Leukemia Inhibitory Factor Protects against Degeneration of Cone Photoreceptors Caused by RPE65 Deficiency

  • Autores: Dong S.1, Zhen F.2, Zou T.3, Zhou Y.4, Wu J.5, Wang T.6, Zhang H.6
  • Afiliações:
    1. Department of Ophthalmology,, The First Affiliated Hospital of Zhengzhou University, Henan Provincial Ophthalmic Hospital,
    2. Department of Ophthalmology,, The First Affiliated Hospital of Zhengzhou University, Henan Provincial Ophthalmic Hospital
    3. The Key Laboratory for Human Disease Gene Study of Sichuan Province, Center for Medical Genetics,, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China
    4. Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Henan Provincial Ophthalmic Hospital,
    5. Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Henan Provincial Ophthalmic Hospital,
    6. The Key Laboratory for Human Disease Gene Study of Sichuan Province, Center for Medical Genetics, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China
  • Edição: Volume 31, Nº 25 (2024)
  • Páginas: 4022-4033
  • Seção: Anti-Infectives and Infectious Diseases
  • URL: https://cijournal.ru/0929-8673/article/view/644914
  • DOI: https://doi.org/10.2174/0109298673240896231027053716
  • ID: 644914

Citar

Texto integral

Resumo

Background::Retinal pigment epithelium (RPE) 65 is a key enzyme in the visual cycle involved in the regeneration of 11-cis-retinal. Mutations in the human RPE65 gene cause Leber’s congenital amaurosis (LCA), a severe form of an inherited retinal disorder. Animal models carrying Rpe65 mutations develop early-onset retinal degeneration. In particular, the cones degenerate faster than the rods. To date, gene therapy has been used successfully to treat RPE65-associated retinal disorders. However, gene therapy does not completely prevent progressive retinal degeneration in patients, possibly due to the vulnerability of cones in these patients. In the present study, we tested whether leukemia inhibitory factor (LIF), a trophic factor, protects cones in rd12 mice harboring a nonsense mutation in Rpe65.

Methods::LIF was administered to rd12 mice by intravitreal microinjection. Apoptosis of retinal cells was analyzed by TUNEL assay. The degeneration of cone cells was evaluated by immunostaining of retinal sections and retinal flat-mounts. Signaling proteins regulated by LIF in the retinal and cultured cells were determined by immunoblotting.

Results::Intravitreal administration of LIF activated the STAT3 signaling pathway, thereby inhibiting photoreceptor apoptosis and preserving cones in rd12 mice. Niclosamide (NCL), an inhibitor of STAT3 signaling, effectively blocked STAT3 signaling and autophagy in cultured 661W cells treated with LIF. Co-administration of LIF with NCL to rd12 mice abolished the protective effect of LIF, suggesting that STAT3 signaling and autophagy mediate the protection.

Conclusion::LIF is a potent factor that protects cones in rd12 mice. This finding implies that LIF can be used in combination with gene therapy to achieve better therapeutic outcomes for patients with RPE65-associated LCA.

Sobre autores

Shuqian Dong

Department of Ophthalmology,, The First Affiliated Hospital of Zhengzhou University, Henan Provincial Ophthalmic Hospital,

Email: info@benthamscience.net

Fangyuan Zhen

Department of Ophthalmology,, The First Affiliated Hospital of Zhengzhou University, Henan Provincial Ophthalmic Hospital

Email: info@benthamscience.net

Tongdan Zou

The Key Laboratory for Human Disease Gene Study of Sichuan Province, Center for Medical Genetics,, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China

Email: info@benthamscience.net

Yongwei Zhou

Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Henan Provincial Ophthalmic Hospital,

Email: info@benthamscience.net

Jiahui Wu

Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Henan Provincial Ophthalmic Hospital,

Email: info@benthamscience.net

Ting Wang

The Key Laboratory for Human Disease Gene Study of Sichuan Province, Center for Medical Genetics, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China

Email: info@benthamscience.net

Houbin Zhang

The Key Laboratory for Human Disease Gene Study of Sichuan Province, Center for Medical Genetics, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China

Autor responsável pela correspondência
Email: info@benthamscience.net

Bibliografia

  1. Tsang, S.H.; Sharma, T. Leber congenital amaurosis. Adv. Exp. Med. Biol., 2018, 1085, 131-137. doi: 10.1007/978-3-319-95046-4_26 PMID: 30578499
  2. Duan, W.; Zhou, T.; Jiang, H.; Zhang, M.; Hu, M.; Zhang, L. A novel nonsense variant (c.1499C>G) in CRB1 caused Leber congenital amaurosis-8 in a Chinese family and a literature review. BMC Med. Genomics, 2022, 15(1), 197. doi: 10.1186/s12920-022-01356-z PMID: 36115989
  3. Kumaran, N.; Moore, A.T.; Weleber, R.G.; Michaelides, M. Leber congenital amaurosis/early-onset severe retinal dystrophy: Clinical features, molecular genetics and therapeutic interventions. Br. J. Ophthalmol., 2017, 101(9), 1147-1154. doi: 10.1136/bjophthalmol-2016-309975 PMID: 28689169
  4. Kiser, P.D. Retinal pigment epithelium 65 kDa protein (RPE65): An update. Prog. Retin. Eye Res., 2022, 88, 101013. doi: 10.1016/j.preteyeres.2021.101013 PMID: 34607013
  5. Hofmann, K.P.; Lamb, T.D. Rhodopsin, light-sensor of vision. Prog. Retin. Eye Res., 2023, 93, 101116. doi: 10.1016/j.preteyeres.2022.101116 PMID: 36273969
  6. Seeliger, M.W.; Grimm, C.; Ståhlberg, F.; Friedburg, C.; Jaissle, G.; Zrenner, E.; Guo, H.; Remé, C.E.; Humphries, P.; Hofmann, F.; Biel, M.; Fariss, R.N.; Redmond, T.M.; Wenzel, A. New views on RPE65 deficiency: The rod system is the source of vision in a mouse model of Leber congenital amaurosis. Nat. Genet., 2001, 29(1), 70-74. doi: 10.1038/ng712 PMID: 11528395
  7. Redmond, T.M.; Yu, S.; Lee, E.; Bok, D.; Hamasaki, D.; Chen, N.; Goletz, P.; Ma, J.X.; Crouch, R.K.; Pfeifer, K. Rpe65 is necessary for production of 11-cis-vitamin A in the retinal visual cycle. Nat. Genet., 1998, 20(4), 344-351. doi: 10.1038/3813 PMID: 9843205
  8. Pang, J.J.; Chang, B.; Hawes, N.L.; Hurd, R.E.; Davisson, M.T.; Li, J.; Noorwez, S.M.; Malhotra, R.; McDowell, J.H.; Kaushal, S.; Hauswirth, W.W.; Nusinowitz, S.; Thompson, D.A.; Heckenlively, J.R. Retinal degeneration 12 (rd12): A new, spontaneously arising mouse model for human Leber congenital amaurosis (LCA). Mol. Vis., 2005, 11, 152-162. PMID: 15765048
  9. Fan, J.; Rohrer, B.; Moiseyev, G.; Ma, J.; Crouch, R.K. Isorhodopsin rather than rhodopsin mediates rod function in RPE65 knock-out mice. Proc. Natl. Acad. Sci., 2003, 100(23), 13662-13667. doi: 10.1073/pnas.2234461100 PMID: 14578454
  10. Fan, J.; Rohrer, B.; Frederick, J.M.; Baehr, W.; Crouch, R.K. Rpe65-/- and Lrat-/- mice: Comparable models of leber congenital amaurosis. Invest. Ophthalmol. Vis. Sci., 2008, 49(6), 2384-2389. doi: 10.1167/iovs.08-1727 PMID: 18296659
  11. Zhang, H.; Fan, J.; Li, S.; Karan, S.; Rohrer, B.; Palczewski, K.; Frederick, J.M.; Crouch, R.K.; Baehr, W. Trafficking of membrane-associated proteins to cone photoreceptor outer segments requires the chromophore 11-cis-retinal. J. Neurosci., 2008, 28(15), 4008-4014. doi: 10.1523/JNEUROSCI.0317-08.2008 PMID: 18400900
  12. Zhang, T.; Zhang, N.; Baehr, W.; Fu, Y. Cone opsin determines the time course of cone photoreceptor degeneration in Leber congenital amaurosis. Proc. Natl. Acad. Sci., 2011, 108(21), 8879-8884. doi: 10.1073/pnas.1017127108 PMID: 21555576
  13. Zhang, T.; Fu, Y. A Phe-rich region in short-wavelength sensitive opsins is responsible for their aggregation in the absence of 11- cis- retinal. FEBS Lett., 2013, 587(15), 2430-2434. doi: 10.1016/j.febslet.2013.06.012 PMID: 23792161
  14. Maeda, T.; Cideciyan, A.V.; Maeda, A.; Golczak, M.; Aleman, T.S.; Jacobson, S.G.; Palczewski, K. Loss of cone photoreceptors caused by chromophore depletion is partially prevented by the artificial chromophore pro-drug, 9-cis-retinyl acetate. Hum. Mol. Genet., 2009, 18(12), 2277-2287. doi: 10.1093/hmg/ddp163 PMID: 19339306
  15. Maeda, T.; Maeda, A.; Casadesus, G.; Palczewski, K.; Margaron, P. Evaluation of 9-cis-retinyl acetate therapy in Rpe65-/- mice. Invest. Ophthalmol. Vis. Sci., 2009, 50(9), 4368-4378. doi: 10.1167/iovs.09-3700 PMID: 19407008
  16. Dai, X.; Jin, X.; Ye, Q.; Huang, H.; Duo, L.; Lu, C.; Bao, J.; Chen, H. Intraperitoneal chromophore injections delay early-onset and rapid retinal cone degeneration in a mouse model of Leber congenital amaurosis. Exp. Eye Res., 2021, 212, 108776. doi: 10.1016/j.exer.2021.108776 PMID: 34582935
  17. Koenekoop, R.K.; Sui, R.; Sallum, J.; van den Born, L.I.; Ajlan, R.; Khan, A.; den Hollander, A.I.; Cremers, F.P.M.; Mendola, J.D.; Bittner, A.K.; Dagnelie, G.; Schuchard, R.A.; Saperstein, D.A. Oral 9-cis retinoid for childhood blindness due to Leber congenital amaurosis caused by RPE65 or LRAT mutations: An open-label phase 1b trial. Lancet, 2014, 384(9953), 1513-1520. doi: 10.1016/S0140-6736(14)60153-7 PMID: 25030840
  18. Acland, G.M.; Aguirre, G.D.; Ray, J.; Zhang, Q.; Aleman, T.S.; Cideciyan, A.V.; Pearce-Kelling, S.E.; Anand, V.; Zeng, Y.; Maguire, A.M.; Jacobson, S.G.; Hauswirth, W.W.; Bennett, J. Gene therapy restores vision in a canine model of childhood blindness. Nat. Genet., 2001, 28(1), 92-95. doi: 10.1038/ng0501-92 PMID: 11326284
  19. Maguire, A.M.; Simonelli, F.; Pierce, E.A.; Pugh, E.N., Jr; Mingozzi, F.; Bennicelli, J.; Banfi, S.; Marshall, K.A.; Testa, F.; Surace, E.M.; Rossi, S.; Lyubarsky, A.; Arruda, V.R.; Konkle, B.; Stone, E.; Sun, J.; Jacobs, J.; Dell’Osso, L.; Hertle, R.; Ma, J.; Redmond, T.M.; Zhu, X.; Hauck, B.; Zelenaia, O.; Shindler, K.S.; Maguire, M.G.; Wright, J.F.; Volpe, N.J.; McDonnell, J.W.; Auricchio, A.; High, K.A.; Bennett, J. Safety and efficacy of gene transfer for Leber’s congenital amaurosis. N. Engl. J. Med., 2008, 358(21), 2240-2248. doi: 10.1056/NEJMoa0802315 PMID: 18441370
  20. Mowat, F.M.; Breuwer, A.R.; Bartoe, J.T.; Annear, M.J.; Zhang, Z.; Smith, A.J.; Bainbridge, J.W.B.; Petersen-Jones, S.M.; Ali, R.R. RPE65 gene therapy slows cone loss in Rpe65-deficient dogs. Gene Ther., 2013, 20(5), 545-555. doi: 10.1038/gt.2012.63 PMID: 22951453
  21. Narfstro¨m, K.; Katz, M.L.; Bragadottir, R.; Seeliger, M.; Boulanger, A.; Redmond, T.M.; Caro, L.; Lai, C.M.; Rakoczy, P.E. Functional and structural recovery of the retina after gene therapy in the RPE65 null mutation dog. Invest. Ophthalmol. Vis. Sci., 2003, 44(4), 1663-1672. doi: 10.1167/iovs.02-0595 PMID: 12657607
  22. She, K.; Liu, Y.; Zhao, Q.; Jin, X.; Yang, Y.; Su, J.; Li, R.; Song, L.; Xiao, J.; Yao, S.; Lu, F.; Wei, Y.; Yang, Y. Dual-AAV split prime editor corrects the mutation and phenotype in mice with inherited retinal degeneration. Signal Transduct. Target. Ther., 2023, 8(1), 57. doi: 10.1038/s41392-022-01234-1 PMID: 36740702
  23. U.S.F.D.. FDA approves novel gene therapy to treat patients with a rare form of inherited vision loss. 2017. Available from: https://www.fda.gov/news-events/press-announcements/fda-approves-novel-gene-therapy-treat-patients-rare-form-inherited-vision-loss
  24. Cideciyan, A.V.; Jacobson, S.G.; Beltran, W.A.; Sumaroka, A.; Swider, M.; Iwabe, S.; Roman, A.J.; Olivares, M.B.; Schwartz, S.B.; Komáromy, A.M.; Hauswirth, W.W.; Aguirre, G.D. Human retinal gene therapy for Leber congenital amaurosis shows advancing retinal degeneration despite enduring visual improvement. Proc. Natl. Acad. Sci., 2013, 110(6), E517-E525. doi: 10.1073/pnas.1218933110 PMID: 23341635
  25. Jacobson, S.G.; Cideciyan, A.V.; Roman, A.J.; Sumaroka, A.; Schwartz, S.B.; Heon, E.; Hauswirth, W.W. Improvement and decline in vision with gene therapy in childhood blindness. N. Engl. J. Med., 2015, 372(20), 1920-1926. doi: 10.1056/NEJMoa1412965 PMID: 25936984
  26. Bainbridge, J.W.B.; Mehat, M.S.; Sundaram, V.; Robbie, S.J.; Barker, S.E.; Ripamonti, C.; Georgiadis, A.; Mowat, F.M.; Beattie, S.G.; Gardner, P.J.; Feathers, K.L.; Luong, V.A.; Yzer, S.; Balaggan, K.; Viswanathan, A.; de Ravel, T.J.L.; Casteels, I.; Holder, G.E.; Tyler, N.; Fitzke, F.W.; Weleber, R.G.; Nardini, M.; Moore, A.T.; Thompson, D.A.; Petersen-Jones, S.M.; Michaelides, M.; van den Born, L.I.; Stockman, A.; Smith, A.J.; Rubin, G.; Ali, R.R. Long-term effect of gene therapy on Leber’s congenital amaurosis. N. Engl. J. Med., 2015, 372(20), 1887-1897. doi: 10.1056/NEJMoa1414221 PMID: 25938638
  27. Wang, X.; Yu, C.; Tzekov, R.T.; Zhu, Y.; Li, W. The effect of human gene therapy for RPE65-associated Leber’s congenital amaurosis on visual function: A systematic review and meta-analysis. Orphanet J. Rare Dis., 2020, 15(1), 49. doi: 10.1186/s13023-020-1304-1 PMID: 32059734
  28. Sengillo, J.D.; Gregori, N.Z.; Sisk, R.A.; Weng, C.Y.; Berrocal, A.M.; Davis, J.L.; Mendoza-Santiesteban, C.E.; Zheng, D.D.; Feuer, W.J.; Lam, B.L. Visual acuity, retinal morphology, and patients’ perceptions after voretigene neparovec-rzyl therapy for RPE65-associated retinal disease. Ophthalmol. Retina, 2022, 6(4), 273-283. doi: 10.1016/j.oret.2021.11.005 PMID: 34896323
  29. Rebelo Neves, E.; Carvalho, A.L.; Mesquita, T.; Paiva, C.; Alfaiate, M.; Figueira, J.; Murta, J.; Marques, J.P. Bilateral functional worsening following voretigene neparvovec therapy. Eye, 2023, 37(13), 2828-2829. doi: 10.1038/s41433-023-02411-4
  30. Kolomeyer, A.M.; Zarbin, M.A. Trophic factors in the pathogenesis and therapy for retinal degenerative diseases. Surv. Ophthalmol., 2014, 59(2), 134-165. doi: 10.1016/j.survophthal.2013.09.004 PMID: 24417953
  31. Dong, S.; Zhen, F.; Xu, H.; Li, Q.; Wang, J. Leukemia inhibitory factor protects photoreceptor cone cells against oxidative damage through activating JAK/STAT3 signaling. Ann. Transl. Med., 2021, 9(2), 152. doi: 10.21037/atm-20-8040 PMID: 33569454
  32. Ueki, Y.; Wang, J.; Chollangi, S.; Ash, J.D. STAT3 activation in photoreceptors by leukemia inhibitory factor is associated with protection from light damage. J. Neurochem., 2008, 105(3), 784-796. doi: 10.1111/j.1471-4159.2007.05180.x PMID: 18088375
  33. Joly, S.; Lange, C.; Thiersch, M.; Samardzija, M.; Grimm, C. Leukemia inhibitory factor extends the lifespan of injured photoreceptors in vivo. J. Neurosci., 2008, 28(51), 13765-13774. doi: 10.1523/JNEUROSCI.5114-08.2008 PMID: 19091967
  34. Jorgensen, M.M.; de la Puente, P. Leukemia inhibitory factor: An important cytokine in pathologies and cancer. Biomolecules, 2022, 12(2), 217. doi: 10.3390/biom12020217 PMID: 35204717
  35. Yang, J.L.; Zou, T.D.; Yang, F.; Yang, Z.L.; Zhang, H.B. Inhibition of mTOR signaling by rapamycin protects photoreceptors from degeneration in rd1 mice. Zool. Res., 2021, 42(4), 482-486. doi: 10.24272/j.issn.2095-8137.2021.049 PMID: 34235896
  36. Yang, J.; Zou, T.; Yang, F.; Zhang, Z.; Sun, C.; Yang, Z.; Zhang, H. A quick protocol for the preparation of mouse retinal cryosections for immunohistochemistry. Open Biol., 2021, 11(7), 210076. doi: 10.1098/rsob.210076 PMID: 34315273
  37. Yang, J.; Chen, Y.; Zou, T.; Xue, B.; Yang, F.; Wang, X.; Huo, Y.; Yan, B.; Xu, Y.; He, S.; Yin, Y.; Wang, J.; Zhu, X.; Zhang, L.; Zhou, Y.; Tai, Z.; Shuai, P.; Yu, M.; Luo, Q.; Cheng, Y.; Gong, B.; Zhang, J.; Sun, X.; Lin, Y.; Zhang, H.; Yang, Z. Cholesterol homeostasis regulated by ABCA1 is critical for retinal ganglion cell survival. Sci. China Life Sci., 2022, 66(2), 211-25. PMID: 35829808
  38. Niwa, H.; Burdon, T.; Chambers, I.; Smith, A. Self-renewal of pluripotent embryonic stem cells is mediated via activation of STAT3. Genes Dev., 1998, 12(13), 2048-2060. doi: 10.1101/gad.12.13.2048 PMID: 9649508
  39. Tan, E.; Ding, X.Q.; Saadi, A.; Agarwal, N.; Naash, M.I.; Al-Ubaidi, M.R. Expression of cone-photoreceptor-specific antigens in a cell line derived from retinal tumors in transgenic mice. Invest. Ophthalmol. Vis. Sci., 2004, 45(3), 764-768. doi: 10.1167/iovs.03-1114 PMID: 14985288
  40. Yamada, E.; Bastie, C.C.; Koga, H.; Wang, Y.; Cuervo, A.M.; Pessin, J.E. Mouse skeletal muscle fiber-type-specific macroautophagy and muscle wasting are regulated by a Fyn/STAT3/Vps34 signaling pathway. Cell Rep., 2012, 1(5), 557-569. doi: 10.1016/j.celrep.2012.03.014 PMID: 22745922
  41. Pratt, J.; Annabi, B. Induction of autophagy biomarker BNIP3 requires a JAK2/STAT3 and MT1-MMP signaling interplay in Concanavalin-A-activated U87 glioblastoma cells. Cell. Signal., 2014, 26(5), 917-924. doi: 10.1016/j.cellsig.2014.01.012 PMID: 24462646
  42. Besirli, C.G.; Chinskey, N.D.; Zheng, Q.D.; Zacks, D.N. Autophagy activation in the injured photoreceptor inhibits fas-mediated apoptosis. Invest. Ophthalmol. Vis. Sci., 2011, 52(7), 4193-4199. doi: 10.1167/iovs.10-7090 PMID: 21421874
  43. Das, G.; Shravage, B.V.; Baehrecke, E.H. Regulation and function of autophagy during cell survival and cell death. Cold Spring Harb. Perspect. Biol., 2012, 4(6), a008813. doi: 10.1101/cshperspect.a008813 PMID: 22661635
  44. He, C.; Klionsky, D.J. Regulation mechanisms and signaling pathways of autophagy. Annu. Rev. Genet., 2009, 43(1), 67-93. doi: 10.1146/annurev-genet-102808-114910 PMID: 19653858
  45. Li, S.; Gordon, W.C.; Bazan, N.G.; Jin, M. Inverse correlation between fatty acid transport protein 4 and vision in Leber congenital amaurosis associated with RPE65 mutation. Proc. Natl. Acad. Sci., 2020, 117(50), 32114-32123. doi: 10.1073/pnas.2012623117 PMID: 33257550
  46. Smith, A.G.; Hooper, M.L. Buffalo rat liver cells produce a diffusible activity which inhibits the differentiation of murine embryonal carcinoma and embryonic stem cells. Dev. Biol., 1987, 121(1), 1-9. doi: 10.1016/0012-1606(87)90132-1 PMID: 3569655
  47. Smith, A.G.; Heath, J.K.; Donaldson, D.D.; Wong, G.G.; Moreau, J.; Stahl, M.; Rogers, D. Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides. Nature, 1988, 336(6200), 688-690. doi: 10.1038/336688a0 PMID: 3143917
  48. Williams, R.L.; Hilton, D.J.; Pease, S.; Willson, T.A.; Stewart, C.L.; Gearing, D.P.; Wagner, E.F.; Metcalf, D.; Nicola, N.A.; Gough, N.M. Myeloid leukaemia inhibitory factor maintains the developmental potential of embryonic stem cells. Nature, 1988, 336(6200), 684-687. doi: 10.1038/336684a0 PMID: 3143916
  49. Samardzija, M.; Wenzel, A.; Aufenberg, S.; Thiersch, M.; Remé, C.; Grimm, C.; Samardzija, M.; Wenzel, A.; Aufenberg, S.; Thiersch, M.; Remé, C.; Grimm, C. Differential role of Jak-STAT signaling in retinal degenerations. FASEB J., 2006, 20(13), 2411-2413. doi: 10.1096/fj.06-5895fje PMID: 16966486
  50. Schaeferhoff, K.; Michalakis, S.; Tanimoto, N.; Fischer, M.D.; Becirovic, E.; Beck, S.C.; Huber, G.; Rieger, N.; Riess, O.; Wissinger, B.; Biel, M.; Seeliger, M.W.; Bonin, M. Induction of STAT3-related genes in fast degenerating cone photoreceptors of cpfl1 mice. Cell. Mol. Life Sci., 2010, 67(18), 3173-3186. doi: 10.1007/s00018-010-0376-9 PMID: 20467778
  51. Jiang, K.; Wright, K.L.; Zhu, P.; Szego, M.J.; Bramall, A.N.; Hauswirth, W.W.; Li, Q.; Egan, S.E.; McInnes, R.R. STAT3 promotes survival of mutant photoreceptors in inherited photoreceptor degeneration models. Proc. Natl. Acad. Sci., 2014, 111(52), E5716-E5723. doi: 10.1073/pnas.1411248112 PMID: 25512545
  52. You, L.; Wang, Z.; Li, H.; Shou, J.; Jing, Z.; Xie, J.; Sui, X.; Pan, H.; Han, W. The role of STAT3 in autophagy. Autophagy, 2015, 11(5), 729-739. doi: 10.1080/15548627.2015.1017192 PMID: 25951043
  53. Intartaglia, D.; Giamundo, G.; Naso, F.; Nusco, E.; Di Giulio, S.; Salierno, F.G.; Polishchuk, E.; Conte, I. Induction of autophagy promotes clearance of RHOP23H aggregates and protects from retinal degeneration. Front. Aging Neurosci., 2022, 14, 878958. doi: 10.3389/fnagi.2022.878958 PMID: 35847673
  54. Pang, J.; Chang, B.; Kumar, A.; Nusinowitz, S.; Noorwez, S.M.; Li, J.; Rani, A.; Foster, T.C.; Chiodo, V.A.; Doyle, T.; Li, H.; Malhotra, R.; Teusner, J.T.; McDowell, J.H.; Min, S.H.; Li, Q.; Kaushal, S.; Hauswirth, W.W. Gene therapy restores vision-dependent behavior as well as retinal structure and function in a mouse model of RPE65 Leber congenital amaurosis. Mol. Ther., 2006, 13(3), 565-572. doi: 10.1016/j.ymthe.2005.09.001 PMID: 16223604
  55. Labonté, E.D.; Camarota, L.M.; Rojas, J.C.; Jandacek, R.J.; Gilham, D.E.; Davies, J.P.; Ioannou, Y.A.; Tso, P.; Hui, D.Y.; Howles, P.N. Reduced absorption of saturated fatty acids and resistance to diet-induced obesity and diabetes by ezetimibe-treated and Npc1l1−/− mice. Am. J. Physiol. Gastrointest. Liver Physiol., 2008, 295(4), G776-G783. doi: 10.1152/ajpgi.90275.2008 PMID: 18718999
  56. Naples, M.; Baker, C.; Lino, M.; Iqbal, J.; Hussain, M.M.; Adeli, K. Ezetimibe ameliorates intestinal chylomicron overproduction and improves glucose tolerance in a diet-induced hamster model of insulin resistance. Am. J. Physiol. Gastrointest. Liver Physiol., 2012, 302(9), G1043-G1052. doi: 10.1152/ajpgi.00250.2011 PMID: 22345552

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Bentham Science Publishers, 2024