Multiomics Analysis of Disulfidptosis Patterns and Integrated Machine Learning to Predict Immunotherapy Response in Lung Adenocarcinoma


Cite item

Full Text

Abstract

Background:Recent studies have unveiled disulfidptosis as a phenomenon intimately associated with cellular damage, heralding new avenues for exploring tumor cell dynamics. We aimed to explore the impact of disulfide cell death on the tumor immune microenvironment and immunotherapy in lung adenocarcinoma (LUAD).

Methods:We initially utilized pan-cancer transcriptomics to explore the expression, prognosis, and mutation status of genes related to disulfidptosis. Using the LUAD multi- -omics cohorts in the TCGA database, we explore the molecular characteristics of subtypes related to disulfidptosis. Employing various machine learning algorithms, we construct a robust prognostic model to predict immune therapy responses and explore the model's impact on the tumor microenvironment through single-cell transcriptome data. Finally, the biological functions of genes related to the prognostic model are verified through laboratory experiments.

Results:Genes related to disulfidptosis exhibit high expression and significant prognostic value in various cancers, including LUAD. Two disulfidptosis subtypes with distinct prognoses and molecular characteristics have been identified, leading to the development of a robust DSRS prognostic model, where a lower risk score correlates with a higher response rate to immunotherapy and a better patient prognosis. NAPSA, a critical gene in the risk model, was found to inhibit the proliferation and migration of LUAD cells.

Conclusion:Our research introduces an innovative prognostic risk model predicated upon disulfidptosis genes for patients afflicted with Lung Adenocarcinoma (LUAD). This model proficiently forecasts the survival rates and therapeutic outcomes for LUAD patients, thereby delineating the high-risk population with distinctive immune cell infiltration and a state of immunosuppression. Furthermore, NAPSA can inhibit the proliferation and invasion capabilities of LUAD cells, thereby identifying new molecules for clinical targeted therapy.

About the authors

Junzhi Liu

Department of Otorhinolaryngology, Tianjin Medical University General Hospita

Email: info@benthamscience.net

Huimin Li

Laboratory of Cancer Cell Biology, National Clinical Research Center for Cancer

Email: info@benthamscience.net

Nannan Zhang

Department of Otorhinolaryngology, Tianjin Medical University General Hospital

Email: info@benthamscience.net

Qiuping Dong

Laboratory of Cancer Cell Biology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer

Email: info@benthamscience.net

Zheng Liang

Department of Otorhinolaryngology, TianjiTianjin Medical University General Hospital

Author for correspondence.
Email: info@benthamscience.net

References

  1. Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2021. CA Cancer J. Clin., 2021, 71(1), 7-33. doi: 10.3322/caac.21654 PMID: 33433946
  2. Topalian, S.L.; Hodi, F.S.; Brahmer, J.R.; Gettinger, S.N.; Smith, D.C.; McDermott, D.F.; Powderly, J.D.; Carvajal, R.D.; Sosman, J.A.; Atkins, M.B.; Leming, P.D.; Spigel, D.R.; Antonia, S.J.; Horn, L.; Drake, C.G.; Pardoll, D.M.; Chen, L.; Sharfman, W.H.; Anders, R.A.; Taube, J.M.; McMiller, T.L.; Xu, H.; Korman, A.J.; Jure-Kunkel, M.; Agrawal, S.; McDonald, D.; Kollia, G.D.; Gupta, A.; Wigginton, J.M.; Sznol, M. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med., 2012, 366(26), 2443-2454. doi: 10.1056/NEJMoa1200690 PMID: 22658127
  3. Sharma, P.; Allison, J.P. The future of immune checkpoint therapy. Science, 2015, 348(6230), 56-61. doi: 10.1126/science.aaa8172 PMID: 25838373
  4. Gibney, G.T.; Weiner, L.M.; Atkins, M.B. Predictive biomarkers for checkpoint inhibitor-based immunotherapy. Lancet Oncol., 2016, 17(12), e542-e551. doi: 10.1016/S1470-2045(16)30406-5 PMID: 27924752
  5. Rizzo, A.; Cusmai, A.; Giovannelli, F.; Acquafredda, S.; Rinaldi, L.; Misino, A.; Montagna, E.S.; Ungaro, V.; Lorusso, M.; Palmiotti, G. Impact of proton pump inhibitors and histamine-2-receptor antagonists on non-small cell lung cancer immunotherapy: A systematic review and meta-analysis. Cancers, 2022, 14(6), 1404. doi: 10.3390/cancers14061404 PMID: 35326555
  6. Mollica, V.; Rizzo, A.; Marchetti, A.; Tateo, V.; Tassinari, E.; Rosellini, M.; Massafra, R.; Santoni, M.; Massari, F. The impact of ECOG performance status on efficacy of immunotherapy and immune-based combinations in cancer patients: The MOUSEION-06 study. Clin. Exp. Med., 2023, 23(8), 5039-5049. doi: 10.1007/s10238-023-01159-1 PMID: 37535194
  7. Zheng, H.; Wang, M.; Zhang, S.; Hu, D.; Yang, Q.; Chen, M.; Zhang, X.; Zhang, Y.; Dai, J.; Liou, Y.C. Comprehensive pan-cancer analysis reveals NUSAP1 is a novel predictive biomarker for prognosis and immunotherapy response. Int. J. Biol. Sci., 2023, 19(14), 4689-4708. doi: 10.7150/ijbs.80017 PMID: 37781040
  8. Sharma, P.; Hu-Lieskovan, S.; Wargo, J.A.; Ribas, A. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell, 2017, 168(4), 707-723. doi: 10.1016/j.cell.2017.01.017 PMID: 28187290
  9. Dall’Olio, F.G.; Rizzo, A.; Mollica, V.; Massucci, M.; Maggio, I.; Massari, F. Immortal time bias in the association between toxicity and response for immune checkpoint inhibitors: A meta-analysis. Immunotherapy, 2021, 13(3), 257-270. doi: 10.2217/imt-2020-0179 PMID: 33225800
  10. Rizzo, A. Identifying optimal first-line treatment for advanced non-small cell lung carcinoma with high PD-L1 expression: A matter of debate. Br. J. Cancer, 2022, 127(8), 1381-1382. doi: 10.1038/s41416-022-01929-w PMID: 36064585
  11. Liu, X.; Nie, L.; Zhang, Y.; Yan, Y.; Wang, C.; Colic, M.; Olszewski, K.; Horbath, A.; Chen, X.; Lei, G.; Mao, C.; Wu, S.; Zhuang, L.; Poyurovsky, M.V.; James You, M.; Hart, T.; Billadeau, D.D.; Chen, J.; Gan, B. Actin cytoskeleton vulnerability to disulfide stress mediates disulfidptosis. Nat. Cell Biol., 2023, 25(3), 404-414. doi: 10.1038/s41556-023-01091-2 PMID: 36747082
  12. Zeng, D.; Ye, Z.; Shen, R.; Yu, G.; Wu, J.; Xiong, Y.; Zhou, R.; Qiu, W.; Huang, N.; Sun, L.; Li, X.; Bin, J.; Liao, Y.; Shi, M.; Liao, W. IOBR: Multi-omics immuno-oncology biological research to decode tumor microenvironment and signatures. Front. Immunol., 2021, 12, 687975. doi: 10.3389/fimmu.2021.687975 PMID: 34276676
  13. Jiang, A.; Meng, J.; Bao, Y.; Wang, A.; Gong, W.; Gan, X.; Wang, J.; Bao, Y.; Wu, Z.; Lu, J.; Liu, B.; Wang, L. Establishment of a prognosis prediction model based on pyroptosis-related signatures associated with the immune microenvironment and molecular heterogeneity in clear cell renal cell carcinoma. Front. Oncol., 2021, 11, 755212. doi: 10.3389/fonc.2021.755212 PMID: 34804944
  14. Maeser, D.; Gruener, R.F.; Huang, R.S. oncoPredict: an R package for predicting in vivo or cancer patient drug response and biomarkers from cell line screening data. Brief. Bioinform., 2021, 22(6), bbab260. doi: 10.1093/bib/bbab260 PMID: 34260682
  15. Yang, C.; Huang, X.; Li, Y.; Chen, J.; Lv, Y.; Dai, S. Prognosis and personalized treatment prediction in TP53 -mutant hepatocellular carcinoma: An in silico strategy towards precision oncology. Brief. Bioinform., 2021, 22(3), bbaa164. doi: 10.1093/bib/bbaa164 PMID: 32789496
  16. Aran, D.; Looney, A.P.; Liu, L.; Wu, E.; Fong, V.; Hsu, A.; Chak, S.; Naikawadi, R.P.; Wolters, P.J.; Abate, A.R.; Butte, A.J.; Bhattacharya, M. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat. Immunol., 2019, 20(2), 163-172. doi: 10.1038/s41590-018-0276-y PMID: 30643263
  17. Efremova, M.; Vento-Tormo, M.; Teichmann, S.A.; Vento-Tormo, R. CellPhoneDB: inferring cell–cell communication from combined expression of multi-subunit ligand–receptor complexes. Nat. Protoc., 2020, 15(4), 1484-1506. doi: 10.1038/s41596-020-0292-x PMID: 32103204
  18. Fu, J.; Li, K.; Zhang, W.; Wan, C.; Zhang, J.; Jiang, P.; Liu, X.S. Large-scale public data reuse to model immunotherapy response and resistance. Genome Med., 2020, 12(1), 21. doi: 10.1186/s13073-020-0721-z PMID: 32102694
  19. Jiang, P.; Gu, S.; Pan, D.; Fu, J.; Sahu, A.; Hu, X.; Li, Z.; Traugh, N.; Bu, X.; Li, B.; Liu, J.; Freeman, G.J.; Brown, M.A.; Wucherpfennig, K.W.; Liu, X.S. Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nat. Med., 2018, 24(10), 1550-1558. doi: 10.1038/s41591-018-0136-1 PMID: 30127393
  20. Chen, Z.; Luo, Z.; Zhang, D.; Li, H.; Liu, X.; Zhu, K.; Zhang, H.; Wang, Z.; Zhou, P.; Ren, J.; Zhao, A.; Zuo, Z. TIGER: A web portal of tumor immunotherapy gene expression resource. Genomics Proteomics Bioinformatics, 2022, 21(2), 337-348. PMID: 36049666
  21. Fu, Z.; Mowday, A.M.; Smaill, J.B.; Hermans, I.F.; Patterson, A.V. Tumour hypoxia-mediated immunosuppression: Mechanisms and therapeutic approaches to improve cancer immunotherapy. Cells, 2021, 10(5), 1006. doi: 10.3390/cells10051006 PMID: 33923305
  22. Jayaprakash, P.; Vignali, P.D.A.; Delgoffe, G.M.; Curran, M.A. Hypoxia reduction sensitizes refractory cancers to immunotherapy. Annu. Rev. Med., 2022, 73(1), 251-265. doi: 10.1146/annurev-med-060619-022830 PMID: 34699264
  23. Kopecka, J.; Salaroglio, I.C.; Perez-Ruiz, E.; Sarmento-Ribeiro, A.B.; Saponara, S.; De Las Rivas, J.; Riganti, C. Hypoxia as a driver of resistance to immunotherapy. Drug Resist. Updat., 2021, 59, 100787. doi: 10.1016/j.drup.2021.100787 PMID: 34840068
  24. Ma, S.; Zhao, Y.; Lee, W.C.; Ong, L.T.; Lee, P.L.; Jiang, Z.; Oguz, G.; Niu, Z.; Liu, M.; Goh, J.Y.; Wang, W.; Bustos, M.A.; Ehmsen, S.; Ramasamy, A.; Hoon, D.S.B.; Ditzel, H.J.; Tan, E.Y.; Chen, Q.; Yu, Q. Hypoxia induces HIF1α-dependent epigenetic vulnerability in triple negative breast cancer to confer immune effector dysfunction and resistance to anti-PD-1 immunotherapy. Nat. Commun., 2022, 13(1), 4118. doi: 10.1038/s41467-022-31764-9 PMID: 35840558
  25. Vignali, P.D.A.; DePeaux, K.; Watson, M.J.; Ye, C.; Ford, B.R.; Lontos, K.; McGaa, N.K.; Scharping, N.E.; Menk, A.V.; Robson, S.C.; Poholek, A.C.; Rivadeneira, D.B.; Delgoffe, G.M. Hypoxia drives CD39-dependent suppressor function in exhausted T cells to limit antitumor immunity. Nat. Immunol., 2023, 24(2), 267-279. doi: 10.1038/s41590-022-01379-9 PMID: 36543958
  26. Zhang, H.; Cao, K.; Xiang, J.; Zhang, M.; Zhu, M.; Xi, Q. Hypoxia induces immunosuppression, metastasis and drug resistance in pancreatic cancers. Cancer Lett., 2023, 571, 216345. doi: 10.1016/j.canlet.2023.216345 PMID: 37558084
  27. Chagas, V.S.; Groeneveld, C.S.; Oliveira, K.G.; Trefflich, S.; de Almeida, R.C.; Ponder, B.A.J.; Meyer, K.B.; Jones, S.J.M.; Robertson, A.G.; Castro, M.A.A. RTNduals : An R/Bioconductor package for analysis of co-regulation and inference of dual regulons. Bioinformatics, 2019, 35(24), 5357-5358. doi: 10.1093/bioinformatics/btz534 PMID: 31250887
  28. D’Arcy, M.S. Cell death: A review of the major forms of apoptosis, necrosis and autophagy. Cell Biol. Int., 2019, 43(6), 582-592. doi: 10.1002/cbin.11137 PMID: 30958602
  29. Li, X.; He, S.; Ma, B. Autophagy and autophagy-related proteins in cancer. Mol. Cancer, 2020, 19(1), 12. doi: 10.1186/s12943-020-1138-4 PMID: 31969156
  30. Gong, Y.; Fan, Z.; Luo, G.; Yang, C.; Huang, Q.; Fan, K.; Cheng, H.; Jin, K.; Ni, Q.; Yu, X.; Liu, C. The role of necroptosis in cancer biology and therapy. Mol. Cancer, 2019, 18(1), 1-17. doi: 10.1186/s12943-019-1029-8 PMID: 31122251
  31. Yu, P.; Zhang, X.; Liu, N.; Tang, L.; Peng, C.; Chen, X. Pyroptosis: Mechanisms and diseases. Signal Transduct. Target. Ther., 2021, 6(1), 128. doi: 10.1038/s41392-021-00507-5 PMID: 33776057
  32. Jiang, X.; Stockwell, B.R.; Conrad, M. Ferroptosis: Mechanisms, biology and role in disease. Nat. Rev. Mol. Cell Biol., 2021, 22(4), 266-282. doi: 10.1038/s41580-020-00324-8 PMID: 33495651
  33. Xie, J.; Yang, Y.; Gao, Y.; He, J. Cuproptosis: Mechanisms and links with cancers. Mol. Cancer, 2023, 22(1), 46. doi: 10.1186/s12943-023-01732-y PMID: 36882769
  34. Xia, L.; Oyang, L.; Lin, J.; Tan, S.; Han, Y.; Wu, N.; Yi, P.; Tang, L.; Pan, Q.; Rao, S.; Liang, J.; Tang, Y.; Su, M.; Luo, X.; Yang, Y.; Shi, Y.; Wang, H.; Zhou, Y.; Liao, Q. The cancer metabolic reprogramming and immune response. Mol. Cancer, 2021, 20(1), 1-21. doi: 10.1186/s12943-021-01316-8 PMID: 33546704
  35. Nachef, M.; Ali, A.K.; Almutairi, S.M.; Lee, S.H. Targeting SLC1A5 and SLC3A2/SLC7A5 as a potential strategy to strengthen anti-tumor immunity in the tumor microenvironment. Front. Immunol., 2021, 12, 624324. doi: 10.3389/fimmu.2021.624324 PMID: 33953707
  36. Tronik-Le Roux, D.; Daouya, M.; Jacquier, A.; Schenowitz, C.; Desgrandchamps, F.; Rouas-Freiss, N.; Carosella, E.D. The HLA-G immune checkpoint: A new immuno-stimulatory role for the α1-domain-deleted isoform. Cell. Mol. Life Sci., 2022, 79(6), 310. doi: 10.1007/s00018-022-04359-2 PMID: 35596891
  37. Ono, M.; Fukuda, I.; Nagao, M.; Tomiyama, K.; Okazaki-Hada, M.; Shuto, Y.; Kobayashi, S.; Yamaguchi, Y.; Nagamine, T.; Nakajima, Y.; Inagaki-Tanimura, K.; Sugihara, H. HLA analysis of immune checkpoint inhibitor-induced and idiopathic isolated ACTH deficiency. Pituitary, 2022, 25(4), 615-621. doi: 10.1007/s11102-022-01231-1 PMID: 35653047
  38. Fisher, J.; Doyle, A.; Graham, L.; Khakoo, S.; Blunt, M. Disruption of the NKG2A:HLA-E immune checkpoint axis to enhance NK cell activation against cancer. Vaccines, 2022, 10(12), 1993. doi: 10.3390/vaccines10121993 PMID: 36560403
  39. Liu, X.; Song, J.; Zhang, H.; Liu, X.; Zuo, F.; Zhao, Y.; Zhao, Y.; Yin, X.; Guo, X.; Wu, X.; Zhang, H.; Xu, J.; Hu, J.; Jing, J.; Ma, X.; Shi, H. Immune checkpoint HLA-E:CD94-NKG2A mediates evasion of circulating tumor cells from NK cell surveillance. Cancer Cell, 2023, 41(2), 272-287. doi: 10.1016/j.ccell.2023.01.001 PMID: 36706761
  40. Gravina, A.; Tediashvili, G.; Zheng, Y.; Iwabuchi, K.A.; Peyrot, S.M.; Roodsari, S.Z.; Gargiulo, L.; Kaneko, S.; Osawa, M.; Schrepfer, S.; Deuse, T. Synthetic immune checkpoint engagers protect HLA-deficient iPSCs and derivatives from innate immune cell cytotoxicity. Cell Stem Cell, 2023, 30(11), 1538-1548. doi: 10.1016/j.stem.2023.10.003
  41. Naranbhai, V.; Viard, M.; Dean, M.; Groha, S.; Braun, D.A.; Labaki, C.; Shukla, S.A.; Yuki, Y.; Shah, P.; Chin, K.; Wind-Rotolo, M.; Mu, X.J.; Robbins, P.B.; Gusev, A.; Choueiri, T.K.; Gulley, J.L.; Carrington, M. HLA-A*03 and response to immune checkpoint blockade in cancer: An epidemiological biomarker study. Lancet Oncol., 2022, 23(1), 172-184. doi: 10.1016/S1470-2045(21)00582-9 PMID: 34895481
  42. Noer, J.B.; Talman, M.L.M.; Moreira, J.M.A. HLA class II histocompatibility antigen γ chain (CD74) expression is associated with immune cell infiltration and favorable outcome in breast cancer. Cancers, 2021, 13(24), 6179. doi: 10.3390/cancers13246179 PMID: 34944801
  43. Daull, A.M.; Dubois, V.; Labussière-Wallet, H.; Venet, F.; Barraco, F.; Ducastelle-Lepretre, S.; Larcher, M.V.; Balsat, M.; Gilis, L.; Fossard, G.; Ghesquières, H.; Heiblig, M.; Ader, F.; Alcazer, V. Class I/Class II HLA evolutionary divergence ratio is an independent marker associated with disease-free and overall survival after allogeneic hematopoietic stem cell transplantation for acute myeloid leukemia. Front. Immunol., 2022, 13, 841470. doi: 10.3389/fimmu.2022.841470 PMID: 35309346
  44. Shao, X.M.; Huang, J.; Niknafs, N.; Balan, A.; Cherry, C.; White, J.; Velculescu, V.E.; Anagnostou, V.; Karchin, R. HLA class II immunogenic mutation burden predicts response to immune checkpoint blockade. Ann. Oncol., 2022, 33(7), 728-738. doi: 10.1016/j.annonc.2022.03.013 PMID: 35339648
  45. Stupia, S.; Heeke, C.; Brüggemann, A.; Zaremba, A.; Thier, B.; Kretz, J.; Sucker, A.; Philip, M.; Zelinskyy, G.; Ferrone, S.; Roesch, A.; Horn, S.; Hadaschik, E.; Schadendorf, D.; Trilling, M.; Dittmer, U.; Griewank, K.; Zhao, F.; Paschen, A. HLA Class II Loss and JAK1/2 deficiency coevolve in melanoma leading to CD4 T-cell and IFNγ cross-resistance. Clin. Cancer Res., 2023, 29(15), 2894-2907. doi: 10.1158/1078-0432.CCR-23-0099 PMID: 37199727
  46. Chen, X.; Zhang, J.; Lei, X.; Yang, L.; Li, W.; Zheng, L.; Zhang, S.; Ding, Y.; Shi, J.; Zhang, L.; Li, J.; Tang, T.; Jia, W. CD1C is associated with breast cancer prognosis and immune infiltrates. BMC Cancer, 2023, 23(1), 129. doi: 10.1186/s12885-023-10558-2 PMID: 36755259
  47. Bourdely, P.; Anselmi, G.; Vaivode, K.; Ramos, R.N.; Missolo-Koussou, Y.; Hidalgo, S.; Tosselo, J.; Nuñez, N.; Richer, W.; Vincent-Salomon, A.; Saxena, A.; Wood, K.; Lladser, A.; Piaggio, E.; Helft, J.; Guermonprez, P. Transcriptional and functional analysis of CD1c+ human dendritic cells identifies a CD163+ subset priming CD8+CD103+ T cells. Immunity, 2020, 53(2), 335-352.e8. doi: 10.1016/j.immuni.2020.06.002 PMID: 32610077
  48. Schwarze, J.K.; Tijtgat, J.; Awada, G.; Cras, L.; Vasaturo, A.; Bagnall, C.; Forsyth, R.; Dufait, I.; Tuyaerts, S.; Van Riet, I.; Neyns, B. Intratumoral administration of CD1c (BDCA-1) + and CD141 (BDCA-3) + myeloid dendritic cells in combination with talimogene laherparepvec in immune checkpoint blockade refractory advanced melanoma patients: A phase I clinical trial. J. Immunother. Cancer, 2022, 10(9), e005141. doi: 10.1136/jitc-2022-005141 PMID: 36113895
  49. Delgado-Arévalo, C.; Calvet-Mirabent, M.; Triguero-Martínez, A.; Vázquez de Luis, E.; Benguría-Filippini, A.; Largo, R.; Calzada-Fraile, D.; Popova, O.; Sánchez-Cerrillo, I.; Tsukalov, I.; Moreno-Vellisca, R.; de la Fuente, H.; Herrero-Beaumont, G.; Ramiro, A.; Sánchez-Madrid, F.; Castañeda, S.; Dopazo, A.; González Álvaro, I.; Martin-Gayo, E. NLRC4-mediated activation of CD1c+ DC contributes to perpetuation of synovitis in rheumatoid arthritis. JCI Insight, 2022, 7(22), e152886. doi: 10.1172/jci.insight.152886 PMID: 36194479
  50. Xu, Z.; Peng, B.; Kang, F.; Zhang, W.; Xiao, M.; Li, J.; Hong, Q.; Cai, Y.; Liu, W.; Yan, Y.; Peng, J. The roles of drug metabolism-related ADH1B in immune regulation and therapeutic response of ovarian cancer. Front. Cell Dev. Biol., 2022, 10, 877254. doi: 10.3389/fcell.2022.877254 PMID: 35756990
  51. Chida, K.; Oshi, M.; Roy, A.M.; Sato, T.; Endo, I.; Takabe, K. Pancreatic ductal adenocarcinoma with a high expression of alcohol dehydrogenase 1B is associated with less aggressive features and a favorable prognosis. Am. J. Cancer Res., 2023, 13(8), 3638-3649. PMID: 37693153
  52. Zhou, Y.; Yu, L.; Huang, P.; Zhao, X.; He, R.; Cui, Y.; Pan, B.; Liu, C. Identification of afatinib-associated ADH1B and potential small-molecule drugs targeting ADH1B for hepatocellular carcinoma. Front. Pharmacol., 2023, 14, 1166454. doi: 10.3389/fphar.2023.1166454 PMID: 37229243
  53. Zhou, Z.; Jia, D.; Kwon, O.; Li, S.; Sun, H.; Roudier, M.P.; Lin, D.W.; True, L.; Morrissey, C.; Creighton, C.J.; Lee, J.K.; Xin, L. Androgen-regulated stromal complement component 7 (C7) suppresses prostate cancer growth. Oncogene, 2023, 42(32), 2428-2438. doi: 10.1038/s41388-023-02759-7 PMID: 37400528
  54. Tian, B.; Yang, J.; Zhao, Y.; Ivanciuc, T.; Sun, H.; Wakamiya, M.; Garofalo, R.P.; Brasier, A.R. Central role of the NF-κB pathway in the Scgb1a1 -expressing epithelium in mediating respiratory syncytial virus-induced airway inflammation. J. Virol., 2018, 92(11), e00441-18. doi: 10.1128/JVI.00441-18 PMID: 29593031
  55. Xu, M.; Yang, W.; Wang, X.; Nayak, D.K. Lung secretoglobin scgb1a1 influences alveolar macrophage-mediated inflammation and immunity. Front. Immunol., 2020, 11, 584310. doi: 10.3389/fimmu.2020.584310 PMID: 33117399
  56. Huang, F.W.; Song, H.; Weinstein, H.N.W.; Xie, J.; Cooperberg, M.R.; Hicks, J.; Mummert, L.; De Marzo, A.M.; Sfanos, K.S. Club-like cells in proliferative inflammatory atrophy of the prostate. J. Pathol., 2023, 261(1), 85-95. doi: 10.1002/path.6149 PMID: 37550827
  57. Kimura, S.; Yokoyama, S.; Pilon, A.L.; Kurotani, R. Emerging role of an immunomodulatory protein secretoglobin 3A2 in human diseases. Pharmacol. Ther., 2022, 236, 108112. doi: 10.1016/j.pharmthera.2022.108112 PMID: 35016921
  58. Lu, X.; Wang, N.; Long, X.B.; You, X.J.; Cui, Y.H.; Liu, Z. The cytokine-driven regulation of secretoglobins in normal human upper airway and their expression, particularly that of uteroglobin-related protein 1, in chronic rhinosinusitis. Respir. Res., 2011, 12(1), 1-10. doi: 10.1186/1465-9921-12-28 PMID: 21385388
  59. Yokoyama, S.; Nakayama, S.; Xu, L.; Pilon, A.L.; Kimura, S. Secretoglobin 3A2 eliminates human cancer cells through pyroptosis. Cell Death Discov., 2021, 7(1), 12. doi: 10.1038/s41420-020-00385-w PMID: 33452234
  60. Lee, H.; Park, B.C.; Soon Kang, J.; Cheon, Y.; Lee, S.; Jae Maeng, P. MAM domain containing 2 is a potential breast cancer biomarker that exhibits tumour-suppressive activity. Cell Prolif., 2020, 53(9), e12883. doi: 10.1111/cpr.12883 PMID: 32707597
  61. Zhao, B.; Gong, W.; Ma, A.; Chen, J.; Velegraki, M.; Dong, H.; Liu, Z.; Wang, L.; Okimoto, T.; Jones, D.M.; Lei, Y.L.; Long, M.; Oestreich, K.J.; Ma, Q.; Xin, G.; Carbone, D.P.; He, K.; Li, Z.; Wen, H. SUSD2 suppresses CD8+ T cell antitumor immunity by targeting IL-2 receptor signaling. Nat. Immunol., 2022, 23(11), 1588-1599. doi: 10.1038/s41590-022-01326-8 PMID: 36266363
  62. Guo, W.; Shao, F.; Sun, S.; Song, P.; Guo, L.; Xue, X.; Zhang, G.; Zhang, H.; Gao, Y.; Qiu, B.; Tan, F.; Gao, S.; He, J. Loss of SUSD2 expression correlates with poor prognosis in patients with surgically resected lung adenocarcinoma. J. Cancer, 2020, 11(7), 1648-1656. doi: 10.7150/jca.39319 PMID: 32194777
  63. Moreno-Sanchez, P.M.; Scafidi, A.; Salvato, I. SUSD2-IL-2 receptor interaction hinders antitumoral CD8 + T-cell activity: Implications for cancer immunotherapy. Allergy, 2023, 78(11), 3035-3037. doi: 10.1111/all.15804 PMID: 37401528
  64. Deng, B.; Chen, X.; Xu, L.; Zheng, L.; Zhu, X.; Shi, J.; Yang, L.; Wang, D.; Jiang, D. Chordin-like 1 is a novel prognostic biomarker and correlative with immune cell infiltration in lung adenocarcinoma. Aging (Albany NY), 2022, 14(1), 389-409. doi: 10.18632/aging.203814 PMID: 35021154
  65. Atiakshin, D.; Kostin, A.; Trotsenko, I.; Samoilova, V.; Buchwalow, I.; Tiemann, M. Carboxypeptidase A3-A key component of the protease phenotype of mast cells. Cells, 2022, 11(3), 570. doi: 10.3390/cells11030570 PMID: 35159379
  66. Tirelli, C.; Pesenti, C.; Miozzo, M.; Mondoni, M.; Fontana, L.; Centanni, S. The genetic and epigenetic footprint in idiopathic pulmonary fibrosis and familial pulmonary fibrosis: A state-of-the-art review. Diagnostics, 2022, 12(12), 3107. doi: 10.3390/diagnostics12123107 PMID: 36553114
  67. Yang, Y.; Wu, J.; Yu, X.; Wu, Q.; Cao, H.; Dai, X.; Chen, H. SLC34A2 promotes cancer proliferation and cell cycle progression by targeting TMPRSS3 in colorectal cancer. Pathol. Res. Pract., 2022, 229, 153706. doi: 10.1016/j.prp.2021.153706 PMID: 34929599
  68. Keerthivasan, S.; Senbabaoglu, Y.; Martinez-Martin, N.; Husain, B.; Verschueren, E.; Wong, A.; Yang, Y.A.; Sun, Y.; Pham, V.; Hinkle, T.; Oei, Y.; Madireddi, S.; Corpuz, R.; Tam, L.; Carlisle, S.; Roose-Girma, M.; Modrusan, Z.; Ye, Z.; Koerber, J.T.; Turley, S.J. Homeostatic functions of monocytes and interstitial lung macrophages are regulated via collagen domain-binding receptor LAIR1. Immunity, 2021, 54(7), 1511-1526. doi: 10.1016/j.immuni.2021.06.012
  69. Zhu, J.; Fan, Y.; Xiong, Y.; Wang, W.; Chen, J.; Xia, Y.; Lei, J.; Gong, L.; Sun, S.; Jiang, T. Delineating the dynamic evolution from preneoplasia to invasive lung adenocarcinoma by integrating single-cell RNA sequencing and spatial transcriptomics. Exp. Mol. Med., 2022, 54(11), 2060-2076. doi: 10.1038/s12276-022-00896-9 PMID: 36434043
  70. Hu, Z.; Jin, X.; Hong, W.; Sui, Q.; Zhao, M.; Huang, Y.; Li, M.; Wang, Q.; Zhan, C.; Chen, Z. Dissecting the single-cell transcriptome network of macrophage and identifies a signature to predict prognosis in lung adenocarcinoma. Cell Oncol. (Dordr.), 2023, 46(5), 1351-1368. doi: 10.1007/s13402-023-00816-7 PMID: 37079186
  71. Qi, J.; Sun, H.; Zhang, Y.; Wang, Z.; Xun, Z.; Li, Z.; Ding, X.; Bao, R.; Hong, L.; Jia, W.; Fang, F.; Liu, H.; Chen, L.; Zhong, J.; Zou, D.; Liu, L.; Han, L.; Ginhoux, F.; Liu, Y.; Ye, Y.; Su, B. Single-cell and spatial analysis reveal interaction of FAP+ fibroblasts and SPP1+ macrophages in colorectal cancer. Nat. Commun., 2022, 13(1), 1742. doi: 10.1038/s41467-022-29366-6 PMID: 35365629
  72. Weidemann, S.; Böhle, J.L.; Contreras, H.; Luebke, A.M.; Kluth, M.; Büscheck, F.; Hube-Magg, C.; Höflmayer, D.; Möller, K.; Fraune, C.; Bernreuther, C.; Rink, M.; Simon, R.; Menz, A.; Hinsch, A.; Lebok, P.; Clauditz, T.; Sauter, G.; Uhlig, R.; Wilczak, W.; Steurer, S.; Burandt, E.; Krech, R.; Dum, D.; Krech, T.; Marx, A.; Minner, S.; Napsin, A. Napsin A expression in human tumors and normal tissues. Pathol. Oncol. Res., 2021, 27, 613099. doi: 10.3389/pore.2021.613099 PMID: 34257582
  73. Berner, F.; Bomze, D.; Lichtensteiger, C.; Walter, V.; Niederer, R.; Hasan Ali, O.; Wyss, N.; Bauer, J.; Freudenmann, L.K.; Marcu, A.; Wolfschmitt, E.M.; Haen, S.; Gross, T.; Abdou, M.T.; Diem, S.; Knöpfli, S.; Sinnberg, T.; Hofmeister, K.; Cheng, H.W.; Toma, M.; Klümper, N.; Purde, M.T.; Pop, O.T.; Jochum, A.K.; Pascolo, S.; Joerger, M.; Früh, M.; Jochum, W.; Rammensee, H.G.; Läubli, H.; Hölzel, M.; Neefjes, J.; Walz, J.; Flatz, L. Autoreactive napsin A–specific T cells are enriched in lung tumors and inflammatory lung lesions during immune checkpoint blockade. Sci. Immunol., 2022, 7(75), eabn9644. doi: 10.1126/sciimmunol.abn9644 PMID: 36054337
  74. Amiri, Z.; Heidari, A.; Navimipour, N.J.; Esmaeilpour, M.; Yazdani, Y. The deep learning applications in IoT-based bio- and medical informatics: A systematic literature review. Neural Comput. Appl., 2024, 36(11), 5757-5797. doi: 10.1007/s00521-023-09366-3
  75. Amiri, Z.; Heidari, A.; Darbandi, M.; Yazdani, Y.; Jafari Navimipour, N.; Esmaeilpour, M.; Sheykhi, F.; Unal, M. The personal health applications of machine learning techniques in the internet of behaviors. Sustainability , 2023, 15(16), 12406. doi: 10.3390/su151612406
  76. Heidari, A.; Javaheri, D.; Toumaj, S.; Navimipour, N.J.; Rezaei, M.; Unal, M. A new lung cancer detection method based on the chest CT images using Federated Learning and blockchain systems. Artif. Intell. Med., 2023, 141, 102572. doi: 10.1016/j.artmed.2023.102572 PMID: 37295902
  77. Aminizadeh, S.; Heidari, A.; Toumaj, S.; Darbandi, M.; Navimipour, N.J.; Rezaei, M.; Talebi, S.; Azad, P.; Unal, M. The applications of machine learning techniques in medical data processing based on distributed computing and the Internet of Things. Comput. Methods Programs Biomed., 2023, 241, 107745. doi: 10.1016/j.cmpb.2023.107745 PMID: 37579550
  78. Aminizadeh, S.; Heidari, A.; Dehghan, M.; Toumaj, S.; Rezaei, M.; Jafari Navimipour, N.; Stroppa, F.; Unal, M. Opportunities and challenges of artificial intelligence and distributed systems to improve the quality of healthcare service. Artif. Intell. Med., 2024, 149, 102779. doi: 10.1016/j.artmed.2024.102779 PMID: 38462281

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers