Wang, J.; Cao, B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet., 2020, 395(10223), 497-506. doi: 10.1016/S0140-6736(20)30183-5 PMID: 31986264
  18. Guo, Y.R.; Cao, Q.D.; Hong, Z.S.; Tan, Y.Y.; Chen, S.D.; Jin, H.J.; Tan, K-S.; Wang, D-Y.; Yan, Y. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak – an update on the status. Mil. Med. Res., 2020, 7(1), 11. doi: 10.1186/s40779-020-00240-0 PMID: 31928528
  19. Ribatti, D.; Vacca, A.; Cantatore, F.P.; Ria, R.; Benagiano, V.; Roncali, L.; Dammacco, F. An experimental study in the chick embryo chorioallantoic membrane of the anti-angiogenic activity of cyclosporine in rheumatoid arthritis versus osteoarthritis. Inflamm. Res., 2000, 49(8), 418-423. doi: 10.1007/s000110050610 PMID: 11028759
  20. Rafiee, P.; Heidemann, J.; Ogawa, H.; Johnson, N.A.; Fisher, P.J.; Li, M.S.; Otterson, M.F.; Johnson, C.P.; Binion, D.G. Cyclosporin A differentially inhibits multiple steps in VEGF induced angiogenesis in human microvascular endothelial cells through altered intracellular signaling. Cell Commun. Signal., 2004, 2(1), 3. doi: 10.1186/1478-811X-2-3 PMID: 15175101
  21. Shinkai, A.; Ito, M.; Anazawa, H.; Yamaguchi, S.; Shitara, K.; Shibuya, M. Mapping of the sites involved in ligand association and dissociation at the extracellular domain of the kinase insert domain-containing receptor for vascular endothelial growth factor. J. Biol. Chem., 1998, 273(47), 31283-31288. doi: 10.1074/jbc.273.47.31283 PMID: 9813036
  22. Sawano, A.; Iwai, S.; Sakurai, Y.; Ito, M.; Shitara, K.; Nakahata, T.; Shibuya, M. Flt-1, vascular endothelial growth factor receptor 1, is a novel cell surface marker for the lineage of monocyte-macrophages in humans. Blood., 2001, 97(3), 785-791. doi: 10.1182/blood.V97.3.785 PMID: 11157498
  23. Ferrara, N.; Gerber, H.P.; LeCouter, J. The biology of VEGF and its receptors. Nat. Med., 2003, 9(6), 669-676. doi: 10.1038/nm0603-669 PMID: 12778165
  24. Gerber, H.P.; Dixit, V.; Ferrara, N. Vascular endothelial growth factor induces expression of the antiapoptotic proteins Bcl-2 and A1 in vascular endothelial cells. J. Biol. Chem., 1998, 273(21), 13313-13316. doi: 10.1074/jbc.273.21.13313 PMID: 9582377
  25. Mura, M.; Han, B.; Andrade, C.F.; Seth, R.; Hwang, D.; Waddell, T.K.; Keshavjee, S.; Liu, M. The early responses of VEGF and its receptors during acute lung injury: Implication of VEGF in alveolar epithelial cell survival. Crit. Care., 2006, 10(5), R130. doi: 10.1186/cc5042 PMID: 16968555
  26. Kaner, R.J.; Crystal, R.G. Compartmentalization of vascular endothelial growth factor to the epithelial surface of the human lung. Mol. Med., 2001, 7(4), 240-246. doi: 10.1007/BF03401843 PMID: 11471568
  27. Medford, A.R.L.; Millar, A.B. Vascular endothelial growth factor (VEGF) in acute lung injury (ALI) and acute respiratory distress syndrome (ARDS): Paradox or paradigm?. Thorax., 2006, 61(7), 621-626. doi: 10.1136/thx.2005.040204 PMID: 16807391
  28. Bhandari, V.; Choo-Wing, R.; Chapoval, S.P.; Lee, C.G.; Tang, C.; Kim, Y.K.; Ma, B.; Baluk, P.; Lin, M.I.; McDonald, D.M.; Homer, R.J.; Sessa, W.C.; Elias, J.A. Essential role of nitric oxide in VEGF-induced, asthma-like angiogenic, inflammatory, mucus, and physiologic responses in the lung. Proc. Natl. Acad. Sci. USA., 2006, 103(29), 11021-11026. doi: 10.1073/pnas.0601057103 PMID: 16832062
  29. Li, J.; Liu, W. Puzzle of highly pathogenic human coronaviruses (2019-nCoV). Protein Cell., 2020, 11(4), 235-238. doi: 10.1007/s13238-020-00693-y PMID: 32088858
  30. Sahebnasagh, A.; Avan, R.; Saghafi, F.; Mojtahedzadeh, M.; Sadremomtaz, A.; Arasteh, O.; Tanzifi, A.; Faramarzi, F.; Negarandeh, R.; Safdari, M.; Khataminia, M.; Rezai Ghaleno, H.; Habtemariam, S.; Khoshi, A. Pharmacological treatments of COVID-19. Pharmacol. Rep., 2020, 72(6), 1446-1478. doi: 10.1007/s43440-020-00152-9 PMID: 32816200
  31. Dallocchio, R.N.; Dessì, A.; De Vito, A.; Delogu, G.; Serra, P.A.; Madeddu, G. Early combination treatment with existing HIV antivirals: An effective treatment for COVID-19?. Eur. Rev. Med. Pharmacol. Sci., 2021, 25(5), 2435-2448. PMID: 33755983
  32. Minozzi, S.; Cinquini, M.; Gianola, S.; Gonzalez-Lorenzo, M.; Banzi, R. The revised Cochrane risk of bias tool for randomized trials (RoB 2) showed low interrater reliability and challenges in its application. J. Clin. Epidemiol., 2020, 126, 37-44. doi: 10.1016/j.jclinepi.2020.06.015 PMID: 32562833
  33. Higgins, J.P.T.; Thompson, S.G. Quantifying heterogeneity in a meta-analysis. Stat. Med., 2002, 21(11), 1539-1558. doi: 10.1002/sim.1186 PMID: 12111919
  34. Sterne, JA; Savović, J; Page, MJ; Elbers, RG; Blencowe, NS; Boutron, I RoB 2: A revised tool for assessing risk of bias in randomised trials. bmj., 2019, 366, 4898. doi: 10.1136/bmj.l4898 PMID: 31462531
  35. Gálvez-Romero, J.L.; Palmeros-Rojas, O.; Real-Ramírez, F.A.; Sánchez-Romero, S.; Tome-Maxil, R.; Ramírez-Sandoval, M.P.; Olivos-Rodríguez, R.; Flores-Encarnación, S.E.; Cabrera-Estrada, A.A.; Ávila-Morales, J.; Cortés-Sánchez, V.; Sarmiento-Padilla, G.; Tezmol-Ramírez, S.E.; Aparicio-Hernández, D.; Urbina-Sánchez, M.I.; Gómez-Pluma, M.Á.; Cisneros-Méndez, S.; Rodríguez-Rivas, D.I.; Reyes-Inurrigarro, S.; Cortés-Díaz, G.; Cruz-Delgado, C.; Navarro-González, J.; Deveaux-Homs, J.; Pedraza-Sánchez, S. Cyclosporine A plus low-dose steroid treatment in COVID-19 improves clinical outcomes in patients with moderate to severe disease: A pilot study. J. Intern. Med., 2021, 289(6), 906-920. doi: 10.1111/joim.13223 PMID: 33274479
  36. Solanich, X.; Antolí, A.; Rocamora-Blanch, G.; Padullés, N.; Fanlo-Maresma, M.; Iriarte, A.; Mitjavila, F.; Capdevila, O.; Riera-Mestre, A.; Bas, J.; Vicens-Zygmunt, V.; Niubó, J.; Calvo, N.; Bolivar, S.; Rigo-Bonnin, R.; Mensa-Vilaró, A.; Arregui, L.; Tebe, C.; Videla, S.; Hereu, P.; Corbella, X. Methylprednisolone pulses plus tacrolimus in addition to standard of care vs. standard of care alone in patients with severe COVID-19. A randomized controlled trial. Front. Med., 2021, 8, 691712. doi: 10.3389/fmed.2021.691712 PMID: 34195214
  37. Barratt, S.; Medford, A.R.; Millar, A.B. Vascular endothelial growth factor in acute lung injury and acute respiratory distress syndrome. Respiration., 2014, 87(4), 329-342. doi: 10.1159/000356034 PMID: 24356493
  38. Blumberg, E.A.; Noll, J.H.; Tebas, P.; Fraietta, J.A.; Frank, I.; Marshall, A.; Chew, A.; Veloso, E.A.; Carulli, A.; Rogal, W.; Gaymon, A.L.; Schmidt, A.H.; Barnette, T.; Jurek, R.; Martins, R.; Hudson, B.M.; Chavda, K.; Bailey, C.M.; Church, S.E.; Noorchashm, H.; Hwang, W.T.; June, C.H.; Hexner, E.O. A phase I trial of cyclosporine for hospitalized patients with COVID-19. JCI Insight., 2022, 7(11), e155682. doi: 10.1172/jci.insight.155682 PMID: 35536669
  39. Barati, S.; MohammadReza Hashemian, S.; Tabarsi, P.; Abedini, A.; Ashrafzadeh, M.; Haseli, S.; Abtahian, Z.; Yousefian, S.; Dastan, A.; Sobhanian, A.; Dastan, F. Combined therapy of ciclosporin plus favipiravir in the management of patients with severe COVID-19, not responding to dexamethasone: A non-controlled prospective trial. Int. Immunopharmacol., 2021, 99, 108043. doi: 10.1016/j.intimp.2021.108043 PMID: 34426105
  40. Pang, J.; Xu, F.; Aondio, G.; Li, Y.; Fumagalli, A.; Lu, M.; Valmadre, G.; Wei, J.; Bian, Y.; Canesi, M.; Damiani, G.; Zhang, Y.; Yu, D.; Chen, J.; Ji, X.; Sui, W.; Wang, B.; Wu, S.; Kovacs, A.; Revera, M.; Wang, H.; Jing, X.; Zhang, Y.; Chen, Y.; Cao, Y. Efficacy and tolerability of bevacizumab in patients with severe COVID-19. Nat. Commun., 2021, 12(1), 814. doi: 10.1038/s41467-021-21085-8 PMID: 33547300
  41. Gritti, G.; Raimondi, F.; Ripamonti, D.; Riva, I.; Landi, F.; Alborghetti, L. IL-6 signalling pathway inactivation with siltuximab in patients with COVID-19 respiratory failure: An observational cohort study. Medrxiv., 2020. doi: 10.1101/2020.04.01.20048561
  42. Kahl, A.L.; Kirchhof, J.; Petrakova, L.; Müller, J.; Laubrock, J.; Brinkhoff, A.; Unteroberdörster, M.; Benson, S.; Wilde, B.; Witzke, O.; Schedlowski, M. Are adverse events induced by the acute administration of calcineurin inhibitor cyclosporine a behaviorally conditioned in healthy male volunteers? Clin. Ther., 2018, 40(11), 1868-1877. doi: 10.1016/j.clinthera.2018.09.008 PMID: 30376962
  43. Tapia, C.; Nessel, T.A.; Zito, P.M. Cyclosporine; StatPearls Publishing: Treasure Island, FL, 2020.
  44. Doyon, P.R.; Johansson, O. Electromagnetic fields may act via calcineurin inhibition to suppress immunity, thereby increasing risk for opportunistic infection: Conceivable mechanisms of action. Med. Hypotheses., 2017, 106, 71-87. doi: 10.1016/j.mehy.2017.06.028 PMID: 28818275
  45. Ekberg, H.; Bernasconi, C.; Nöldeke, J.; Yussim, A.; Mjörnstedt, L.; Erken, U.; Ketteler, M.; Navrátil, P. Cyclosporine, tacrolimus and sirolimus retain their distinct toxicity profiles despite low doses in the symphony study. Nephrol. Dial. Transplant., 2010, 25(6), 2004-2010. doi: 10.1093/ndt/gfp778 PMID: 20106825
  46. Jorgenson, M.R.; Descourouez, J.L.; Cardinale, B.; Lyu, B.; Astor, B.C.; Garg, N.; Saddler, C.M.; Smith, J.A.; Mandelbrot, D.A. Risk of opportunistic infection in kidney transplant recipients with cytomegalovirus infection and associated outcomes. Transpl. Infect. Dis., 2019, 21(3), e13080. doi: 10.1111/tid.13080 PMID: 30891915
  47. Immunosuppressive treatment and its effect on the occurrence of pneumocystis jiroveci, mycoplasma pneumoniae, chlamydophila pnemoniae, and legionella pneumophila infections/colonizations among lung transplant recipients. Transplantation proceedings. Transplant Proc., 2018, 50(7), 2053-2058. doi: 10.1016/j.transproceed.2017.12.059
  48. Ziprin, R.L.; Corrier, D.E.; Elissalde, M.H. Maturation of resistance to salmonellosis in newly hatched chicks: Inhibition by cyclosporine. Poult. Sci., 1989, 68(12), 1637-1642. doi: 10.3382/ps.0681637 PMID: 2622818
  49. Gennery, A.R. Hematopoietic stem cell transplantation for primary immune deficiencies. Stiehm's Immune Deficiencies (Second Edition); Academic Press, 2020, pp. 1175-1214. doi: 10.1016/B978-0-12-816768-7.00057-0
  50. Landesman, S.H. Ethical and legal aspects of tuberculosis control. Tuberculosis; Springer, 2013, p. 238. doi: 10.1007/978-1-4899-2869-6_10

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Bentham Science Publishers, 2024