Long Non-coding RNA DNM3OS: Pathogenic Roles and Molecular Mechanisms in Pathophysiological Processes
- Авторы: Wang S.1, Hu Y.1, Wang R.1, Zhang Y.1, Yuan Q.1, Yuan C.1
-
Учреждения:
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University
- Выпуск: Том 31, № 29 (2024)
- Страницы: 4687-4702
- Раздел: Anti-Infectives and Infectious Diseases
- URL: https://cijournal.ru/0929-8673/article/view/645008
- DOI: https://doi.org/10.2174/0109298673280484240101070607
- ID: 645008
Цитировать
Полный текст
Аннотация
Background:Long non-coding RNA (lncRNA) is a class of single-stranded RNA biomolecules involving over 200 nucleotides and does not encode proteins. Research on lncRNA has become a hot spot for the past few years. DNM3OS (Dynamin 3 Opposite Strand), which has been clearly identified as a regulatory lncRNA, exerts an integral role in the pathophysiology of multiple human diseases.
Objective:The current review study summarizes the pathogenic mechanism of DNM3OS in various pathophysiological processes, aiming to reveal its important value as a therapeutic drug target for related human diseases and provide a new way for targeted therapy.
Methods:Through systematic retrieval and in-depth study of relevant articles in PubMed, this article analyzes and summarizes the pathogenic roles and molecular mechanisms in pathophysiological processes of long non-coding RNA DNM3OS.
Results:DNM3OS exerts an important regulatory role in the occurrence and development of bone diseases, neoplastic diseases, fibrotic diseases, inflammatory diseases, and many other diseases.
Conclusion:DNM3OS is a potential new biomarker and therapeutic target for the treatment of a series of diseases, consisting of bone diseases, neoplastic diseases, fibrotic diseases, and inflammatory diseases.
Ключевые слова
Об авторах
Shuwen Wang
Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University
Email: info@benthamscience.net
Yaqi Hu
Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University
Email: info@benthamscience.net
Rui Wang
Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University
Email: info@benthamscience.net
Yifan Zhang
Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University
Email: info@benthamscience.net
Qi Yuan
Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University
Email: info@benthamscience.net
Chengfu Yuan
Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University
Автор, ответственный за переписку.
Email: info@benthamscience.net
Список литературы
- Zampetaki, A.; Albrecht, A.; Steinhofel, K. Long non-coding RNA structure and function: Is there a link? Front. Physiol., 2018, 9, 1201. doi: 10.3389/fphys.2018.01201 PMID: 30197605
- Cech, T.R.; Steitz, J.A. The noncoding RNA revolution- trashing old rules to forge new ones. Cell, 2014, 157(1), 77-94. doi: 10.1016/j.cell.2014.03.008 PMID: 24679528
- Guttman, M.; Russell, P.; Ingolia, N.T.; Weissman, J.S.; Lander, E.S. Ribosome profiling provides evidence that large noncoding RNAs do not encode proteins. Cell, 2013, 154(1), 240-251. doi: 10.1016/j.cell.2013.06.009 PMID: 23810193
- Naz, F.; Tariq, I.; Ali, S.; Somaida, A.; Preis, E.; Bakowsky, U. The role of long non-coding RNAs (lncRNAs) in female oriented cancers. Cancers, 2021, 13(23), 6102. doi: 10.3390/cancers13236102 PMID: 34885213
- Kazimierczyk, M.; Kasprowicz, M.K.; Kasprzyk, M.E.; Wrzesinski, J.; Human Long Noncoding, R.N.A. Human long noncoding RNA interactome: Detection, characterization and function. Int. J. Mol. Sci., 2020, 21(3), 1027. doi: 10.3390/ijms21031027 PMID: 32033158
- Mercer, T.R.; Dinger, M.E.; Mattick, J.S. Long non-coding RNAs: Insights into functions. Nat. Rev. Genet., 2009, 10(3), 155-159. doi: 10.1038/nrg2521 PMID: 19188922
- Wang, K.C.; Chang, H.Y. Molecular mechanisms of long noncoding RNAs. Mol. Cell, 2011, 43(6), 904-914. doi: 10.1016/j.molcel.2011.08.018 PMID: 21925379
- Mitra, R.; Chen, X.; Greenawalt, E.J.; Maulik, U.; Jiang, W.; Zhao, Z.; Eischen, C.M. Decoding critical long non- coding RNA in ovarian cancer epithelial-to-mesenchymal transition. Nat. Commun., 2017, 8(1), 1604. doi: 10.1038/s41467-017-01781-0 PMID: 29150601
- Morris, K.V.; Mattick, J.S. The rise of regulatory RNA. Nat. Rev. Genet., 2014, 15(6), 423-437. doi: 10.1038/nrg3722 PMID: 24776770
- Wang, X.; Guo, B.; Li, Q.; Peng, J.; Yang, Z.; Wang, A.; Li, D.; Hou, Z.; Lv, K.; Kan, G.; Cao, H.; Wu, H.; Song, J.; Pan, X.; Sun, Q.; Ling, S.; Li, Y.; Zhu, M.; Zhang, P.; Peng, S.; Xie, X.; Tang, T.; Hong, A.; Bian, Z.; Bai, Y.; Lu, A.; Li, Y.; He, F.; Zhang, G.; Li, Y. miR-214 targets ATF4 to inhibit bone formation. Nat. Med., 2013, 19(1), 93-100. doi: 10.1038/nm.3026 PMID: 23223004
- Loebel, D.A.F.; Tsoi, B.; Wong, N.; Tam, P.P.L. A conserved noncoding intronic transcript at the mouse Dnm3 locus. Genomics, 2005, 85(6), 782-789. doi: 10.1016/j.ygeno.2005.02.001 PMID: 15885504
- Yu, T.; Xu, Q.; Li, S.Y.; Huang, H.; Dugan, S.; Shao, L.; Roggenbuck, J.A.; Liu, X.; Liu, H.; Hirsch, B.A.; Yue, S.; Liu, C.; Cheng, S.Y. Deletion at an 1q24 locus reveals a critical role of long noncoding RNA DNM3OS in skeletal development. Cell Biosci., 2021, 11(1), 47. doi: 10.1186/s13578-021-00559-8 PMID: 33653390
- Loebel, D.A.F.; ORourke, M.P.; Steiner, K.A.; Banyer, J.; Tam, P.P.L. Isolation of differentially expressed genes from wild-type and Twist mutant mouse limb buds. Genesis, 2002, 33(3), 103-113. doi: 10.1002/gene.10091 PMID: 12124942
- Quinn, J.J.; Chang, H.Y. Unique features of long non-coding RNA biogenesis and function. Nat. Rev. Genet., 2016, 17(1), 47-62. doi: 10.1038/nrg.2015.10 PMID: 26666209
- Dhir, A.; Dhir, S.; Proudfoot, N.J.; Jopling, C.L. Microprocessor mediates transcriptional termination of long noncoding RNA transcripts hosting microRNAs. Nat. Struct. Mol. Biol., 2015, 22(4), 319-327. doi: 10.1038/nsmb.2982 PMID: 25730776
- Fukuda, T.; Yamagata, K.; Fujiyama, S.; Matsumoto, T.; Koshida, I.; Yoshimura, K.; Mihara, M.; Naitou, M.; Endoh, H.; Nakamura, T.; Akimoto, C.; Yamamoto, Y.; Katagiri, T.; Foulds, C.; Takezawa, S.; Kitagawa, H.; Takeyama, K.; OMalley, B.W.; Kato, S. DEAD-box RNA helicase subunits of the Drosha complex are required for processing of rRNA and a subset of microRNAs. Nat. Cell Biol., 2007, 9(5), 604-611. doi: 10.1038/ncb1577 PMID: 17435748
- Watanabe, T.; Sato, T.; Amano, T.; Kawamura, Y.; Kawamura, N.; Kawaguchi, H.; Yamashita, N.; Kurihara, H.; Nakaoka, T. Dnm3os, a non-coding RNA, is required for normal growth and skeletal development in mice. Dev. Dyn., 2008, 237(12), 3738-3748. doi: 10.1002/dvdy.21787 PMID: 18985749
- He, D.; Wu, D.; Muller, S.; Wang, L.; Saha, P.; Ahanger, S.H.; Liu, S.J.; Cui, M.; Hong, S.J.; Jain, M.; Olson, H.E.; Akeson, M.; Costello, J.F.; Diaz, A.; Lim, D.A. miRNA-independent function of long noncoding pri-miRNA loci. Proc. Natl. Acad. Sci. USA, 2021, 118(13), e2017562118. doi: 10.1073/pnas.2017562118 PMID: 33758101
- Taysi, K.; Sekhon, G.S.; Hillman, R.E.; Opitz, J.M. A new syndrome of proximal deletion of the long arm of chromosome 1: 1q2123→1q25. Am. J. Med. Genet., 1982, 13(4), 423-430. doi: 10.1002/ajmg.1320130411 PMID: 7158642
- Ashraf, T.; Collinson, M.N.; Fairhurst, J.; Wang, R.; Wilson, L.C.; Foulds, N. Two further patients with the 1q24 deletion syndrome expand the phenotype: A possible role for the miR199214 cluster in the skeletal features of the condition. Am. J. Med. Genet. A., 2015, 167(12), 3153-3160. doi: 10.1002/ajmg.a.37336 PMID: 26333682
- Burkardt, D.D.C.; Rosenfeld, J.A.; Helgeson, M.L.; Angle, B.; Banks, V.; Smith, W.E.; Gripp, K.W.; Moline, J.; Moran, R.T.; Niyazov, D.M.; Stevens, C.A.; Zackai, E.; Lebel, R.R.; Ashley, D.G.; Kramer, N.; Lachman, R.S.; Graham, J.M., Jr Distinctive phenotype in 9 patients with deletion of chromosome 1q24-q25. Am. J. Med. Genet. A., 2011, 155(6), 1336-1351. doi: 10.1002/ajmg.a.34049 PMID: 21548129
- Shepherdson, J.L.; Zheng, H.; Amarillo, I.E.; McAlinden, A.; Shinawi, M. Delineation of the 1q24.3 microdeletion syndrome provides further evidence for the potential role of non-coding RNAs in regulating the skeletal phenotype. Bone, 2021, 142, 115705. doi: 10.1016/j.bone.2020.115705 PMID: 33141070
- Johnston, C.B.; Dagar, M. Osteoporosis in older adults. Med. Clin. North Am., 2020, 104(5), 873-884. doi: 10.1016/j.mcna.2020.06.004 PMID: 32773051
- Hattersley, G.; Owens, J.; Flanagan, A.M.; Chambers, T.J. Macrophage colony stimulating factor (M-CSF) is essential for osteoclast formation in vitro. Biochem. Biophys. Res. Commun., 1991, 177(1), 526-531. doi: 10.1016/0006-291X(91)92015-C PMID: 2043138
- Takahashi, N.; Udagawa, N.; Suda, T. A new member of tumor necrosis factor ligand family, ODF/OPGL/TRANCE/RANKL, regulates osteoclast differentiation and function. Biochem. Biophys. Res. Commun., 1999, 256(3), 449-455. doi: 10.1006/bbrc.1999.0252 PMID: 10080918
- Yasuda, H.; Shima, N.; Nakagawa, N.; Yamaguchi, K.; Kinosaki, M.; Mochizuki, S.; Tomoyasu, A.; Yano, K.; Goto, M.; Murakami, A.; Tsuda, E.; Morinaga, T.; Higashio, K.; Udagawa, N.; Takahashi, N.; Suda, T. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc. Natl. Acad. Sci. USA, 1998, 95(7), 3597-3602. doi: 10.1073/pnas.95.7.3597 PMID: 9520411
- Zhao, C.; Sun, W.; Zhang, P.; Ling, S.; Li, Y.; Zhao, D.; Peng, J.; Wang, A.; Li, Q.; Song, J.; Wang, C.; Xu, X.; Xu, Z.; Zhong, G.; Han, B.; Chang, Y.Z.; Li, Y. miR-214 promotes osteoclastogenesis by targeting Pten/PI3k/Akt pathway. RNA Biol., 2015, 12(3), 343-353. doi: 10.1080/15476286.2015.1017205 PMID: 25826666
- Roberto, V.P.; Gavaia, P.; Nunes, M.J.; Rodrigues, E.; Cancela, M.L.; Tiago, D.M. Evidences for a new role of miR-214 in chondrogenesis. Sci. Rep., 2018, 8(1), 3704. doi: 10.1038/s41598-018-21735-w PMID: 29487295
- Lin, E.A.; Kong, L.; Bai, X.H.; Luan, Y.; Liu, C. miR-199a, a bone morphogenic protein 2-responsive MicroRNA, regulates chondrogenesis via direct targeting to Smad1. J. Biol. Chem., 2009, 284(17), 11326-11335. doi: 10.1074/jbc.M807709200 PMID: 19251704
- Ason, B.; Darnell, D.K.; Wittbrodt, B.; Berezikov, E.; Kloosterman, W.P.; Wittbrodt, J.; Antin, P.B.; Plasterk, R.H.A. Differences in vertebrate microRNA expression. Proc. Natl. Acad. Sci. USA, 2006, 103(39), 14385-14389. doi: 10.1073/pnas.0603529103 PMID: 16983084
- Landgraf, P.; Rusu, M.; Sheridan, R.; Sewer, A.; Iovino, N.; Aravin, A.; Pfeffer, S.; Rice, A.; Kamphorst, A.O.; Landthaler, M.; Lin, C.; Socci, N.D.; Hermida, L.; Fulci, V.; Chiaretti, S.; Foà, R.; Schliwka, J.; Fuchs, U.; Novosel, A.; Müller, R.U.; Schermer, B.; Bissels, U.; Inman, J.; Phan, Q.; Chien, M.; Weir, D.B.; Choksi, R.; De Vita, G.; Frezzetti, D.; Trompeter, H.I.; Hornung, V.; Teng, G.; Hartmann, G.; Palkovits, M.; Di Lauro, R.; Wernet, P.; Macino, G.; Rogler, C.E.; Nagle, J.W.; Ju, J.; Papavasiliou, F.N.; Benzing, T.; Lichter, P.; Tam, W.; Brownstein, M.J.; Bosio, A.; Borkhardt, A.; Russo, J.J.; Sander, C.; Zavolan, M.; Tuschl, T. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell, 2007, 129(7), 1401-1414. doi: 10.1016/j.cell.2007.04.040 PMID: 17604727
- Wienholds, E.; Kloosterman, W.P.; Miska, E.; Alvarez-Saavedra, E.; Berezikov, E.; de Bruijn, E.; Horvitz, H.R.; Kauppinen, S.; Plasterk, R.H.A. MicroRNA expression in zebrafish embryonic development. Science, 2005, 309(5732), 310-311. doi: 10.1126/science.1114519 PMID: 15919954
- Huang, L.; Jin, M.; Gu, R.; Xiao, K.; Lu, M.; Huo, X.; Sun, M.; Yang, Z.; Wang, Z.; Zhang, W.; Zhi, L.; Meng, Z.; Ma, J.; Ma, J.; Zhang, R. miR-199a-5p reduces chondrocyte hypertrophy and attenuates osteoarthritis progression via the indian hedgehog signal pathway. J. Clin. Med., 2023, 12(4), 1313. doi: 10.3390/jcm12041313 PMID: 36835852
- Bortoluzzi, A.; Furini, F.; Scirè, C.A. Osteoarthritis and its management - Epidemiology, nutritional aspects and environmental factors. Autoimmun. Rev., 2018, 17(11), 1097-1104. doi: 10.1016/j.autrev.2018.06.002 PMID: 30213694
- Saxby, D.J.; Lloyd, D.G. Osteoarthritis year in review 2016: Mechanics. Osteoarthritis Cartilage, 2017, 25(2), 190-198. doi: 10.1016/j.joca.2016.09.023 PMID: 28100420
- Chagin, A.S. Effectors of mTOR-autophagy pathway: Targeting cancer, affecting the skeleton. Curr. Opin. Pharmacol., 2016, 28, 1-7. doi: 10.1016/j.coph.2016.02.004 PMID: 26921601
- Ai, D.; Yu, F. LncRNA DNM3OS promotes proliferation and inhibits apoptosis through modulating IGF1 expression by sponging MiR-126 in CHON-001 cells. Diagn. Pathol., 2019, 14(1), 106. doi: 10.1186/s13000-019-0877-2 PMID: 31526393
- Makris, E.A.; Gomoll, A.H.; Malizos, K.N.; Hu, J.C.; Athanasiou, K.A. Repair and tissue engineering techniques for articular cartilage. Nat. Rev. Rheumatol., 2015, 11(1), 21-34. doi: 10.1038/nrrheum.2014.157 PMID: 25247412
- Bornes, T.D.; Adesida, A.B.; Jomha, N.M. Mesenchymal stem cells in the treatment of traumatic articular cartilage defects: A comprehensive review. Arthritis Res. Ther., 2014, 16(5), 432. doi: 10.1186/s13075-014-0432-1 PMID: 25606595
- Zhou, X.; Xu, W.; Wang, Y.; Zhang, H.; Zhang, L.; Li, C.; Yao, S.; Huang, Z.; Huang, L.; Luo, D. LncRNA DNM3OS regulates GREM2 via miR-127-5p to suppress early chondrogenic differentiation of rat mesenchymal stem cells under hypoxic conditions. Cell. Mol. Biol. Lett., 2021, 26(1), 22. doi: 10.1186/s11658-021-00269-6 PMID: 34049478
- Phatak, P.; Burrows, W.M.; Creed, T.M.; Youssef, M.; Lee, G.; Donahue, J.M. MiR-214-3p targets Ras-related protein 14 (RAB14) to inhibit cellular migration and invasion in esophageal Cancer cells. BMC Cancer, 2022, 22(1), 1265. doi: 10.1186/s12885-022-10304-0 PMID: 36471277
- Orso, F.; Virga, F.; Dettori, D.; Dalmasso, A.; Paradzik, M.; Savino, A.; Pomatto, M.A.C.; Quirico, L.; Cucinelli, S.; Coco, M.; Mareschi, K.; Fagioli, F.; Salmena, L.; Camussi, G.; Provero, P.; Poli, V.; Mazzone, M.; Pandolfi, P.P.; Taverna, D. Stroma-derived miR-214 coordinates tumor dissemination. J. Exp. Clin. Cancer Res., 2023, 42(1), 20. doi: 10.1186/s13046-022-02553-5 PMID: 36639824
- Guo, X.; Lin, J.; Pan, L.; He, K.; Huang, Z.; Chen, J.; Lin, C.; Zeng, B.; Luo, S.; Wang, M. Ultrasound-triggered release of miR-199a-3p from liposome nanobubbles for enhanced hepatocellular carcinoma treatment. Artif. Cells Nanomed. Biotechnol., 2023, 51(1), 560-571. doi: 10.1080/21691401.2023.2268137 PMID: 37850395
- Hong, S.A.; Lee, S.; Park, J.; Hong, M.; Yoon, J.S.; Lee, H.; Lee, J.H.; Kim, S.; Won, H.S.; Kang, K.; Ko, Y.H.; Ahn, Y.H. miR-199a and miR-199b facilitate diffuse gastric cancer progression by targeting Frizzled-6. Sci. Rep., 2023, 13(1), 17480. doi: 10.1038/s41598-023-44716-0 PMID: 37838767
- Phatak, P.; Tulapurkar, M.E.; Burrows, W.M.; Donahue, J.M. MiR-199a-5p decreases esophageal cancer cell proliferation partially through repression of Jun-B. Cancers, 2023, 15(19), 4811. doi: 10.3390/cancers15194811 PMID: 37835506
- Chen, Z.W.; Kang, F.P.; Xie, C.K.; Liao, C.Y.; Li, G.; Wu, Y.D.; Lin, H.Y.; Zhu, S.C.; Hu, J.F.; Lin, C.F.; Huang, Y.; Tian, Y.F.; Huang, L.; Wang, Z.W.; Chen, S. A novel trojan horse nanotherapy strategy targeting the cPKM-STMN1/TGFB1 axis for effective treatment of intrahepatic cholangiocarcinoma. Adv. Sci., 2023, 10(32), 2303814. doi: 10.1002/advs.202303814 PMID: 37789644
- Okazaki, Y.; Chew, S.H.; Nagai, H.; Yamashita, Y.; Ohara, H.; Jiang, L.; Akatsuka, S.; Takahashi, T.; Toyokuni, S. Overexpression of miR-199/214 is a distinctive feature of iron-induced and asbestos-induced sarcomatoid mesothelioma in rats. Cancer Sci., 2020, 111(6), 2016-2027. doi: 10.1111/cas.14405 PMID: 32248600
- Hsieh, T.H.; Liu, Y.R.; Chang, T.Y.; Liang, M.L.; Chen, H.H.; Wang, H.W.; Yen, Y.; Wong, T.T. Global DNA methylation analysis reveals miR-214-3p contributes to cisplatin resistance in pediatric intracranial nongerminomatous malignant germ cell tumors. Neuro-oncol., 2018, 20(4), 519-530. doi: 10.1093/neuonc/nox186 PMID: 29036598
- He, L.; He, G. DNM3OS facilitates ovarian cancer progression by regulating miR-193a-3p/MAP3K3 axis. Yonsei Med. J., 2021, 62(6), 535-544. doi: 10.3349/ymj.2021.62.6.535 PMID: 34027641
- Fang, X.; Tang, Z.; Zhang, H.; Quan, H. Long non-coding RNA DNM3OS/miR-204-5p/HIP1 axis modulates oral cancer cell viability and migration. J. Oral Pathol. Med., 2020, 49(9), 865-875. doi: 10.1111/jop.13047 PMID: 32463958
- Wang, H.; Ji, X. SMAD6, positively regulated by the DNM3OS-miR-134-5p axis, confers promoting effects to cell proliferation, migration and EMT process in retinoblastoma. Cancer Cell Int., 2020, 20(1), 23. doi: 10.1186/s12935-020-1103-8 PMID: 31992960
- Shulman, Z.; Stern-Ginossar, N. The RNA modification N6-methyladenosine as a novel regulator of the immune system. Nat. Immunol., 2020, 21(5), 501-512. doi: 10.1038/s41590-020-0650-4 PMID: 32284591
- Chen, Y.; Lin, Y.; Shu, Y.; He, J.; Gao, W. Interaction between N6-methyladenosine (m6A) modification and noncoding RNAs in cancer. Mol. Cancer, 2020, 19(1), 94. doi: 10.1186/s12943-020-01207-4 PMID: 32443966
- Coker, H.; Wei, G.; Brockdorff, N. m6A modification of non-coding RNA and the control of mammalian gene expression. Biochim. Biophys. Acta. Gene Regul. Mech., 2019, 1862(3), 310-318. doi: 10.1016/j.bbagrm.2018.12.002 PMID: 30550772
- Yi, Y.C.; Chen, X.Y.; Zhang, J.; Zhu, J.S. Novel insights into the interplay between m6A modification and noncoding RNAs in cancer. Mol. Cancer, 2020, 19(1), 121. doi: 10.1186/s12943-020-01233-2 PMID: 32767982
- Geng, R.; Chen, T.; Zhong, Z.; Ni, S.; Bai, J.; Liu, J. The m6A-related long noncoding RNA signature predicts prognosis and indicates tumor immune infiltration in ovarian cancer. Cancers, 2022, 14(16), 4056. doi: 10.3390/cancers14164056 PMID: 36011053
- Wang, W.; Wang, Q.; Huang, D.B.; Sun, Q.K.; Wu, S.S.; Zhao, Y.J.; Jia, W.; Hu, D.S.; He, Y.F. Tumor-associated mesenchymal stem cells promote hepatocellular carcinoma metastasis via a DNM3OS/KDM6B/TIAM1 axis. Cancer Lett., 2021, 503, 19-31. doi: 10.1016/j.canlet.2021.01.011 PMID: 33472090
- Wang, S.; Ni, B.; Zhang, Z.; Wang, C.; Wo, L.; Zhou, C.; Zhao, Q.; Zhao, E. Long non-coding RNA DNM3OS promotes tumor progression and EMT in gastric cancer by associating with Snail. Biochem. Biophys. Res. Commun., 2019, 511(1), 57-62. doi: 10.1016/j.bbrc.2019.02.030 PMID: 30770102
- Takai, M.; Terai, Y.; Kawaguchi, H.; Ashihara, K.; Fujiwara, S.; Tanaka, T.; Tsunetoh, S.; Tanaka, Y.; Sasaki, H.; Kanemura, M.; Tanabe, A.; Ohmichi, M. The EMT (epithelial-mesenchymal-transition)-related protein expression indicates the metastatic status and prognosis in patients with ovarian cancer. J. Ovarian Res., 2014, 7(1), 76. doi: 10.1186/1757-2215-7-76 PMID: 25296567
- Nuti, S.V.; Mor, G.; Li, P.; Yin, G. TWIST and ovarian cancer stem cells: Implications for chemoresistance and metastasis. Oncotarget, 2014, 5(17), 7260-7271. doi: 10.18632/oncotarget.2428 PMID: 25238494
- Zhang, H.; Hua, Y.; Jiang, Z.; Yue, J.; Shi, M.; Zhen, X.; Zhang, X.; Yang, L.; Zhou, R.; Wu, S. Cancer-associated fibroblastpromoted LncRNA DNM3OS confers radioresistance by regulating DNA damage response in esophageal squamous cell carcinoma. Clin. Cancer Res., 2019, 25(6), 1989-2000. doi: 10.1158/1078-0432.CCR-18-0773 PMID: 30463848
- Zhang, H.; Yue, J.; Jiang, Z.; Zhou, R.; Xie, R.; Xu, Y.; Wu, S. CAF-secreted CXCL1 conferred radioresistance by regulating DNA damage response in a ROS-dependent manner in esophageal squamous cell carcinoma. Cell Death Dis., 2017, 8(5), e2790. doi: 10.1038/cddis.2017.180 PMID: 28518141
- Zhang, H.; Xie, C.; Yue, J.; Jiang, Z.; Zhou, R.; Xie, R.; Wang, Y.; Wu, S. Cancer-associated fibroblasts mediated chemoresistance by a FOXO1/TGFβ1 signaling loop in esophageal squamous cell carcinoma. Mol. Carcinog., 2017, 56(3), 1150-1163. doi: 10.1002/mc.22581 PMID: 27769097
- Yin, X.; Yin, Y.; Dai, L.; Shen, C.; Chen, N.; Li, J.; Cai, Z.; Jiang, Z.; Wang, J.; Zhao, Z.; Chen, X.; Deng, H.; Zhang, B. Integrated analysis of long non-coding RNAs and mRNAs associated with malignant transformation of gastrointestinal stromal tumors. Cell Death Dis., 2021, 12(7), 669. doi: 10.1038/s41419-021-03942-y PMID: 34218261
- Ousati Ashtiani, Z.; Abbasi, S.; Pourmand, G.; Ghafouri- Fard, S. Overexpression of long intergenic noncoding RNAs in bladder cancer: A new insight to cancer diagnosis. Pathol. Res. Pract., 2022, 235, 153961. doi: 10.1016/j.prp.2022.153961 PMID: 35653924
- Peng, Y.; Wang, H.; Huang, Q.; Wu, J.; Zhang, M. A prognostic model based on immune-related long noncoding RNAs for patients with epithelial ovarian cancer. J. Ovarian Res., 2022, 15(1), 8. doi: 10.1186/s13048-021-00930-w PMID: 35031063
- Sun, Q.; Gao, Y.; Zhang, Y.; Cao, H.; Liu, J.; Neo, S.Y.; Chen, K.; Bi, Y.; Wu, J. Prognostic profiling of the EMT-associated and immunity-related LncRNAs in lung squamous cell carcinomas. Cells, 2022, 11(18), 2881. doi: 10.3390/cells11182881 PMID: 36139456
- Lakhia, R.; Yheskel, M.; Flaten, A.; Ramalingam, H.; Aboudehen, K.; Ferrè, S.; Biggers, L.; Mishra, A.; Chaney, C.; Wallace, D.P.; Carroll, T. Interstitial microRNA miR-214 attenuates inflammation and polycystic kidney disease progression, JCI Insight, 2020, 5(7). doi: 10.1172/jci.insight.133785
- Das, S.; Reddy, M.A.; Senapati, P.; Stapleton, K.; Lanting, L.; Wang, M.; Amaram, V.; Ganguly, R.; Zhang, L.; Devaraj, S.; Schones, D.E. Diabetes mellitus-induced long noncoding RNA Dnm3os regulates macrophage functions and inflammation via nuclear mechanisms, Arterioscler. Thromb. Vasc. Biol., 2018, 38(8), 1806-1820. doi: 10.1161/ATVBAHA.117.310663
- Y. Su.; P. Guan.; D. Li. Intermedin attenuates macrophage phagocytosis via regulation of the long noncoding RNA Dnm3os/miR-27b-3p/SLAMF7 axis in a mouse model of atherosclerosis in diabetes, Biochem. Biophys. Res. Commun., 2021, 583, 35-42 doi: 10.1016/j.bbrc.2021.10.038
- Lacey, M.; Baribault, C.; Ehrlich, K.C.; Ehrlich, M. Atherosclerosis-associated differentially methylated regions can reflect the disease phenotype and are often at enhancers. Atherosclerosis, 2019, 280, 183-191. doi: 10.1016/j.atherosclerosis.2018.11.031 PMID: 30529831
- Pleguezuelos, O.; Hagi-Pavli, E.; Crowther, G.; Kapas, S. Adrenomedullin signals through NF-κB in epithelial cells. FEBS Lett., 2004, 577(1-2), 249-254. doi: 10.1016/j.febslet.2004.10.019 PMID: 15527794
- Song, D.; Fang, G.; Mao, S.; Ye, X.; Liu, G.; Miller, E.J.; Greenberg, H.; Liu, S.F. Selective inhibition of endothelial NF-κB signaling attenuates chronic intermittent hypoxia-induced atherosclerosis in mice. Atherosclerosis, 2018, 270, 68-75. doi: 10.1016/j.atherosclerosis.2018.01.027 PMID: 29407890
- Mussbacher, M.; Salzmann, M.; Haigl, B.; Basílio, J.; Hochreiter, B.; Gleitsmann, V.; Moser, B.; Hoesel, B.; Suur, B.E.; Puhm, F.; Ungerböck, C.; Kuttke, M.; Forteza, M.J.; Binder, C.J.; Ketelhuth, D.F.J.; Assinger, A.; Schmid, J.A. Ikk2-mediated inflammatory activation of arterial endothelial cells promotes the development and progression of atherosclerosis. Atherosclerosis, 2020, 307, 21-31. doi: 10.1016/j.atherosclerosis.2020.06.005 PMID: 32711212
- Friedman, S.L. Mechanisms of hepatic fibrogenesis. Gastroenterology, 2008, 134(6), 1655-1669. doi: 10.1053/j.gastro.2008.03.003 PMID: 18471545
- Huang, G.; Brigstock, D.R. Regulation of hepatic stellate cells by connective tissue growth factor. Front. Biosci., 2012, 17(7), 2495-2507. doi: 10.2741/4067 PMID: 22652794
- Chen, L.; Charrier, A.; Zhou, Y.; Chen, R.; Yu, B.; Agarwal, K.; Tsukamoto, H.; Lee, L.J.; Paulaitis, M.E.; Brigstock, D.R. Epigenetic regulation of connective tissue growth factor by MicroRNA-214 delivery in exosomes from mouse or human hepatic stellate cells. Hepatology, 2014, 59(3), 1118-1129. doi: 10.1002/hep.26768 PMID: 24122827
- Chen, L.; Chen, R.; Kemper, S.; Charrier, A.; Brigstock, D.R. Suppression of fibrogenic signaling in hepatic stellate cells by Twist1-dependent microRNA-214 expression: Role of exosomes in horizontal transfer of Twist1. Am. J. Physiol. Gastrointest. Liver Physiol., 2015, 309(6), G491-G499. doi: 10.1152/ajpgi.00140.2015 PMID: 26229009
- Savary, G.; Dewaeles, E.; Diazzi, S.; Buscot, M.; Nottet, N.; Fassy, J.; Courcot, E.; Henaoui, I.S.; Lemaire, J.; Martis, N.; Van der Hauwaert, C.; Pons, N.; Magnone, V.; Leroy, S.; Hofman, V.; Plantier, L.; Lebrigand, K.; Paquet, A.; Lino Cardenas, C.L.; Vassaux, G.; Hofman, P.; Günther, A.; Crestani, B.; Wallaert, B.; Rezzonico, R.; Brousseau, T.; Glowacki, F.; Bellusci, S.; Perrais, M.; Broly, F.; Barbry, P.; Marquette, C.H.; Cauffiez, C.; Mari, B.; Pottier, N. The long noncoding RNA DNM3OS is a reservoir of fibromirs with major functions in lung fibroblast response to TGF-β and pulmonary fibrosis. Am. J. Respir. Crit. Care Med., 2019, 200(2), 184-198. doi: 10.1164/rccm.201807-1237OC PMID: 30964696
- Guo, X.; Wang, X.F. Signaling cross-talk between TGF-β/BMP and other pathways. Cell Res., 2009, 19(1), 71-88. doi: 10.1038/cr.2008.302 PMID: 19002158
- Baarsma, H.A.; Königshoff, M. WNT-er is coming : WNT signalling in chronic lung diseases. Thorax, 2017, 72(8), 746-759. doi: 10.1136/thoraxjnl-2016-209753 PMID: 28416592
- Zheng, W.; Chen, C.; Chen, S.; Fan, C.; Ruan, H. Integrated analysis of long non-coding RNAs and mRNAs associated with peritendinous fibrosis. J. Adv. Res., 2019, 15, 49-58. doi: 10.1016/j.jare.2018.08.001 PMID: 30581612
- Huang, B.-Z.; Jing-Jing, Y.; Dong, X.-M.; Zhuan, Z.; Xiao-Ning, L. Analysis of the lncRNA-associated competing endogenous RNA (ceRNA) network for tendinopathy. Genet Res, 2022, 2022, 9792913. doi: 10.1155/2022/9792913
- Kong, Q.; Zhou, J.; Tian, G.; Quan, Y.; Wu, W.; Liu, X. The potential role of long non-coding RNA Dnm3os in the activation of cardiac fibroblasts. Sheng Wu I Hsueh Kung Cheng Hsueh Tsa Chih, 2021, 38(3), 574-582. doi: 10.7507/1001-5515.202102021 PMID: 34180204
- Dong, X.; Cong, S. DNM3OS regulates GAPDH expression and influences the molecular pathogenesis of Huntingtons disease. J. Cell. Mol. Med., 2021, 25(18), 9066-9071. doi: 10.1111/jcmm.16838 PMID: 34369082
- el Azzouzi, H.; Leptidis, S.; Dirkx, E.; Hoeks, J.; van Bree, B.; Brand, K.; McClellan, E.A.; Poels, E.; Sluimer, J.C.; van den Hoogenhof, M.M.G.; Armand, A.S.; Yin, X.; Langley, S.; Bourajjaj, M.; Olieslagers, S.; Krishnan, J.; Vooijs, M.; Kurihara, H.; Stubbs, A.; Pinto, Y.M.; Krek, W.; Mayr, M.; Martins, P.A.C.; Schrauwen, P.; De Windt, L.J. The hypoxia-inducible microRNA cluster miR-199a-214 targets myocardial PPARδ and impairs mitochondrial fatty acid oxidation. Cell Metab., 2013, 18(3), 341-354. doi: 10.1016/j.cmet.2013.08.009 PMID: 24011070
- Qin, Y.; Buermans, H.P.J.; van Kester, M.S.; van der Fits, L.; Out-Luiting, J.J.; Osanto, S.; Willemze, R.; Vermeer, M.H.; Tensen, C.P. Deep-sequencing analysis reveals that the miR-199a2/214 cluster within DNM3os represents the vast majority of aberrantly expressed microRNAs in Sézary syndrome. J. Invest. Dermatol., 2012, 132(5), 1520-1522. doi: 10.1038/jid.2011.481 PMID: 22336940
- Li, C.; Mpollo, M.S.E.M.; Gonsalves, C.S.; Tahara, S.M.; Malik, P.; Kalra, V.K. Peroxisome proliferator-activated receptor-α-mediated transcription of miR-199a2 attenuates endothelin-1 expression via hypoxia-inducible factor-1α. J. Biol. Chem., 2014, 289(52), 36031-36047. doi: 10.1074/jbc.M114.600775 PMID: 25389292
- Li, C.; Zhou, Y.; Loberg, A.; Tahara, S.M.; Malik, P.; Kalra, V.K. Activated transcription factor 3 in association with histone deacetylase 6 negatively regulates MicroRNA 199a2 transcription by chromatin remodeling and reduces endothelin-1 expression. Mol. Cell. Biol., 2016, 36(22), 2838-2854. doi: 10.1128/MCB.00345-16 PMID: 27573019
- Hirata, M.; Asano, N.; Katayama, K.; Yoshida, A.; Tsuda, Y.; Sekimizu, M.; Mitani, S.; Kobayashi, E.; Komiyama, M.; Fujimoto, H.; Goto, T.; Iwamoto, Y.; Naka, N.; Iwata, S.; Nishida, Y.; Hiruma, T.; Hiraga, H.; Kawano, H.; Motoi, T.; Oda, Y.; Matsubara, D.; Fujita, M.; Shibata, T.; Nakagawa, H.; Nakayama, R.; Kondo, T.; Imoto, S.; Miyano, S.; Kawai, A.; Yamaguchi, R.; Ichikawa, H.; Matsuda, K. Integrated exome and RNA sequencing of dedifferentiated liposarcoma. Nat. Commun., 2019, 10(1), 5683. doi: 10.1038/s41467-019-13286-z PMID: 31831742
- Wang, R.; Zhang, M.; Ou, Z.; He, W.; Chen, L.; Zhang, J.; He, Y.; Xu, R.; Jiang, S.; Qi, L.; Wang, L. Long noncoding RNA DNM3OS promotes prostate stromal cells transformation via the miR-29a/29b/COL3A1 and miR-361/TGFβ1 axes. Aging, 2019, 11(21), 9442-9460. doi: 10.18632/aging.102395 PMID: 31694982
- Li, N.; Flynt, A.S.; Kim, H.R.; Solnica-Krezel, L.; Patton, J.G. Dispatched Homolog 2 is targeted by miR-214 through a combination of three weak microRNA recognition sites. Nucleic Acids Res., 2008, 36(13), 4277-4285. doi: 10.1093/nar/gkn388 PMID: 18583362
- Shi, K.; Lu, J.; Zhao, Y.; Wang, L.; Li, J.; Qi, B.; Li, H.; Ma, C. MicroRNA-214 suppresses osteogenic differentiation of C2C12 myoblast cells by targeting Osterix. Bone, 2013, 55(2), 487-494. doi: 10.1016/j.bone.2013.04.002 PMID: 23579289
- Sun, Y.; Kuek, V.; Liu, Y.; Tickner, J.; Yuan, Y.; Chen, L.; Zeng, Z.; Shao, M.; He, W.; Xu, J. MiR-214 is an important regulator of the musculoskeletal metabolism and disease. J. Cell. Physiol., 2019, 234(1), 231-245. doi: 10.1002/jcp.26856 PMID: 30076721
- Ottevanger, P.B. Ovarian cancer stem cells more questions than answers. Semin. Cancer Biol., 2017, 44, 67-71. doi: 10.1016/j.semcancer.2017.04.009 PMID: 28450177
- Webb, P.M.; Jordan, S.J. Epidemiology of epithelial ovarian cancer. Best Pract. Res. Clin. Obstet. Gynaecol., 2017, 41, 3-14. doi: 10.1016/j.bpobgyn.2016.08.006 PMID: 27743768
- Song, H.; Liu, Y.; Liang, H.; Jin, X.; Liu, L. SPINT1-AS1 drives cervical cancer progression via repressing miR-214 biogenesis. Front. Cell Dev. Biol., 2021, 9, 691140. doi: 10.3389/fcell.2021.691140 PMID: 34350182
- Myers, J.L.; Katzenstein, A.L.A. Epithelial necrosis and alveolar collapse in the pathogenesis of usual interstitial pneumonia. Chest, 1988, 94(6), 1309-1311. doi: 10.1378/chest.94.6.1309 PMID: 3191777
- Leslie, K.O. Idiopathic pulmonary fibrosis may be a disease of recurrent, tractional injury to the periphery of the aging lung: A unifying hypothesis regarding etiology and pathogenesis. Arch. Pathol. Lab. Med., 2012, 136(6), 591-600. doi: 10.5858/arpa.2011-0511-OA PMID: 22136526
- Roehlen, N.; Crouchet, E.; Baumert, T.F. Liver fibrosis: Mechanistic concepts and therapeutic perspectives. Cells, 2020, 9(4), 875. doi: 10.3390/cells9040875 PMID: 32260126
- Liu, Z.; Zhu, P.; Zhang, L.; Xiong, B.; Tao, J.; Guan, W.; Li, C.; Chen, C.; Gu, J.; Duanmu, J.; Zhang, W. Autophagy inhibition attenuates the induction of anti-inflammatory effect of catalpol in liver fibrosis. Biomed. Pharmacother., 2018, 103, 1262-1271. doi: 10.1016/j.biopha.2018.04.156 PMID: 29864907
Дополнительные файлы
