Selective Activation of G Protein-coupled Estrogen Receptor 1 Attenuates Atherosclerosis


Cite item

Full Text

Abstract

therosclerosis remains a leading contributor to cardiovascular disease-associated morbidity and mortality. Interestingly, atherosclerosis-associated mortality rate is higher in men than women. This suggested a protective role for estrogen in the cardiovasculature. These effects of estrogen were initially thought to be mediated by the classic estrogen receptors, ER alpha, and beta. However, genetic knockdown of these receptors did not abolish estrogen’s vasculoprotective effects suggesting that the other membranous Gprotein coupled estrogen receptor, GPER1, maybe the actual mediator. Indeed, in addition to its role in vasotone regulation, this GPER1 appears to play important roles in regulating vascular smooth cell phenotype, a critical player in the onset of atherosclerosis. Moreover, GPER1-selective agonists appear to reduce LDL levels by promoting the expression of LDL receptors as well as potentiating LDL re-uptake in liver cells. Further evidence also show that GPER1 can downregulate Proprotein Convertase Subtilisin/ Kexin type 9, leading to suppression of LDL receptor breakdown. Here, we review how selective activation of GPER1 might prevent or suppress atherosclerosis, with less side effects than those of the non-selective estrogen.

About the authors

Mohammad Haider

Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University

Email: info@benthamscience.net

Amirhossein Sahebkar

Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences

Email: info@benthamscience.net

Ali Eid

Department of Basic Medical Sciences, College of Medicine, QU Health,, Qatar University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Centers for Disease Control and Prevention (CDC) Million hearts: strategies to reduce the prevalence of leading cardiovascular disease risk factors--United States, 2011. MMWR Morb Mortal Wkly Rep, 2011, 60(36), 1248-1251.
  2. Frostegård, J. Immunity, atherosclerosis and cardiovascular disease. BMC Med., 2013, 11(1), 117. doi: 10.1186/1741-7015-11-117 PMID: 23635324
  3. Baradaran, A.J.J.o.n. Lipoprotein (a), type 2 diabetes and nephropathy; the mystery continues. J. Nephropathol., 2012, 1(3), 126. doi: 10.5812/nephropathol.8107
  4. Grebe, A.; Latz, E. Cholesterol crystals and inflammation. Curr. Rheumatol. Rep., 2013, 15(3), 313. doi: 10.1007/s11926-012-0313-z PMID: 23412688
  5. Tavafi, M.J.J.o.r.i.p. Complexity of diabetic nephropathy pathogenesis and design of investigations. J. Renal Inj. Prev., 2013, 2(2), 59-62. doi: 10.12861/jrip.2013.20
  6. Douglas, G.; Channon, K.M. The pathogenesis of atherosclerosis. Medicine, 2014, 42(9), 480-484. doi: 10.1016/j.mpmed.2014.06.011
  7. Virmani, R.; Burke, A.P.; Farb, A.; Kolodgie, F.D.J.J.o.t.A.C.o.C. Pathology of the vulnerable plaque. J. Am. Coll Cardiol., 2006, 47(8S), C13-C18. doi: 10.1002/9780470987575.ch2
  8. Lusis, A.J. Atherosclerosis. Nature, 2000, 407(6801), 233-241. doi: 10.1038/35025203 PMID: 11001066
  9. Badimon, L.; Vilahur, G. Thrombosis formation on atherosclerotic lesions and plaque rupture. J. Intern. Med., 2014, 276(6), 618-632. doi: 10.1111/joim.12296 PMID: 25156650
  10. Yu, X.H.; Fu, Y.C.; Zhang, D.W.; Yin, K.; Tang, C.K. Foam cells in atherosclerosis. Clin. Chim. Acta, 2013, 424, 245-252. doi: 10.1016/j.cca.2013.06.006 PMID: 23782937
  11. Grover, S.P.; Mackman, N. Tissue factor in atherosclerosis and atherothrombosis. Atherosclerosis, 2020, 307, 80-86. doi: 10.1016/j.atherosclerosis.2020.06.003 PMID: 32674807
  12. Wilcox, J.N.; Smith, K.M.; Schwartz, S.M.; Gordon, D. Localization of tissue factor in the normal vessel wall and in the atherosclerotic plaque. Proc. Natl. Acad. Sci. USA, 1989, 86(8), 2839-2843. doi: 10.1073/pnas.86.8.2839 PMID: 2704749
  13. Cimmino, G.; D’Amico, C.; Vaccaro, V.; D’Anna, M.; Golino, P. The missing link between atherosclerosis, inflammation and thrombosis: Is it tissue factor? Expert Rev. Cardiovasc. Ther., 2011, 9(4), 517-523. doi: 10.1586/erc.11.40 PMID: 21517734
  14. Toschi, V.; Gallo, R.; Lettino, M.; Fallon, J.T.; Gertz, S.D.; Ferna´ndez-Ortiz, A.; Chesebro, J.H.; Badimon, L.; Nemerson, Y.; Fuster, V.; Badimon, J.J. Tissue factor modulates the thrombogenicity of human atherosclerotic plaques. Circulation, 1997, 95(3), 594-599. doi: 10.1161/01.CIR.95.3.594 PMID: 9024145
  15. Hoylaerts, M.; Rijken, D.C.; Lijnen, H.R.; Collen, D. Kinetics of the activation of plasminogen by human tissue plasminogen activator. Role of fibrin. J. Biol. Chem., 1982, 257(6), 2912-2919. doi: 10.1016/S0021-9258(19)81051-7 PMID: 7199524
  16. Roger, V.L.; Go, A.S.; Lloyd-Jones, D.M.; Adams, R.J.; Berry, J.D.; Brown, T.M.; Carnethon, M.R.; Dai, S.; de Simone, G.; Ford, E.S.; Fox, C.S.; Fullerton, H.J.; Gillespie, C.; Greenlund, K.J.; Hailpern, S.M.; Heit, J.A.; Ho, P.M.; Howard, V.J.; Kissela, B.M.; Kittner, S.J.; Lackland, D.T.; Lichtman, J.H.; Lisabeth, L.D.; Makuc, D.M.; Marcus, G.M.; Marelli, A.; Matchar, D.B.; McDermott, M.M.; Meigs, J.B.; Moy, C.S.; Mozaffarian, D.; Mussolino, M.E.; Nichol, G.; Paynter, N.P.; Rosamond, W.D.; Sorlie, P.D.; Stafford, R.S.; Turan, T.N.; Turner, M.B.; Wong, N.D.; Wylie-Rosett, J. Heart disease and stroke statistics--2011 update: A report from the American Heart Association. Circulation, 2011, 123(4), e18-e209. doi: 10.1161/CIR.0b013e3182009701 PMID: 21160056
  17. Shih, H.; Lee, B.; Lee, R.J.; Boyle, A.J. The aging heart and post-infarction left ventricular remodeling. J. Am. Coll. Cardiol., 2011, 57(1), 9-17. doi: 10.1016/j.jacc.2010.08.623 PMID: 21185495
  18. Regitz-Zagrosek, V. Therapeutic implications of the gender-specific aspects of cardiovascular disease. Nat. Rev. Drug Discov., 2006, 5(5), 425-439. doi: 10.1038/nrd2032 PMID: 16672926
  19. Hodis, H.N.; Mack, W.J. Hormone replacement therapy and the association with coronary heart disease and overall mortality: Clinical application of the timing hypothesis. J. Steroid Biochem. Mol. Biol., 2014, 142, 68-75. doi: 10.1016/j.jsbmb.2013.06.011 PMID: 23851166
  20. Choi, Y.; Chang, Y.; Kim, B.K.; Kang, D.; Kwon, M.J.; Kim, C.W.; Jeong, C.; Ahn, Y.; Park, H.Y.; Ryu, S.; Cho, J. Menopausal stages and serum lipid and lipoprotein abnormalities in middle-aged women. Maturitas, 2015, 80(4), 399-405. doi: 10.1016/j.maturitas.2014.12.016 PMID: 25631350
  21. Atsma, F.; Bartelink, M.L.E.L.; Grobbee, D.E.; van der Schouw, Y.T. Postmenopausal status and early menopause as independent risk factors for cardiovascular disease: A meta-analysis. Menopause, 2006, 13(2), 265-279. doi: 10.1097/01.gme.0000218683.97338.ea PMID: 16645540
  22. Turgeon, J.L.; McDonnell, D.P.; Martin, K.A.; Wise, P.M. Hormone therapy: Physiological complexity belies therapeutic simplicity. Science, 2004, 304(5675), 1269-1273. doi: 10.1126/science.1096725 PMID: 15166356
  23. Fardoun, M.M.; Issa, K.; Maaliki, D.; Nasser, S.A.; Baydoun, E.; Eid, A.H. Estrogen increases expression of vascular alpha 2C adrenoceptor through the cAMP/Epac/JNK/AP-1 pathway and potentiates cold-induced vasoconstriction. Vascul. Pharmacol., 2020, 131, 106690. doi: 10.1016/j.vph.2020.106690 PMID: 32407896
  24. Wehbe, Z.; Nasser, S.A.; El-Yazbi, A.; Nasreddine, S.; Eid, A.H. Estrogen and bisphenol A in hypertension. Curr. Hypertens. Rep., 2020, 22(3), 23. doi: 10.1007/s11906-020-1022-z PMID: 32114652
  25. Eid, A.H.; Maiti, K.; Mitra, S.; Chotani, M.A.; Flavahan, S.; Bailey, S.R.; Thompson-Torgerson, C.S.; Flavahan, N.A. Estrogen increases smooth muscle expression of α 2C -adrenoceptors and cold-induced constriction of cutaneous arteries. Am. J. Physiol. Heart Circ. Physiol., 2007, 293(3), H1955-H1961. doi: 10.1152/ajpheart.00306.2007 PMID: 17644575
  26. Thomas, P.; Pang, Y.; Filardo, E.J.; Dong, J. Identity of an estrogen membrane receptor coupled to a G protein in human breast cancer cells. Endocrinology, 2005, 146(2), 624-632. doi: 10.1210/en.2004-1064 PMID: 15539556
  27. Fardoun, M.; Dehaini, H.; Shaito, A.; Mesmar, J.; El-Yazbi, A.; Badran, A.; Beydoun, E.; Eid, A.H. The hypertensive potential of estrogen: An untold story. Vascul. Pharmacol., 2020, 124, 106600. doi: 10.1016/j.vph.2019.106600 PMID: 31629918
  28. Dehaini, H.; Fardoun, M.; Abou-Saleh, H.; El-Yazbi, A.; Eid, A.A.; Eid, A.H. Estrogen in vascular smooth muscle cells: A friend or a foe? Vascul. Pharmacol., 2018, 111, 15-21. doi: 10.1016/j.vph.2018.09.001 PMID: 30227233
  29. Hutchens, M.P.; Nakano, T.; Kosaka, Y.; Dunlap, J.; Zhang, W.; Herson, P.S.; Murphy, S.J.; Anderson, S.; Hurn, P.D. Estrogen is renoprotective via a nonreceptor-dependent mechanism after cardiac arrest in vivo. Anesthesiology, 2010, 112(2), 395-405. doi: 10.1097/ALN.0b013e3181c98da9 PMID: 20068453
  30. Chakrabarti, S.; Morton, J.S.; Davidge, S.T. Mechanisms of estrogen effects on the endothelium: An overview. Can. J. Cardiol., 2014, 30(7), 705-712. doi: 10.1016/j.cjca.2013.08.006 PMID: 24252499
  31. Takada, Y.; Kato, C.; Kondo, S.; Korenaga, R.; Ando, J. Cloning of cDNAs encoding G protein-coupled receptor expressed in human endothelial cells exposed to fluid shear stress. Biochem. Biophys. Res. Commun., 1997, 240(3), 737-741. doi: 10.1006/bbrc.1997.7734 PMID: 9398636
  32. Filardo, E.J.; Quinn, J.A.; Bland, K.I.; Frackelton, A.R., Jr Estrogen-induced activation of Erk-1 and Erk-2 requires the G protein-coupled receptor homolog, GPR30, and occurs via trans-activation of the epidermal growth factor receptor through release of HB-EGF. Mol. Endocrinol., 2000, 14(10), 1649-1660. doi: 10.1210/mend.14.10.0532 PMID: 11043579
  33. Zimmerman, M.A.; Budish, R.A.; Kashyap, S.; Lindsey, S.H. GPER–novel membrane oestrogen receptor. Clin. Sci., 2016, 130(12), 1005-1016. doi: 10.1042/CS20160114
  34. Meyer, M.R.; Amann, K.; Field, A.S.; Hu, C.; Hathaway, H.J.; Kanagy, N.L.; Walker, M.K.; Barton, M.; Prossnitz, E.R. Deletion of G protein-coupled estrogen receptor increases endothelial vasoconstriction. Hypertension, 2012, 59(2), 507-512. doi: 10.1161/HYPERTENSIONAHA.111.184606 PMID: 22203741
  35. Prabhushankar, R.; Krueger, C.; Manrique, C. Membrane estrogen receptors: Their role in blood pressure regulation and cardiovascular disease. Curr. Hypertens. Rep., 2014, 16(1), 408. doi: 10.1007/s11906-013-0408-6 PMID: 24343167
  36. Barton, M.; Prossnitz, E.R. Emerging roles of GPER in diabetes and atherosclerosis. Trends Endocrinol. Metab., 2015, 26(4), 185-192. doi: 10.1016/j.tem.2015.02.003 PMID: 25767029
  37. Burke, A.P.; Farb, A.; Malcom, G.; Virmani, R. Effect of menopause on plaque morphologic characteristics in coronary atherosclerosis. Am. Heart J., 2001, 141(S2), S58-S62. doi: 10.1067/mhj.2001.109946 PMID: 11174360
  38. Sever, R.; Glass, C.K. Signaling by nuclear receptors. Cold Spring Harb. Perspect. Biol., 2013, 5(3), a016709. doi: 10.1101/cshperspect.a016709 PMID: 23457262
  39. Klinge, C.M.; Blankenship, K.A.; Risinger, K.E.; Bhatnagar, S.; Noisin, E.L.; Sumanasekera, W.K.; Zhao, L.; Brey, D.M.; Keynton, R.S. Resveratrol and estradiol rapidly activate MAPK signaling through estrogen receptors alpha and beta in endothelial cells. J. Biol. Chem., 2005, 280(9), 7460-7468. doi: 10.1074/jbc.M411565200 PMID: 15615701
  40. Cunningham, K.S.; Gotlieb, A.I. The role of shear stress in the pathogenesis of atherosclerosis. Lab. Invest., 2005, 85(1), 9-23. doi: 10.1038/labinvest.3700215 PMID: 15568038
  41. Kaplan, J.R.; Manuck, S.B. Premenopausal reproductive health modulates future cardiovascular risk - comparative evidence from monkeys and women. Yale J. Biol. Med., 2017, 90(3), 499-507. PMID: 28955188
  42. Fairweather, D. Sex differences in inflammation during atherosclerosis. Clin. Med. Insights Cardiol., 2015, 8(S3), 49-59. PMID: 25983559
  43. Saha, K.R.; Rahman, M.M.; Paul, A.R.; Das, S.; Haque, S.; Jafrin, W.; Mia, A.R. Changes in lipid profile of postmenopausal women. Mymensingh Med. J., 2013, 22(4), 706-711. PMID: 24292300
  44. Vaisar, T.; Gordon, J.L.; Wimberger, J.; Heinecke, J.W.; Hinderliter, A.L.; Rubinow, D.R.; Girdler, S.S.; Rubinow, K.B. Perimenopausal transdermal estradiol replacement reduces serum HDL cholesterol efflux capacity but improves cardiovascular risk factors. J. Clin. Lipidol., 2021, 15(1), 151-161.e0. doi: 10.1016/j.jacl.2020.11.009 PMID: 33288437
  45. Lee, J.Y.; Hyun, H.S.; Park, H.G.; Seo, J.H.; Lee, E.Y.; Lee, J.S.; Lee, D.Y.; Choi, D.S.; Yoon, B.K. Effects of hormone therapy on serum lipid levels in postmenopausal korean women. J. Menopausal Med., 2015, 21(2), 104-111. doi: 10.6118/jmm.2015.21.2.104 PMID: 26357648
  46. Borén, J.; Chapman, M.J.; Krauss, R.M.; Packard, C.J.; Bentzon, J.F.; Binder, C.J.; Daemen, M.J.; Demer, L.L.; Hegele, R.A.; Nicholls, S.J.; Nordestgaard, B.G.; Watts, G.F.; Bruckert, E.; Fazio, S.; Ference, B.A.; Graham, I.; Horton, J.D.; Landmesser, U.; Laufs, U.; Masana, L.; Pasterkamp, G.; Raal, F.J.; Ray, K.K.; Schunkert, H.; Taskinen, M.R.; van de Sluis, B.; Wiklund, O.; Tokgozoglu, L.; Catapano, A.L.; Ginsberg, H.N. Low-density lipoproteins cause atherosclerotic cardiovascular disease: Pathophysiological, genetic, and therapeutic insights: a consensus statement from the European Atherosclerosis Society Consensus Panel. Eur. Heart J., 2020, 41(24), 2313-2330. doi: 10.1093/eurheartj/ehz962 PMID: 32052833
  47. Langer, G.; Bader, B.; Meoli, L.; Isensee, J.; Delbeck, M.; Noppinger, P.R.; Otto, C.J.S. A critical review of fundamental controversies in the field of GPR30 research. Steroids., 2010, 75(8-9), 603-610. doi: 10.1016/j.steroids.2009.12.006
  48. Meyer, M.R.; Fredette, N.C.; Howard, T.A.; Hu, C.; Ramesh, C.; Daniel, C.; Amann, K.; Arterburn, J.B.; Barton, M.; Prossnitz, E.R. G protein-coupled estrogen receptor protects from atherosclerosis. Sci. Rep., 2014, 4(1), 7564. doi: 10.1038/srep07564 PMID: 25532911
  49. Hussain, Y.; Ding, Q.; Connelly, P.W.; Brunt, J.H.; Ban, M.R.; McIntyre, A.D.; Huff, M.W.; Gros, R.; Hegele, R.A.; Feldman, R.D. G-protein estrogen receptor as a regulator of low-density lipoprotein cholesterol metabolism: Cellular and population genetic studies. Arterioscler. Thromb. Vasc. Biol., 2015, 35(1), 213-221. doi: 10.1161/ATVBAHA.114.304326 PMID: 25395619
  50. Fu, W.; Gao, X.P.; Zhang, S.; Dai, Y.P.; Zou, W.J.; Yue, L.M. 17β-estradiol inhibits pcsk9-mediated LDLR degradation through GPER/PLC activation in HepG2 Cells. Front. Endocrinol., 2020, 10, 930-930. doi: 10.3389/fendo.2019.00930 PMID: 32082252
  51. Ding, Q.; Gros, R.; Limbird, L.E.; Chorazyczewski, J.; Feldman, R.D.J.A.J.o.P.-C.P. Estradiol-mediated ERK phosphorylation and apoptosis in vascular smooth muscle cells requires GPR 30. Am. J. Physiol. Cell Physiol., 2009, 297(5), C1178-C1187. doi: 10.1152/ajpcell.00185.2009 PMID: 19741198
  52. Gros, R.; Hussain, Y.; Chorazyczewski, J.; Pickering, J.G.; Ding, Q.; Feldman, R.D.J.H. Extent of vascular remodeling is dependent on the balance between estrogen receptor α and G-protein–coupled estrogen receptor. Hypertension., 2016, 68(5), 1225-1235. doi: 10.1161/HYPERTENSIONAHA.116.07859
  53. Sharma, G.; Prossnitz, E.R. Targeting the G protein-coupled estrogen receptor (GPER) in obesity and diabetes. Endo. Metab. Sci., 2021, 2, 100080. doi: 10.1016/j.endmts.2021.100080 PMID: 35321004
  54. Haas, E.; Bhattacharya, I.; Brailoiu, E.; Damjanović, M.; Brailoiu, G.C.; Gao, X.; Mueller-Guerre, L.; Marjon, N.A.; Gut, A.; Minotti, R.; Meyer, M.R.; Amann, K.; Ammann, E.; Perez-Dominguez, A.; Genoni, M.; Clegg, D.J.; Dun, N.J.; Resta, T.C.; Prossnitz, E.R.; Barton, M. Regulatory role of G protein-coupled estrogen receptor for vascular function and obesity. Circ. Res., 2009, 104(3), 288-291. doi: 10.1161/CIRCRESAHA.108.190892 PMID: 19179659
  55. Sharma, G.; Hu, C.; Brigman, J.L.; Zhu, G.; Hathaway, H.J.; Prossnitz, E.R. GPER deficiency in male mice results in insulin resistance, dyslipidemia, and a proinflammatory state. Endocrinology, 2013, 154(11), 4136-4145. doi: 10.1210/en.2013-1357 PMID: 23970785
  56. Davis, K.E.; Carstens, E.J.; Irani, B.G.; Gent, L.M.; Hahner, L.M.; Clegg, D.J. Sexually dimorphic role of G protein-coupled estrogen receptor (GPER) in modulating energy homeostasis. Horm. Behav., 2014, 66(1), 196-207. doi: 10.1016/j.yhbeh.2014.02.004 PMID: 24560890
  57. Sharma, G.; Hu, C.; Staquicini, D.I.; Brigman, J.L.; Liu, M.; Mauvais-Jarvis, F.; Pasqualini, R.; Arap, W.; Arterburn, J.B.; Hathaway, H.J.; Prossnitz, E.R. Preclinical efficacy of the GPER-selective agonist G-1 in mouse models of obesity and diabetes. Sci. Transl. Med., 2020, 12(528), eaau5956. doi: 10.1126/scitranslmed.aau5956 PMID: 31996464
  58. Mårtensson, U.E.A.; Salehi, S.A.; Windahl, S.; Gomez, M.F.; Swärd, K.; Daszkiewicz-Nilsson, J.; Wendt, A.; Andersson, N.; Hellstrand, P.; Grände, P.O.; Owman, C.; Rosen, C.J.; Adamo, M.L.; Lundquist, I.; Rorsman, P.; Nilsson, B.O.; Ohlsson, C.; Olde, B.; Leeb-Lundberg, L.M.F. Deletion of the G protein-coupled receptor 30 impairs glucose tolerance, reduces bone growth, increases blood pressure, and eliminates estradiol-stimulated insulin release in female mice. Endocrinology, 2009, 150(2), 687-698. doi: 10.1210/en.2008-0623 PMID: 18845638
  59. Muller, C.; Brown-Glaberman, U.A.; Chaney, M.F.; Garyantes, T.; LoRusso, P.; McQuade, J.L.; Mita, A.C.; Mita, M.M.; Natale, C.; Orloff, M.; Papadopoulos, K.P.; Sato, T.; Yilmaz, E.; Rodon, J. Phase 1 trial of a novel, first-in-class G protein-coupled estrogen receptor (GPER) agonist, LNS8801, in patients with advanced or recurrent treatment-refractory solid malignancies. J. Clin. Oncol., 2021, 39(S15), 3084-3084. doi: 10.1200/JCO.2021.39.15_suppl.3084
  60. Beyoğlu, A.; Kurutaş, E.B.; Karaküçük, Y.; Çömez, A.; Meşen, A. Comparing the effects of serum GPER-1 and oxidant/antioxidant levels on retinopathy in patients with diabetes and healthy individuals: a pilot study. Arq. Bras. Oftalmol., 2022, S0004-27492022005008205. PMID: 35857982
  61. Kastenberger, I.; Lutsch, C.; Schwarzer, C. Activation of the G-protein-coupled receptor GPR30 induces anxiogenic effects in mice, similar to oestradiol. Psychopharmacology, 2012, 221(3), 527-535. doi: 10.1007/s00213-011-2599-3 PMID: 22143579
  62. Sarma, S.; Sockalingam, S.; Dash, S. Obesity as a MULTISYSTEM disease: Trends in obesity rates and OBESITY‐RELATED complications. Diabetes Obes. Metab., 2021, 23(S1), 3-16. doi: 10.1111/dom.14290 PMID: 33621415
  63. Sandesara, P.B.; Virani, S.S.; Fazio, S.; Shapiro, M.D. The forgotten lipids: Triglycerides, remnant cholesterol, and atherosclerotic cardiovascular disease risk. Endocr. Rev., 2019, 40(2), 537-557. doi: 10.1210/er.2018-00184 PMID: 30312399
  64. Huang, D.; Wang, X.; Zhu, Y.; Gong, J.; Liang, J.; Song, Y.; Zhang, Y.; Liu, L.; Wei, C. Bazi bushen capsule alleviates post-menopausal atherosclerosis via gper1-dependent anti-inflammatory and anti-apoptotic effects. Front. Pharmacol., 2021, 12, 658998. doi: 10.3389/fphar.2021.658998 PMID: 34248622
  65. Beral, V.; Bull, D.; Reeves, G. Endometrial cancer and hormone-replacement therapy in the Million Women Study. Lancet, 2005, 365(9470), 1543-1551. doi: 10.1016/S0140-6736(05)66455-0 PMID: 15866308
  66. Furness, S.; Roberts, H.; Marjoribanks, J.; Lethaby, A. Hormone therapy in postmenopausal women and risk of endometrial hyperplasia. Cochrane Database Syst. Rev., 2012, 2012(8), CD000402. doi: 10.1002/14651858.CD000402.pub4
  67. Wildemeersch, D. Why perimenopausal women should consider to use a levonorgestrel intrauterine system. Gynecol. Endocrinol., 2016, 32(8), 659-661. doi: 10.3109/09513590.2016.1153056 PMID: 26930021
  68. Pinkerton, J.V.; Pickar, J.H.; Racketa, J.; Mirkin, S. Bazedoxifene/conjugated estrogens for menopausal symptom treatment and osteoporosis prevention. Climacteric, 2012, 15(5), 411-418. doi: 10.3109/13697137.2012.696289 PMID: 22853444
  69. Singh, G.; Puckett, Y. Endometrial Hyperplasia. In StatPearls; StatPearls Publishing Copyright© 2022; StatPearls Publishing LLC: Treasure Island, FL, 2022.
  70. Hamoda, H.; Panay, N.; Pedder, H.; Arya, R.; Savvas, M. The british menopause society & women’s health concern 2020 recommendations on hormone replacement therapy in menopausal women. Post Reprod. Health, 2020, 26(4), 181-209. doi: 10.1177/2053369120957514 PMID: 33045914
  71. Gompel, A. Progesterone and endometrial cancer. Best Pract. Res. Clin. Obstet. Gynaecol., 2020, 69, 95-107. doi: 10.1016/j.bpobgyn.2020.05.003 PMID: 32732107
  72. De Medeiros, S.F.; Yamamoto, M.M.W.; Barbosa, J.S. Abnormal bleeding during menopause hormone therapy: insights for clinical management. Clin. Med. Insights Womens Health, 2013, 6, CMWH.S10483. doi: 10.4137/CMWH.S10483 PMID: 24665210
  73. Edwards, M.; Can, A.S. In StatPearls; StatPearls Publishing Copyright© 2022; StatPearls Publishing LLC: Treasure Island, FL, 2022.
  74. Mu, E.; Kulkarni, J. Hormonal contraception and mood disorders. Aust. Prescr., 2022, 45(3), 75-79. doi: 10.18773/austprescr.2022.025 PMID: 35755988
  75. Dennis, M.K.; Burai, R.; Ramesh, C.; Petrie, W.K.; Alcon, S.N.; Nayak, T.K.; Bologa, C.G.; Leitao, A.; Brailoiu, E.; Deliu, E.; Dun, N.J.; Sklar, L.A.; Hathaway, H.J.; Arterburn, J.B.; Oprea, T.I.; Prossnitz, E.R. In vivo effects of a GPR30 antagonist. Nat. Chem. Biol., 2009, 5(6), 421-427. doi: 10.1038/nchembio.168 PMID: 19430488
  76. Barton, M. Position paper: The membrane estrogen receptor GPER – Clues and questions. Steroids, 2012, 77(10), 935-942. doi: 10.1016/j.steroids.2012.04.001 PMID: 22521564
  77. DeLeon, C.; Wang, D.Q.H.; Arnatt, C.K. G protein-coupled estrogen receptor, GPER1, offers a novel target for the treatment of digestive diseases. Front. Endocrinol., 2020, 11, 578536. doi: 10.3389/fendo.2020.578536 PMID: 33281743
  78. Fuentes, N.; Silveyra, P. Estrogen receptor signaling mechanisms. Adv. Protein Chem. Struct. Biol., 2019, 116, 135-170. doi: 10.1016/bs.apcsb.2019.01.001 PMID: 31036290
  79. Rodriguez, A.C.; Blanchard, Z.; Maurer, K.A.; Gertz, J. Estrogen signaling in endometrial cancer: A key oncogenic pathway with several open questions. Horm. Cancer, 2019, 10(2-3), 51-63. doi: 10.1007/s12672-019-0358-9 PMID: 30712080
  80. Krakstad, C.; Trovik, J.; Wik, E.; Engelsen, I.B.; Werner, H.M.J.; Birkeland, E.; Raeder, M.B.; Øyan, A.M.; Stefansson, I.M.; Kalland, K.H.; Akslen, L.A.; Salvesen, H.B. Loss of GPER identifies new targets for therapy among a subgroup of ERα-positive endometrial cancer patients with poor outcome. Br. J. Cancer, 2012, 106(10), 1682-1688. doi: 10.1038/bjc.2012.91 PMID: 22415229
  81. Skrzypczak, M.; Schüler, S.; Lattrich, C.; Ignatov, A.; Ortmann, O.; Treeck, O. G protein-coupled estrogen receptor (GPER) expression in endometrial adenocarcinoma and effect of agonist G-1 on growth of endometrial adenocarcinoma cell lines. Steroids, 2013, 78(11), 1087-1091. doi: 10.1016/j.steroids.2013.07.007 PMID: 23921077
  82. Levine, D.A.; Schultz, N.; Cherniack, A.D.; Akbani, R.; Liu, Y.; Shen, H.; Robertson, A.G.; Pashtan, I.; Shen, R.; Benz, C.C.; Yau, C.; Laird, P.W.; Ding, L.; Zhang, W.; Mills, G.B.; Kucherlapati, R.; Mardis, E.R.; Levine, D.A. Integrated genomic characterization of endometrial carcinoma. Nature, 2013, 497(7447), 67-73. doi: 10.1038/nature12113 PMID: 23636398
  83. Kim, K.H.; Bender, J.R. Rapid, estrogen receptor-mediated signaling: Why is the endothelium so special? Sci. STKE, 2005, 2005(288), pe28. doi: 10.1126/stke.2882005pe28 PMID: 15956360
  84. Otto, C.; Fuchs, I.; Kauselmann, G.; Kern, H.; Zevnik, B.; Andreasen, P.; Schwarz, G.; Altmann, H.; Klewer, M.; Schoor, M.; Vonk, R.; Fritzemeier, K.H. GPR30 does not mediate estrogenic responses in reproductive organs in mice. Biol. Reprod., 2009, 80(1), 34-41. doi: 10.1095/biolreprod.108.071175 PMID: 18799753
  85. Isensee, J.; Meoli, L.; Zazzu, V.; Nabzdyk, C.; Witt, H.; Soewarto, D.; Effertz, K.; Fuchs, H.; Gailus-Durner, V.; Busch, D.; Adler, T.; de Angelis, M.H.; Irgang, M.; Otto, C.; Noppinger, P.R. Expression pattern of G protein-coupled receptor 30 in LacZ reporter mice. Endocrinology, 2009, 150(4), 1722-1730. doi: 10.1210/en.2008-1488 PMID: 19095739
  86. Fardoun, M.; Mondello, S.; Kobeissy, F.; Eid, A.H. G protein estrogen receptor as a potential therapeutic target in Raynaud’s phenomenon. Front. Pharmacol., 2022, 13, 1061374. doi: 10.3389/fphar.2022.1061374 PMID: 36438809

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers