Curcumin and its Derivatives Targeting Multiple Signaling Pathways to Elicit Anticancer Activity: A Comprehensive Perspective
- Authors: Fatima F.1, Chourasiya N.2, Mishra M.3, Kori S.2, Pathak S.4, Das R.4, Kashaw V.5, Iyer A.6, Kashaw S.2
-
Affiliations:
- Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences,, Dr. Harisingh Gour University (A Central University)
- Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University)
- Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences,, Dr. Harisingh Gour University (A Central University
- Department of Chemistry, Dr. Harisingh Gour University (A Central University)
- , Sagar Institute of Pharmaceutical Sciences
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Wayne State University
- Issue: Vol 31, No 24 (2024)
- Pages: 3668-3714
- Section: Anti-Infectives and Infectious Diseases
- URL: https://cijournal.ru/0929-8673/article/view/644838
- DOI: https://doi.org/10.2174/0929867330666230522144312
- ID: 644838
Cite item
Full Text
Abstract
The uncontrolled growth and spread of aberrant cells characterize the group of disorders known as cancer. According to GLOBOCAN 2022 analysis of cancer patients in either developed countries or developing countries the main concern cancers are breast cancer, lung cancer, and liver cancer which may rise eventually. Natural substances with dietary origins have gained interest for their low toxicity, anti-inflammatory, and antioxidant effects. The evaluation of dietary natural products as chemopreventive and therapeutic agents, the identification, characterization, and synthesis of their active components, as well as the enhancement of their delivery and bioavailability, have all received significant attention. Thus, the treatment strategy for concerning cancers must be significantly evaluated and may include the use of phytochemicals in daily lifestyle. In the present perspective, we discussed one of the potent phytochemicals, that has been used over the past few decades known as curcumin as a panacea drug of the "Cure-all" therapy concept. In our review firstly we included exhausted data from in vivo and in vitro studies on breast cancer, lung cancer, and liver cancer which act through various cancer-targeting pathways at the molecular level. Now, the second is the active constituent of turmeric known as curcumin and its derivatives are enlisted with their targeted protein in the molecular docking studies, which help the researchers design and synthesize new curcumin derivatives with respective implicated molecular and cellular activity. However, curcumin and its substituted derivatives still need to be investigated with unknown targeting mechanism studies in depth.
Keywords
About the authors
Firdous Fatima
Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences,, Dr. Harisingh Gour University (A Central University)
Email: info@benthamscience.net
Nikhil Chourasiya
Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University)
Email: info@benthamscience.net
Mitali Mishra
Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences,, Dr. Harisingh Gour University (A Central University
Email: info@benthamscience.net
Shivam Kori
Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University)
Email: info@benthamscience.net
Sandhya Pathak
Department of Chemistry, Dr. Harisingh Gour University (A Central University)
Email: info@benthamscience.net
Ratnesh Das
Department of Chemistry, Dr. Harisingh Gour University (A Central University)
Email: info@benthamscience.net
Varsha Kashaw
, Sagar Institute of Pharmaceutical Sciences
Email: info@benthamscience.net
Arun Iyer
Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Wayne State University
Email: info@benthamscience.net
Sushil Kashaw
Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University)
Author for correspondence.
Email: info@benthamscience.net
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424. doi: 10.3322/caac.21492 PMID: 30207593
- Pilleron, S.; Soto-Perez-de-Celis, E.; Vignat, J.; Ferlay, J.; Soerjomataram, I.; Bray, F.; Sarfati, D. Estimated global cancer incidence in the oldest adults in 2018 and projections to 2050. Int. J. Cancer, 2021, 148(3), 601-608. doi: 10.1002/ijc.33232 PMID: 32706917
- Cancer Facts & Figures 2021-American Cancer Society. https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2021.html
- Kulothungan, V.; Sathishkumar, K.; Leburu, S.; Ramamoorthy, T.; Stephen, S.; Basavarajappa, D.; Tomy, N.; Mohan, R.; Menon, G.R.; Mathur, P. Burden of cancers in India-estimates of cancer crude incidence, YLLs, YLDs and DALYs for 2021 and 2025 based on National Cancer Registry Program. BMC Cancer, 2022, 22(1), 527. doi: 10.1186/s12885-022-09578-1 PMID: 35546232
- Abd El-Hack, M.E.; El-Saadony, M.T.; Swelum, A.A.; Arif, M.; Abo Ghanima, M.M.; Shukry, M.; Noreldin, A.; Taha, A.E.; El-Tarabily, K.A. Curcumin, the active substance of turmeric: Its effects on health and ways to improve its bioavailability. J. Sci. Food Agric., 2021, 101(14), 5747-5762. doi: 10.1002/jsfa.11372 PMID: 34143894
- Aggarwal, B.B.; Sundaram, C.; Malani, N.; Ichikawa, H. Curcumin: The Indian solid gold. Adv. Exp. Med. Biol., 2007, 595, 1-75. doi: 10.1007/978-0-387-46401-5_1 PMID: 17569205
- Sharifi-Rad, J.; Rayess, Y.E.; Rizk, A.A.; Sadaka, C.; Zgheib, R.; Zam, W.; Sestito, S.; Rapposelli, S. Neffe-Skocińska, K.; Zielińska, D.; Salehi, B.; Setzer, W.N.; Dosoky, N.S.; Taheri, Y.; El Beyrouthy, M.; Martorell, M.; Ostrander, E.A.; Suleria, H.A.R.; Cho, W.C.; Maroyi, A.; Martins, N. Turmeric and its major compound curcumin on health: Bioactive effects and safety profiles for food, pharmaceutical, biotechnological and medicinal applications. Front. Pharmacol., 2020, 11, 01021. doi: 10.3389/fphar.2020.01021 PMID: 33041781
- Narayanan, N.K.; Nargi, D.; Randolph, C.; Narayanan, B.A. Liposome encapsulation of curcumin and resveratrol in combination reduces prostate cancer incidence in PTEN knockout mice. Int. J. Cancer, 2009, 125(1), 1-8. doi: 10.1002/ijc.24336 PMID: 19326431
- Ushida, J.; Sugie, S.; Kawabata, K.; Pham, Q.V.; Tanaka, T.; Fujii, K.; Takeuchi, H.; Ito, Y.; Mori, H. Chemopreventive effect of curcumin on N-nitrosomethylbenzylamine-induced esophageal carcinogenesis in rats. Jpn. J. Cancer Res., 2000, 91(9), 893-898. doi: 10.1111/j.1349-7006.2000.tb01031.x PMID: 11011116
- Chuang, S.E.; Cheng, A.L.; Lin, J.K.; Kuo, M.L. Inhibition by curcumin of diethylnitrosamine-induced hepatic hyperplasia, inflammation, cellular gene products and cell-cycle-related proteins in rats. Food Chem. Toxicolo., 2000, 38(11), 991-995.
- Okazaki, Y.; Iqbal, M.; Okada, S. Suppressive effects of dietary curcumin on the increased activity of renal ornithine decarboxylase in mice treated with a renal carcinogen, ferric nitrilotriacetate. Biochim. Biophys. Acta Mol. Basis Dis., 2005, 1740(3), 357-366. doi: 10.1016/j.bbadis.2004.09.006 PMID: 15949703
- Ikezaki, S.; Nishikawa, A.; Furukawa, F.; Kudo, K.; Nakamura, H.; Tamura, K.; Mori, H. Chemopreventive effects of curcumin on glandular stomach carcinogenesis induced by N-methyl-N'-nitro-N-nitrosoguanidine and sodium chloride in rats. Anticancer Res., 2001, 21(5), 3407-3411. PMID: 11848501
- Azuine, M.A.; Bhide, S.V. Protective single/combined treatment with betel leaf and turmeric against methyl (acetoxymethyl) nitrosamine-induced hamster oral carcinogenesis. Int. J. Cancer, 1992, 51(3), 412-415. doi: 10.1002/ijc.2910510313 PMID: 1592532
- Huang, M.; Lou, Y.R.; Xie, J.G.; Ma, W.; Lu, Y.P.; Yen, P.; Zhu, B.T.; Newmark, H.; Ho, C.T. Effect of dietary curcumin and dibenzoylmethane on formation of 7,12- dimethylbenzaanthracene-induced mammary tumors and lymphomas/leukemias in Sencar mice. Carcinogenesis, 1998, 19(9), 1697-1700. doi: 10.1093/carcin/19.9.1697 PMID: 9771944
- Prakobwong, S.; Khoontawad, J.; Yongvanit, P.; Pairojkul, C.; Hiraku, Y.; Sithithaworn, P.; Pinlaor, P.; Aggarwal, B.B.; Pinlaor, S. Curcumin decreases cholangiocarcinogenesis in hamsters by suppressing inflammation-mediated molecular events related to multistep carcinogenesis. Int. J. Cancer, 2011, 129(1), 88-100. doi: 10.1002/ijc.25656 PMID: 20824699
- Kuttan, R.; Bhanumathy, P.; Nirmala, K.; George, M.C. Potential anticancer activity of turmeric (Curcuma longa). Cancer Lett., 1985, 29(2), 197-202. doi: 10.1016/0304-3835(85)90159-4 PMID: 4075289
- Odot, J.; Albert, P.; Carlier, A.; Tarpin, M.; Devy, J.; Madoulet, C. In vitro and in vivo anti-tumoral effect of curcumin against melanoma cells. Int. J. Cancer, 2004, 111(3), 381-387. doi: 10.1002/ijc.20160 PMID: 15221965
- Dorai, T.; Cao, Y.C.; Dorai, B.; Buttyan, R.; Katz, A.E. Therapeutic potential of curcumin in human prostate cancer. III. Curcumin inhibits proliferation, induces apoptosis, and inhibits angiogenesis of LNCaP prostate cancer cells in vivo. Prostate, 2001, 47(4), 293-303. doi: 10.1002/pros.1074 PMID: 11398177
- Kunnumakkara, A.B.; Guha, S.; Krishnan, S.; Diagaradjane, P.; Gelovani, J.; Aggarwal, B.B. Curcumin potentiates antitumor activity of gemcitabine in an orthotopic model of pancreatic cancer through suppression of proliferation, angiogenesis, and inhibition of nuclear factor-kappaB-regulated gene products. Cancer Res., 2007, 67(8), 3853-3861. doi: 10.1158/0008-5472.CAN-06-4257 PMID: 17440100
- Li, L.; Ahmed, B.; Mehta, K.; Kurzrock, R. Liposomal curcumin with and without oxaliplatin: effects on cell growth, apoptosis, and angiogenesis in colorectal cancer. Mol. Cancer Ther., 2007, 6(4), 1276-1282. doi: 10.1158/1535-7163.MCT-06-0556 PMID: 17431105
- Yoysungnoen, P.; Wirachwong, P.; Bhattarakosol, P.; Niimi, H.; Patumraj, S. Antiangiogenic activity of curcumin in hepatocellular carcinoma cells implanted nude mice. Clin. Hemorheol. Microcirc., 2005, 33(2), 127-135. PMID: 16151260
- Aggarwal, B.B.; Shishodia, S.; Takada, Y.; Banerjee, S.; Newman, R.A.; Bueso-Ramos, C.E.; Price, J.E. Curcumin suppresses the paclitaxel-induced nuclear factor-kappaB pathway in breast cancer cells and inhibits lung metastasis of human breast cancer in nude mice. Clin. Cancer Res., 2005, 11(20), 7490-7498. doi: 10.1158/1078-0432.CCR-05-1192 PMID: 16243823
- Lin, Y.G.; Kunnumakkara, A.B.; Nair, A.; Merritt, W.M.; Han, L.Y.; Armaiz-Pena, G.N.; Kamat, A.A.; Spannuth, W.A.; Gershenson, D.M.; Lutgendorf, S.K.; Aggarwal, B.B.; Sood, A.K. Curcumin inhibits tumor growth and angiogenesis in ovarian carcinoma by targeting the nuclear factor-kappaB pathway. Clin. Cancer Res., 2007, 13(11), 3423-3430. doi: 10.1158/1078-0432.CCR-06-3072 PMID: 17545551
- Tian, B.; Wang, Z.; Zhao, Y.; Wang, D.; Li, Y.; Ma, L.; Li, X.; Li, J.; Xiao, N.; Tian, J.; Rodriguez, R. Effects of curcumin on bladder cancer cells and development of urothelial tumors in a rat bladder carcinogenesis model. Cancer Lett., 2008, 264(2), 299-308. doi: 10.1016/j.canlet.2008.01.041 PMID: 18342436
- Luo, J.; Manning, B.D.; Cantley, L.C. Targeting the PI3K-Akt pathway in human cancer. Cancer Cell, 2003, 4(4), 257-262. doi: 10.1016/S1535-6108(03)00248-4 PMID: 14585353
- Vivanco, I.; Sawyers, C.L. The phosphatidylinositol 3-Kinase-AKT pathway in human cancer. Nat. Rev. Cancer, 2002, 2(7), 489-501. doi: 10.1038/nrc839 PMID: 12094235
- Dienstmann, R.; Rodon, J.; Serra, V.; Tabernero, J. Picking the point of inhibition: A comparative review of PI3K/AKT/mTOR pathway inhibitors. Mol. Cancer Ther., 2014, 13(5), 1021-1031. doi: 10.1158/1535-7163.MCT-13-0639 PMID: 24748656
- Courtney, K.D.; Corcoran, R.B.; Engelman, J.A. The PI3K pathway as drug target in human cancer. J. Clin. Oncol., 2010, 28(6), 1075-1083. doi: 10.1200/JCO.2009.25.3641 PMID: 20085938
- Agoulnik, I.U.; Hodgson, M.C.; Bowden, W.A.; Ittmann, M.M. INPP4B: The new kid on the PI3K block. Oncotarget, 2011, 2(4), 321-328. doi: 10.18632/oncotarget.260 PMID: 21487159
- Sun, T.; Aceto, N.; Meerbrey, K.L.; Kessler, J.D.; Zhou, C.; Migliaccio, I.; Nguyen, D.X.; Pavlova, N.N.; Botero, M.; Huang, J.; Bernardi, R.J.; Schmitt, E.; Hu, G.; Li, M.Z.; Dephoure, N.; Gygi, S.P.; Rao, M.; Creighton, C.J.; Hilsenbeck, S.G.; Shaw, C.A.; Muzny, D.; Gibbs, R.A.; Wheeler, D.A.; Osborne, C.K.; Schiff, R.; Bentires-Alj, M.; Elledge, S.J.; Westbrook, T.F. Activation of multiple proto-oncogenic tyrosine kinases in breast cancer via loss of the PTPN12 phosphatase. Cell, 2011, 144(5), 703-718. doi: 10.1016/j.cell.2011.02.003 PMID: 21376233
- Yang, J.; Nie, J.; Ma, X.; Wei, Y.; Peng, Y.; Wei, X. Targeting PI3K in cancer: Mechanisms and advances in clinical trials. Mol. Cancer, 2019, 18(1), 26. doi: 10.1186/s12943-019-0954-x
- Baselga, J. Targeting the phosphoinositide-3 (PI3) kinase pathway in breast cancer. Oncologist, 2011, 16(S1)(Suppl. 1), 12-19. doi: 10.1634/theoncologist.2011-S1-12 PMID: 21278436
- Stemke-Hale, K.; Gonzalez-Angulo, A.M.; Lluch, A.; Neve, R.M.; Kuo, W.L.; Davies, M.; Carey, M.; Hu, Z.; Guan, Y.; Sahin, A.; Symmans, W.F.; Pusztai, L.; Nolden, L.K.; Horlings, H.; Berns, K.; Hung, M.C.; van de Vijver, M.J.; Valero, V.; Gray, J.W.; Bernards, R.; Mills, G.B.; Hennessy, B.T. An integrative genomic and proteomic analysis of PIK3CA, PTEN, and AKT mutations in breast cancer. Cancer Res., 2008, 68(15), 6084-6091. doi: 10.1158/0008-5472.CAN-07-6854 PMID: 18676830
- Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature, 2012, 490(7418), 61-70. doi: 10.1038/nature11412 PMID: 23000897
- Yadav, B.; Taurin, S.; Larsen, L.; Rosengren, R.J. RL71, a second-generation curcumin analog, induces apoptosis and downregulates Akt in ER-negative breast cancer cells. Int. J. Oncol., 2012, 41(3), 1119-1127. doi: 10.3892/ijo.2012.1521 PMID: 22710975
- Wang, X.; Hang, Y.; Liu, J.; Hou, Y.; Wang, N.; Wang, M. Anticancer effect of curcumin inhibits cell growth through miR-21/PTEN/Akt pathway in breast cancer cell. Oncol. Lett., 2017, 13(6), 4825-4831. doi: 10.3892/ol.2017.6053 PMID: 28599484
- Yan, M.; Parker, B.A.; Schwab, R.; Kurzrock, R. HER2 aberrations in cancer: Implications for therapy. Cancer Treat. Rev., 2014, 40(6), 770-780. doi: 10.1016/j.ctrv.2014.02.008 PMID: 24656976
- Lien, J.C.; Hung, C.M.; Lin, Y.J.; Lin, H.C.; Ko, T.C.; Tseng, L.C.; Kuo, S.C.; Ho, C.T.; Lee, J.C.; Way, T.D. Pculin02H, a curcumin derivative, inhibits proliferation and clinical drug resistance of HER2-overexpressing cancer cells. Chem. Biol. Interact., 2015, 235, 17-26. doi: 10.1016/j.cbi.2015.04.005 PMID: 25866362
- Yadav, B.; Taurin, S.; Larsen, L.; Rosengren, R.J. RL66 a second-generation curcumin analog has potent in vivo and in vitro anticancer activity in ER-negative breast cancer models. Int. J. Oncol., 2012, 41(5), 1723-1732. doi: 10.3892/ijo.2012.1625 PMID: 22971638
- Lønvik, K.; Sørbye, S.W.; Nilsen, M.N.; Paulssen, R.H. Prognostic value of the MicroRNA regulators Dicer and Drosha in non-small-cell lung cancer: Co-expression of Drosha and miR-126 predicts poor survival. BMC Clin. Pathol., 2014, 14(1), 45. doi: 10.1186/1472-6890-14-45 PMID: 25525410
- Wu, K.L.; Tsai, Y.M.; Lien, C.T.; Kuo, P.L.; Hung, J.Y. The roles of MicroRNA in lung cancer. Int. J. Mol. Sci., 2019, 20(7), 1611. doi: 10.3390/ijms20071611 PMID: 30935143
- Xu, X.; Qin, J.; Liu, W. Curcumin inhibits the invasion of thyroid cancer cells via down-regulation of PI3K/Akt signaling pathway. Gene, 2014, 546(2), 226-232. doi: 10.1016/j.gene.2014.06.006 PMID: 24910117
- Jin, H.; Qiao, F.; Wang, Y.; Xu, Y.; Shang, Y. Curcumin inhibits cell proliferation and induces apoptosis of human non-small cell lung cancer cells through the upregulation of miR-192-5p and suppression of PI3K/Akt signaling pathway. Oncol. Rep., 2015, 34(5), 2782-2789. doi: 10.3892/or.2015.4258 PMID: 26351877
- Yu, Q.; Zhao, B.; He, Q.; Zhang, Y.; Peng, X.B. microRNA-206 is required for osteoarthritis development through its effect on apoptosis and autophagy of articular chondrocytes via modulating the phosphoinositide 3-kinase/protein kinase B-mTOR pathway by targeting insulin-like growth factor-1. J. Cell. Biochem., 2019, 120(4), 5287-5303. doi: 10.1002/jcb.27803 PMID: 30335903
- Wang, N.; Feng, T.; Liu, X.; Liu, Q. Curcumin inhibits migration and invasion of non-small cell lung cancer cells through up-regulation of miR-206 and suppression of PI3K/AKT/mTOR signaling pathway. Acta Pharm., 2020, 70(3), 399-409. doi: 10.2478/acph-2020-0029 PMID: 32074070
- Chen, W.C.; Lai, Y.A.; Lin, Y.C.; Ma, J.W.; Huang, L.F.; Yang, N.S.; Ho, C.T.; Kuo, S.C.; Way, T.D. Curcumin suppresses doxorubicin-induced epithelial-mesenchymal transition via the inhibition of TGF-β and PI3K/AKT signaling pathways in triple-negative breast cancer cells. J. Agric. Food Chem., 2013, 61(48), 11817-11824. doi: 10.1021/jf404092f PMID: 24236784
- Jiao, D.; Wang, J.; Lu, W.; Tang, X.; Chen, J.; Mou, H.; Chen, Q. Curcumin inhibited HGF-induced EMT and angiogenesis through regulating c-Met dependent PI3K/Akt/mTOR signaling pathways in lung cancer. Mol. Ther. Oncolytics, 2016, 3, 16018. doi: 10.1038/mto.2016.18 PMID: 27525306
- Bagci, E.Z.; Vodovotz, Y.; Billiar, T.R.; Ermentrout, G.B.; Bahar, I. Bistability in apoptosis: Roles of bax, bcl-2, and mitochondrial permeability transition pores. Biophys. J., 2006, 90(5), 1546-1559. doi: 10.1529/biophysj.105.068122 PMID: 16339882
- Estaquier, J.; Vallette, F.; Vayssiere, J.L.; Mignotte, B. The mitochondrial pathways of apoptosis. Adv. Exp. Med. Biol., 2012, 942, 157-183. doi: 10.1007/978-94-007-2869-1_7 PMID: 22399422
- Würstle, M.L.; Laussmann, M.A.; Rehm, M. The central role of initiator caspase-9 in apoptosis signal transduction and the regulation of its activation and activity on the apoptosome. Exp. Cell Res., 2012, 318(11), 1213-1220. doi: 10.1016/j.yexcr.2012.02.013 PMID: 22406265
- Ruan, Z.P.; Xu, R.; Lv, Y.; Tian, T.; Wang, W.J.; Guo, H.; Nan, K.J. PTEN enhances the sensitivity of human hepatocellular carcinoma cells to sorafenib. Oncol. Res., 2012, 20(2), 113-121. doi: 10.3727/096504012X13477145152995 PMID: 23193917
- Feng, X.; Jiang, J.; Shi, S.; Xie, H.; Zhou, L.; Zheng, S. Knockdown of miR-25 increases the sensitivity of liver cancer stem cells to TRAIL-induced apoptosis via PTEN/PI3K/Akt/Bad signaling pathway. Int. J. Oncol., 2016, 49(6), 2600-2610. doi: 10.3892/ijo.2016.3751 PMID: 27840896
- Lamers, F.; van der Ploeg, I.; Schild, L.; Ebus, M.E.; Koster, J.; Hansen, B.R.; Koch, T.; Versteeg, R.; Caron, H.N.; Molenaar, J.J. Knockdown of survivin (BIRC5) causes apoptosis in neuroblastoma via mitotic catastrophe. Endocr. Relat. Cancer, 2011, 18(6), 657-668. doi: 10.1530/ERC-11-0207 PMID: 21859926
- Chan, S. Targeting the mammalian target of rapamycin (mTOR): A new approach to treating cancer. Br. J. Cancer, 2004, 91(8), 1420-1424. doi: 10.1038/sj.bjc.6602162 PMID: 15365568
- Bhullar, K.S.; Jha, A.; Rupasinghe, H.P.V. Novel carbocyclic curcumin analog CUR3d modulates genes involved in multiple apoptosis pathways in human hepatocellular carcinoma cells. Chem. Biol. Interact., 2015, 242, 107-122. doi: 10.1016/j.cbi.2015.09.020 PMID: 26409325
- Dharmawardana, P.G.; Peruzzi, B.; Giubellino, A.; Burke, T.R., Jr; Bottaro, D.P. Molecular targeting of growth factor receptor-bound 2 (Grb2) as an anti-cancer strategy. Anticancer Drugs, 2006, 17(1), 13-20. doi: 10.1097/01.cad.0000185180.72604.ac PMID: 16317285
- Renauld, J.C. Class II cytokine receptors and their ligands: Key antiviral and inflammatory modulators. Nat. Rev. Immunol., 2003, 3(8), 667-676. doi: 10.1038/nri1153 PMID: 12974481
- OShea, J.J.; Gadina, M.; Schreiber, R.D. Cytokine signaling in 2002. Cell, 2002, 109(2)(Suppl.), S121-S131. doi: 10.1016/S0092-8674(02)00701-8 PMID: 11983158
- Ghoreschi, K.; Laurence, A.; OShea, J.J. Janus kinases in immune cell signaling. Immunol. Rev., 2009, 228(1), 273-287. doi: 10.1111/j.1600-065X.2008.00754.x PMID: 19290934
- Liongue, C.; OSullivan, L.A.; Trengove, M.C.; Ward, A.C. Evolution of JAK-STAT pathway components: Mechanisms and role in immune system development. PLoS One, 2012, 7(3), e32777. doi: 10.1371/journal.pone.0032777 PMID: 22412924
- Sasaki, A.; Yasukawa, H.; Shouda, T.; Kitamura, T.; Dikic, I.; Yoshimura, A. CIS3/SOCS-3 suppresses erythropoietin (EPO) signaling by binding the EPO receptor and JAK2. J. Biol. Chem., 2000, 275(38), 29338-29347. doi: 10.1074/jbc.M003456200 PMID: 10882725
- OShea, J.J.; Plenge, R. JAK and STAT signaling molecules in immunoregulation and immune-mediated disease. Immunity, 2012, 36(4), 542-550. doi: 10.1016/j.immuni.2012.03.014 PMID: 22520847
- Schwartz, D.M.; Bonelli, M.; Gadina, M.; OShea, J.J. Type I/II cytokines, JAKs, and new strategies for treating autoimmune diseases. Nat. Rev. Rheumatol., 2016, 12(1), 25-36. doi: 10.1038/nrrheum.2015.167 PMID: 26633291
- Shuai, K.; Stark, G.R.; Kerr, M.; Darnell, J.E. Jr A single phosphotyrosine residue of Stat91 required for gene activation by interferon-gamma. Science, 1993, 261(5129), 1744-1746. doi: 10.1126/science.7690989 PMID: 7690989
- Xu, X.; Sun, Y.L.; Hoey, T. Cooperative DNA binding and sequence-selective recognition conferred by the STAT amino-terminal domain. Science, 1996, 273(5276), 794-797. doi: 10.1126/science.273.5276.794 PMID: 8670419
- Shuai, K.; Liao, J.; Song, M.M. Enhancement of antiproliferative activity of gamma interferon by the specific inhibition of tyrosine dephosphorylation of Stat1. Mol. Cell. Biol., 1996, 16(9), 4932-4941. doi: 10.1128/MCB.16.9.4932 PMID: 8756652
- Pearson, M.A.; Reczek, D.; Bretscher, A.; Karplus, P.A. Structure of the ERM protein moesin reveals the FERM domain fold masked by an extended actin binding tail domain. Cell, 2000, 101(3), 259-270. doi: 10.1016/S0092-8674(00)80836-3 PMID: 10847681
- OShea, J.J.; Murray, P.J. Cytokine signaling modules in inflammatory responses. Immunity, 2008, 28(4), 477-487. doi: 10.1016/j.immuni.2008.03.002 PMID: 18400190
- Zhang, W.; Guo, J.; Li, S.; Ma, T.; Xu, D.; Han, C.; Liu, F.; Yu, W.; Kong, L. Discovery of monocarbonyl curcumin-BTP hybrids as STAT3 inhibitors for drug-sensitive and drug-resistant breast cancer therapy. Sci. Rep., 2017, 7(1), 46352. doi: 10.1038/srep46352 PMID: 28397855
- Ohori, H.; Yamakoshi, H.; Tomizawa, M.; Shibuya, M.; Kakudo, Y.; Takahashi, A.; Takahashi, S.; Kato, S.; Suzuki, T.; Ishioka, C.; Iwabuchi, Y.; Shibata, H. Synthesis and biological analysis of new curcumin analogues bearing an enhanced potential for the medicinal treatment of cancer. Mol. Cancer Ther., 2006, 5(10), 2563-2571. doi: 10.1158/1535-7163.MCT-06-0174 PMID: 17041101
- Hutzen, B.; Friedman, L.; Sobo, M.; Lin, L.; Cen, L.; De Angelis, S.; Yamakoshi, H.; Shibata, H.; Iwabuchi, Y.; Lin, J. Curcumin analogue GO-Y030 inhibits STAT3 activity and cell growth in breast and pancreatic carcinomas. Int. J. Oncol., 2009, 35(4), 867-872. PMID: 19724924
- Alas, S.; Bonavida, B. Inhibition of constitutive STAT3 activity sensitizes resistant non-Hodgkins lymphoma and multiple myeloma to chemotherapeutic drug-mediated apoptosis. Clin. Cancer Res., 2003, 9(1), 316-326. PMID: 12538484
- Bromberg, J.F. Activation of STAT proteins and growth control. BioEssays, 2001, 23(2), 161-169. doi: 10.1002/1521-1878(200102)23:23.0.CO;2-0 PMID: 11169589
- Xi, S.; Gooding, W.E.; Grandis, J.R. In vivo antitumor efficacy of STAT3 blockade using a transcription factor decoy approach: implications for cancer therapy. Oncogene, 2005, 24(6), 970-979. doi: 10.1038/sj.onc.1208316 PMID: 15592503
- Xie, T.; Huang, F.J.; Aldape, K.D.; Kang, S.H.; Liu, M.; Gershenwald, J.E.; Xie, K.; Sawaya, R.; Huang, S. Activation of stat3 in human melanoma promotes brain metastasis. Cancer Res., 2006, 66(6), 3188-3196. doi: 10.1158/0008-5472.CAN-05-2674 PMID: 16540670
- Lin, L.; Hutzen, B.; Zuo, M.; Ball, S.; Deangelis, S.; Foust, E.; Pandit, B.; Ihnat, M.A.; Shenoy, S.S.; Kulp, S.; Li, P.K.; Li, C.; Fuchs, J.; Lin, J. Novel STAT3 phosphorylation inhibitors exhibit potent growth-suppressive activity in pancreatic and breast cancer cells. Cancer Res., 2010, 70(6), 2445-2454. doi: 10.1158/0008-5472.CAN-09-2468 PMID: 20215512
- Lin, L.; Hutzen, B.; Ball, S.; Foust, E.; Sobo, M.; Deangelis, S.; Pandit, B.; Friedman, L.; Li, C.; Li, P.K.; Fuchs, J.; Lin, J. New curcumin analogues exhibit enhanced growth-suppressive activity and inhibit AKT and signal transducer and activator of transcription 3 phosphorylation in breast and prostate cancer cells. Cancer Sci., 2009, 100(9), 1719-1727. doi: 10.1111/j.1349-7006.2009.01220.x PMID: 19558577
- Liang, G.; Shao, L.; Wang, Y.; Zhao, C.; Chu, Y.; Xiao, J.; Zhao, Y.; Li, X.; Yang, S. Exploration and synthesis of curcumin analogues with improved structural stability both in vitro and in vivo as cytotoxic agents. Bioorg. Med. Chem., 2009, 17(6), 2623-2631. doi: 10.1016/j.bmc.2008.10.044 PMID: 19243951
- Wu, L.; Guo, L.; Liang, Y.; Liu, X.; Jiang, L.; Wang, L. Curcumin suppresses stem-like traits of lung cancer cells via inhibiting the JAK2/STAT3 signaling pathway. Oncol. Rep., 2015, 34(6), 3311-3317. doi: 10.3892/or.2015.4279 PMID: 26397387
- Zhao, J.A.; Sang, M.X.; Geng, C.Z.; Wang, S.J.; Shan, B.E. A novel curcumin analogue is a potent chemotherapy candidate for human hepatocellular carcinoma. Oncol. Lett., 2016, 12(5), 4252-4262. doi: 10.3892/ol.2016.5126 PMID: 27895800
- Kishimoto, T. Interleukin-6: Discovery of a pleiotropic cytokine. Arthritis Res. Ther., 2006, 8(Suppl. 2), S2.
- Zhang, X.; Wang, L.; Qu, Y. Targeting the β-catenin signaling for cancer therapy. Pharmacol. Res., 2020, 160, 104794. doi: 10.1016/j.phrs.2020.104794 PMID: 32278038
- Wei, C.Y.; Zhu, M.X.; Yang, Y.W.; Zhang, P.F.; Yang, X.; Peng, R.; Gao, C.; Lu, J.C.; Wang, L.; Deng, X.Y.; Lu, N.H.; Qi, F.Z.; Gu, J.Y. Downregulation of RNF128 activates Wnt/β-catenin signaling to induce cellular EMT and stemness via CD44 and CTTN ubiquitination in melanoma. J. Hematol. Oncol., 2019, 12(1), 21. doi: 10.1186/s13045-019-0711-z PMID: 30832692
- Zhou, J.; Toh, S.H.M.; Chan, Z.L.; Quah, J.Y.; Chooi, J.Y.; Tan, T.Z.; Chong, P.S.Y.; Zeng, Q.; Chng, W.J. A loss-of-function genetic screening reveals synergistic targeting of AKT/mTOR and WTN/β-catenin pathways for treatment of AML with high PRL-3 phosphatase. J. Hematol. Oncol., 2018, 11(1), 36. doi: 10.1186/s13045-018-0581-9 PMID: 29514683
- Lim, Z.F.; Ma, P.C. Emerging insights of tumor heterogeneity and drug resistance mechanisms in lung cancer targeted therapy. J. Hematol. Oncol., 2019, 12(1), 134. doi: 10.1186/s13045-019-0818-2 PMID: 31815659
- Wiese, K.E.; Nusse, R.; van Amerongen, R. Wnt signalling: Conquering complexity. Development, 2018, 145(12), dev165902. doi: 10.1242/dev.165902 PMID: 29945986
- Nusse, R.; Clevers, H. Wnt/β-catenin signaling, disease, and emerging therapeutic modalities. Cell, 2017, 169(6), 985-999. doi: 10.1016/j.cell.2017.05.016 PMID: 28575679
- Bilić, J.; Huang, Y.L.; Davidson, G.; Zimmermann, T.; Cruciat, C.M.; Bienz, M.; Niehrs, C. Wnt induces LRP6 signalosomes and promotes dishevelled-dependent LRP6 phosphorylation. Science, 2007, 316(5831), 1619-1622. doi: 10.1126/science.1137065 PMID: 17569865
- Pai, S.G.; Carneiro, B.A.; Mota, J.M.; Costa, R.; Leite, C.A.; Barroso-Sousa, R.; Kaplan, J.B.; Chae, Y.K.; Giles, F.J. Wnt/beta-catenin pathway: Modulating anticancer immune response. J. Hematol. Oncol., 2017, 10(1), 101. doi: 10.1186/s13045-017-0471-6 PMID: 28476164
- Shang, S.; Hua, F.; Hu, Z.W. The regulation of β-catenin activity and function in cancer: Therapeutic opportunities. Oncotarget, 2017, 8(20), 33972-33989. doi: 10.18632/oncotarget.15687 PMID: 28430641
- Chien, A.J.; Moore, E.C.; Lonsdorf, A.S.; Kulikauskas, R.M.; Rothberg, B.G.; Berger, A.J.; Major, M.B.; Hwang, S.T.; Rimm, D.L.; Moon, R.T. Activated Wnt/ß-catenin signaling in melanoma is associated with decreased proliferation in patient tumors and a murine melanoma model. Proc. Natl. Acad. Sci. USA, 2009, 106(4), 1193-1198. doi: 10.1073/pnas.0811902106 PMID: 19144919
- Li, X.; Wang, X.; Xie, C.; Zhu, J.; Meng, Y.; Chen, Y.; Li, Y.; Jiang, Y.; Yang, X.; Wang, S.; Chen, J.; Zhang, Q.; Geng, S.; Wu, J.; Zhong, C.; Zhao, Y. Sonic hedgehog and Wnt/β-catenin pathways mediate curcumin inhibition of breast cancer stem cells. Anticancer Drugs, 2018, 29(3), 208-215. doi: 10.1097/CAD.0000000000000584 PMID: 29356693
- Martin, T.A.; Goyal, A.; Watkins, G.; Jiang, W.G. Expression of the transcription factors snail, slug, and twist and their clinical significance in human breast cancer. Ann. Surg. Oncol., 2005, 12(6), 488-496. doi: 10.1245/ASO.2005.04.010 PMID: 15864483
- De Craene, B.; Gilbert, B.; Stove, C.; Bruyneel, E.; van Roy, F.; Berx, G. The transcription factor snail induces tumor cell invasion through modulation of the epithelial cell differentiation program. Cancer Res., 2005, 65(14), 6237-6244. doi: 10.1158/0008-5472.CAN-04-3545 PMID: 16024625
- Zhang, Y.; Du, J.; Tian, X.; Zhong, Y.; Fang, W. Expression of E-cadherin, beta-catenin, cathepsin D, gelatinases and their inhibitors in invasive ductal breast carcinomas. Chin. Med. J., 2007, 120(18), 1597-1605. doi: 10.1097/00029330-200709020-00010 PMID: 17908479
- Savagner, P.; Yamada, K.M.; Thiery, J.P. The zinc-finger protein slug causes desmosome dissociation, an initial and necessary step for growth factor-induced epithelial-mesenchymal transition. J. Cell Biol., 1997, 137(6), 1403-1419. doi: 10.1083/jcb.137.6.1403 PMID: 9182671
- Mukherjee, S.; Mazumdar, M.; Chakraborty, S.; Manna, A.; Saha, S.; Khan, P.; Bhattacharjee, P.; Guha, D.; Adhikary, A.; Mukhjerjee, S.; Das, T. Curcumin inhibits breast cancer stem cell migration by amplifying the E-cadherin/β-catenin negative feedback loop. Stem Cell Res. Ther., 2014, 5(5), 116. doi: 10.1186/scrt506 PMID: 25315241
- Vallée, A.; Lecarpentier, Y.; Vallée, J.N. Curcumin: A therapeutic strategy in cancers by inhibiting the canonical WNT/β-catenin pathway. J. Exp. Clin. Cancer Res. CR, 2019, 38(1), 323.
- Xu, J.H.; Yang, H.P.; Zhou, X.D.; Wang, H.J.; Gong, L.; Tang, C.L. Role of Wnt inhibitory factor-1 in inhibition of bisdemethoxycurcumin mediated epithelial-to-mesenchymal transition in highly metastatic lung cancer 95D cells. Chin. Med. J., 2015, 128(10), 1376-1383. doi: 10.4103/0366-6999.156795 PMID: 25963361
- Kim, Y.M.; Kahn, M. The role of the Wnt signaling pathway in cancer stem cells: Prospects for drug development. Res. Rep. Biochem., 2014, 4, 1-12. PMID: 26566491
- Zhu, J.Y.; Yang, X.; Chen, Y.; Jiang, Y.; Wang, S.J.; Li, Y.; Wang, X.Q.; Meng, Y.; Zhu, M.M.; Ma, X.; Huang, C.; Wu, R.; Xie, C.F.; Li, X.T.; Geng, S.S.; Wu, J.S.; Zhong, C.Y.; Han, H.Y. Curcumin suppresses lung cancer stem cells via inhibiting Wnt/β-catenin and sonic hedgehog pathways. Phytother. Res., 2017, 31(4), 680-688. doi: 10.1002/ptr.5791 PMID: 28198062
- Li, D.; Qian, J.; Hong, Z. Expression and clinical significance of MTA1 in non-small cell lung cancer. Zhongguo fei ai za zhi = Chin. J. Lung Cancer, 2008, 11(6), 775-779. PMID: 20797327
- Grigoryan, T.; Wend, P.; Klaus, A.; Birchmeier, W. Deciphering the function of canonical Wnt signals in development and disease: conditional loss- and gain-of-function mutations of β-catenin in mice. Genes Dev., 2008, 22(17), 2308-2341. doi: 10.1101/gad.1686208 PMID: 18765787
- Lu, Y.; Wei, C.; Xi, Z. Curcumin suppresses proliferation and invasion in non-small cell lung cancer by modulation of MTA1-mediated Wnt/β-catenin pathway. In Vitro Cell. Dev. Biol. Anim., 2014, 50(9), 840-850. doi: 10.1007/s11626-014-9779-5 PMID: 24938356
- Xu, M.X.; Zhao, L.; Deng, C.; Yang, L.; Wang, Y.; Guo, T.; Li, L.; Lin, J.; Zhang, L. Curcumin suppresses proliferation and induces apoptosis of human hepatocellular carcinoma cells via the wnt signaling pathway. Int. J. Oncol., 2013, 43(6), 1951-1959. doi: 10.3892/ijo.2013.2107 PMID: 24064724
- Kim, H.J.; Park, S.Y.; Park, O.J.; Kim, Y.M. Curcumin suppresses migration and proliferation of Hep3B hepatocarcinoma cells through inhibition of the Wnt signaling pathway. Mol. Med. Rep., 2013, 8(1), 282-286. doi: 10.3892/mmr.2013.1497 PMID: 23723038
- Capurro, M.I.; Xiang, Y.Y.; Lobe, C.; Filmus, J. Glypican-3 promotes the growth of hepatocellular carcinoma by stimulating canonical Wnt signaling. Cancer Res., 2005, 65(14), 6245-6254. doi: 10.1158/0008-5472.CAN-04-4244 PMID: 16024626
- Wu, Y.; Liu, H.; Weng, H.; Zhang, X.; Li, P.; Fan, C.L.; Li, B.; Dong, P.L.; Li, L.; Dooley, S.; Ding, H.G. Glypican-3 promotes epithelial-mesenchymal transition of hepatocellular carcinoma cells through ERK signaling pathway. Int. J. Oncol., 2015, 46(3), 1275-1285. doi: 10.3892/ijo.2015.2827 PMID: 25572615
- Miao, H.L.; Pan, Z.J.; Lei, C.J.; Wen, J.Y.; Li, M.Y.; Liu, Z.K.; Qiu, Z.D.; Lin, M.Z.; Chen, N.P.; Chen, M. Knockdown of GPC3 inhibits the proliferation of Huh7 hepatocellular carcinoma cells through down-regulation of YAP. J. Cell. Biochem., 2013, 114(3), 625-631. doi: 10.1002/jcb.24404 PMID: 23060277
- Qi, X.H.; Wu, D.; Cui, H.X.; Ma, N.; Su, J.; Wang, Y.T.; Jiang, Y.H. Silencing of the glypican-3 gene affects the biological behavior of human hepatocellular carcinoma cells. Mol. Med. Rep., 2014, 10(6), 3177-3184. doi: 10.3892/mmr.2014.2600 PMID: 25270552
- Wu, Y.; Liu, H.; Ding, H.G. GPC-3 in hepatocellular carcinoma: Current perspectives. J. Hepatocell. Carcinoma, 2016, 3, 63-67. doi: 10.2147/JHC.S116513 PMID: 27878117
- Gao, W.; Ho, M. The role of glypican-3 in regulating Wnt in hepatocellular carcinomas. Cancer Rep., 2011, 1(1), 14-19. PMID: 22563565
- Marchesi, I.; Bagella, L. Targeting enhancer of zeste homolog 2 as a promising strategy for cancer treatment. World J. Clin. Oncol., 2016, 7(2), 135-148. doi: 10.5306/wjco.v7.i2.135 PMID: 27081636
- Gan, L.; Yang, Y.; Li, Q.; Feng, Y.; Liu, T.; Guo, W. Epigenetic regulation of cancer progression by EZH2: From biological insights to therapeutic potential. Biomark. Res., 2018, 6(1), 10. doi: 10.1186/s40364-018-0122-2 PMID: 29556394
- Song, H.; Yu, Z.; Sun, X.; Feng, J.; Yu, Q.; Khan, H.; Zhu, X.; Huang, L.; Li, M.; Mok, M.T.S.; Cheng, A.S.L.; Gao, Y.; Feng, H. Androgen receptor drives hepatocellular carcinogenesis by activating enhancer of zeste homolog 2-mediated Wnt/β-catenin signaling. EBioMedicine, 2018, 35, 155-166. doi: 10.1016/j.ebiom.2018.08.043 PMID: 30150059
- Khan, H.; Ni, Z.; Feng, H.; Xing, Y.; Wu, X.; Huang, D.; Chen, L.; Niu, Y.; Shi, G. Combination of curcumin with N-n-butyl haloperidol iodide inhibits hepatocellular carcinoma malignant proliferation by downregulating enhancer of zeste homolog 2 (EZH2) - lncRNA H19 to silence Wnt/β-catenin signaling. Phytomedicine, 2021, 91, 153706. doi: 10.1016/j.phymed.2021.153706 PMID: 34517264
- Guo, Y.J.; Pan, W.W.; Liu, S.B.; Shen, Z.F.; Xu, Y.; Hu, L.L. ERK/MAPK signalling pathway and tumorigenesis. Exp. Ther. Med., 2020, 19(3), 1997-2007. PMID: 32104259
- Chen, Y.R.; Tan, T.H. Inhibition of the c-Jun N-terminal kinase (JNK) signaling pathway by curcumin. Oncogene, 1998, 17, 173-178.
- Raaphorst, F.M.; Meijer, C.J.L.M.; Fieret, E.; Blokzijl, T.; Mommers, E.; Buerger, H.; Packeisen, J.; Sewalt, R.A.B.; Ottet, A.P.; van Diest, P.J. Poorly differentiated breast carcinoma is associated with increased expression of the human polycomb group EZH2 gene. Neoplasia, 2003, 5(6), 481-488. doi: 10.1016/S1476-5586(03)80032-5 PMID: 14965441
- Collett, G.P.; Campbell, F.C. Curcumin induces c-jun N-terminal kinase-dependent apoptosis in HCT116 human colon cancer cells. Carcinogenesis, 2004, 25(11), 2183-2189. doi: 10.1093/carcin/bgh233 PMID: 15256484
- Hua, W.F.; Fu, Y.S.; Liao, Y.J.; Xia, W.J.; Chen, Y.C.; Zeng, Y.X.; Kung, H.F.; Xie, D. Curcumin induces down-regulation of EZH2 expression through the MAPK pathway in MDA-MB-435 human breast cancer cells. Eur. J. Pharmacol., 2010, 637(1-3), 16-21. doi: 10.1016/j.ejphar.2010.03.051 PMID: 20385124
- Lai, H.W.; Chien, S.Y.; Kuo, S.J.; Tseng, L.M.; Lin, H.Y.; Chi, C.W.; Chen, D.R. The potential utility of curcumin in the treatment of HER-2-overexpressed breast cancer: An in vitro and in vivo comparison study with herceptin. Evid.-based Complement. Altern. Med., 2012, 2012, 486568.
- Zou, L.; Chai, J.; Gao, Y.; Guan, J.; Liu, Q.; Du, J.J. Down-regulated PLAC8 promotes hepatocellular carcinoma cell proliferation by enhancing PI3K/Akt/GSK3β/Wnt/β-catenin signaling. Biomed. Pharmacother., 2016, 84, 139-146.
- Mo, N.; Li, Z.Q.; Li, J.; Cao, Y.D. Curcumin inhibits TGF-β1-induced MMP-9 and invasion through ERK and Smad signaling in breast cancer MDA- MB-231 cells. APJCP, 2012, 13(11), 5709-5714. PMID: 23317243
- Wang, L.; Wang, C.; Tao, Z.; Zhao, L.; Zhu, Z.; Wu, W.; He, Y.; Chen, H.; Zheng, B.; Huang, X.; Yu, Y.; Yang, L.; Liang, G.; Cui, R.; Chen, T. Curcumin derivative WZ35 inhibits tumour cell growth via ROS-YAP-JNK signaling pathway in breast cancer. J. Exp. Clin. Cancer Res., 2019, 38(1), 460. PMID: 31703744
- Fan, J.; Wu, M.; Wang, J.; Ren, D.; Zhao, J.; Yang, G. 1,7-Bis(4-hydroxyphenyl)-1,4-heptadien-3-one induces lung cancer cell apoptosis via the PI3K/Akt and ERK1/2 pathways. J. Cell. Physiol., 2019, 234(5), 6336-6349. doi: 10.1002/jcp.27364 PMID: 30246250
- Chen, Q.; Men, Y.; Wang, H.; Chen, R.; Han, X.; Liu, J. Curcumin inhibits proliferation and migration of A549 lung cancer cells through activation of ERK1/2 pathway-induced autophagy. Nat. Prod. Comm., 2019, 14(6), 1934578X1984817.
- Yao, Q.; Lin, M.; Wang, Y.; Lai, Y.; Hu, J.; Fu, T.; Wang, L.; Lin, S.; Chen, L.; Guo, Y. Curcumin induces the apoptosis of A549 cells via oxidative stress and MAPK signaling pathways. Int. J. Mol. Med., 2015, 36(4), 1118-1126. doi: 10.3892/ijmm.2015.2327 PMID: 26310655
- Liu, H.; Zhou, B.H.; Qiu, X.; Wang, H.S.; Zhang, F.; Fang, R.; Wang, X.F.; Cai, S.H.; Du, J.; Bu, X.Z. T63, a new 4-arylidene curcumin analogue, induces cell cycle arrest and apoptosis through activation of the reactive oxygen species-FOXO3a pathway in lung cancer cells. Free Radic. Biol. Med., 2012, 53(12), 2204-2217. doi: 10.1016/j.freeradbiomed.2012.10.537 PMID: 23085518
- Sunters, A.; Fernández de Mattos, S.; Stahl, M.; Brosens, J.J.; Zoumpoulidou, G.; Saunders, C.A.; Coffer, P.J.; Medema, R.H.; Coombes, R.C.; Lam, E.W.F. FoxO3a transcriptional regulation of Bim controls apoptosis in paclitaxel-treated breast cancer cell lines. J. Biol. Chem., 2003, 278(50), 49795-49805. doi: 10.1074/jbc.M309523200 PMID: 14527951
- Cornforth, A.N.; Davis, J.S.; Khanifar, E.; Nastiuk, K.L.; Krolewski, J.J. FOXO3a mediates the androgen-dependent regulation of FLIP and contributes to TRAIL-induced apoptosis of LNCaP cells. Oncogene, 2008, 27(32), 4422-4433. doi: 10.1038/onc.2008.80 PMID: 18391984
- Dijkers, P.F.; Medema, R.H.; Pals, C.; Banerji, L.; Thomas, N.S.B.; Lam, E.W.F.; Burgering, B.M.T.; Raaijmakers, J.A.M.; Lammers, J.W.J.; Koenderman, L.; Coffer, P.J. Forkhead transcription factor FKHR-L1 modulates cytokine-dependent transcriptional regulation of p27(KIP1). Mol. Cell. Biol., 2000, 20(24), 9138-9148. doi: 10.1128/MCB.20.24.9138-9148.2000 PMID: 11094066
- Seoane, J.; Le, H.V.; Shen, L.; Anderson, S.A.; Massagué, J. Integration of Smad and forkhead pathways in the control of neuroepithelial and glioblastoma cell proliferation. Cell, 2004, 117(2), 211-223. doi: 10.1016/S0092-8674(04)00298-3 PMID: 15084259
- Schmidt, M.; Fernandez de Mattos, S.; van der Horst, A.; Klompmaker, R.; Kops, G.J.P.L.; Lam, E.W.F.; Burgering, B.M.T.; Medema, R.H. Cell cycle inhibition by FoxO forkhead transcription factors involves downregulation of cyclin D. Mol. Cell. Biol., 2002, 22(22), 7842-7852. doi: 10.1128/MCB.22.22.7842-7852.2002 PMID: 12391153
- Zheng, R.; You, Z.; Jia, J.; Lin, S.; Han, S.; Liu, A.; Long, H.; Wang, S. Curcumin enhances the antitumor effect of ABT-737 via activation of the ROS-ASK1-JNK pathway in hepatocellular carcinoma cells. Mol. Med. Rep., 2016, 13(2), 1570-1576. doi: 10.3892/mmr.2015.4715 PMID: 26707143
- Liang, Z.; Wu, R.; Xie, W.; Xie, C.; Wu, J.; Geng, S.; Li, X.; Zhu, M.; Zhu, W.; Zhu, J.; Huang, C.; Ma, X.; Xu, W.; Zhong, C.; Han, H. Effects of curcumin on tobacco smoke-induced hepatic MAPK pathway activation and epithelial-mesenchymal transition in vivo. Phytother. Res., 2017, 31(8), 1230-1239. doi: 10.1002/ptr.5844 PMID: 28585748
- Qu, J.; Lu, W.; Chen, M.; Gao, W.; Zhang, C.; Guo, B.; Yang, J. Combined effect of recombinant human adenovirus p53 and curcumin in the treatment of liver cancer. Exp. Ther. Med., 2020, 20(5), 1. doi: 10.3892/etm.2020.9145 PMID: 32934683
- Tsai, C.F.; Hsieh, T.H.; Lee, J.N.; Hsu, C.Y.; Wang, Y.C.; Kuo, K.K.; Wu, H.L.; Chiu, C.C.; Tsai, E.M.; Kuo, P.L. Curcumin suppresses phthalate-induced metastasis and the proportion of cancer stem cell (CSC)-like cells via the inhibition of AhR/ERK/SK1 signaling in hepatocellular carcinoma. J. Agric. Food Chem., 2015, 63(48), 10388-10398. doi: 10.1021/acs.jafc.5b04415 PMID: 26585812
- Xia, L.; Tan, S.; Zhou, Y.; Lin, J.; Wang, H.; Oyang, L.; Tian, Y.; Liu, L.; Su, M.; Wang, H.; Cao, D.; Liao, Q. Role of the NFκB-signaling pathway in cancer. OncoTargets Ther., 2018, 11, 2063-2073. doi: 10.2147/OTT.S161109 PMID: 29695914
- Murwanti, R.; Kholifah, E.; Sudarmanto, B.S.A.; Hermawan, A. Effect of curcumin on NF-κB P105/50 expression on triple-negative breast cancer (TNBC) and its possible mechanism of action. The 6th International Conference on Biological Science ICBS 2019, 2020.
- Sato, A.; Kudo, C.; Yamakoshi, H.; Uehara, Y.; Ohori, H.; Ishioka, C.; Iwabuchi, Y.; Shibata, H. Curcumin analog GO-Y030 is a novel inhibitor of IKKβ that suppresses NF-κB signaling and induces apoptosis. Cancer Sci., 2011, 102(5), 1045-1051. doi: 10.1111/j.1349-7006.2011.01886.x PMID: 21272158
- Chiu, T.L.; Su, C.C. Curcumin inhibits proliferation and migration by increasing the Bax to Bcl-2 ratio and decreasing NF-kappaBp65 expression in breast cancer MDA-MB-231 cells. Int. J. Mol. Med., 2009, 23(4), 469-475. PMID: 19288022
- Zong, H.; Wang, F.; Fan, Q.; Wang, L. Curcumin inhibits metastatic progression of breast cancer cell through suppression of urokinase-type plasminogen activator by NF-kappa B signaling pathways. Mol. Biol. Rep., 2012, 39(4), 4803-4808. doi: 10.1007/s11033-011-1273-5 PMID: 21947854
- Mengshol, J.A.; Vincenti, M.P.; Coon, C.I.; Barchowsky, A.; Brinckerhoff, C.E. Interleukin-1 induction of collagenase 3 (matrix metalloproteinase 13) gene expression in chondrocytes requires p38, c-jun N-terminal kinase, and nuclear factor κB Differential regulation of collagenase 1 and collagenase 3. Arthritis Rheum., 2000, 43(4), 801-811. doi: 10.1002/1529-0131(200004)43:43.0.CO;2-4 PMID: 10765924
- Liu, Q.; Loo, W.T.Y.; Sze, S.C.W.; Tong, Y. Curcumin inhibits cell proliferation of MDA-MB-231 and BT-483 breast cancer cells mediated by down-regulation of NFκB, cyclinD and MMP-1 transcription. Phytomedicine, 2009, 16(10), 916-922. doi: 10.1016/j.phymed.2009.04.008 PMID: 19524420
- Nakshatri, H.; Bhat-Nakshatri, P.; Martin, D.A.; Goulet, R.J., Jr; Sledge, G.W. Jr Constitutive activation of NF-kappaB during progression of breast cancer to hormone-independent growth. Mol. Cell. Biol., 1997, 17(7), 3629-3639. doi: 10.1128/MCB.17.7.3629 PMID: 9199297
- Katsori, A.M.; Palagani, A.; Bougarne, N.; Hadjipavlou-Litina, D.; Haegeman, G.; Vanden Berghe, W. Inhibition of the NF-κB signaling pathway by a novel heterocyclic curcumin analogue. Molecules, 2015, 20(1), 863-878. doi: 10.3390/molecules20010863 PMID: 25580684
- Olivera, A.; Moore, T.W.; Hu, F.; Brown, A.P.; Sun, A.; Liotta, D.C.; Snyder, J.P.; Yoon, Y.; Shim, H.; Marcus, A.I.; Miller, A.H.; Pace, T.W.W. Inhibition of the NF-κB signaling pathway by the curcumin analog, 3,5-Bis(2-pyridinylmethylidene)-4-piperidone (EF31): Anti-inflammatory and anti-cancer properties. Int. Immunopharmacol., 2012, 12(2), 368-377. doi: 10.1016/j.intimp.2011.12.009 PMID: 22197802
- Adams, B.K.; Cai, J.; Armstrong, J.; Herold, M.; Lu, Y.J.; Sun, A.; Snyder, J.P.; Liotta, D.C.; Jones, D.P.; Shoji, M. EF24, a novel synthetic curcumin analog, induces apoptosis in cancer cells via a redox-dependent mechanism. Anticancer Drugs, 2005, 16(3), 263-275. doi: 10.1097/00001813-200503000-00005 PMID: 15711178
- Kasinski, A.L.; Du, Y.; Thomas, S.L.; Zhao, J.; Sun, S.Y.; Khuri, F.R.; Wang, C.Y.; Shoji, M.; Sun, A.; Snyder, J.P.; Liotta, D.; Fu, H. Inhibition of IkappaB kinase-nuclear factor-kappaB signaling pathway by 3,5-bis(2-flurobenzylidene)piperidin-4-one (EF24), a novel monoketone analog of curcumin. Mol. Pharmacol., 2008, 74(3), 654-661. doi: 10.1124/mol.108.046201 PMID: 18577686
- Coker-Gurkan, A.; Celik, M.; Ugur, M.; Arisan, E.D.; Obakan-Yerlikaya, P.; Durdu, Z.B.; Palavan-Unsal, N. Curcumin inhibits autocrine growth hormone-mediated invasion and metastasis by targeting NF-κB signaling and polyamine metabolism in breast cancer cells. Amino Acids, 2018, 50(8), 1045-1069. doi: 10.1007/s00726-018-2581-z PMID: 29770869
- Yen, F.L.; Wu, T.H.; Tzeng, C.W.; Lin, L.T.; Lin, C.C. Curcumin nanoparticles improve the physicochemical properties of curcumin and effectively enhance its antioxidant and antihepatoma activities. J. Agric. Food Chem., 2010, 58(12), 7376-7382. doi: 10.1021/jf100135h PMID: 20486686
- Yen, F.L.; Tsai, M.H.; Yang, C.M.; Liang, C.J.; Lin, C.C.; Chiang, Y.C.; Lee, H.C.; Ko, H.H.; Lee, C.W. Curcumin nanoparticles ameliorate ICAM-1 expression in TNF-α-treated lung epithelial cells through p47 (phox) and MAPKs/AP-1 pathways. PLoS One, 2013, 8(5), e63845. doi: 10.1371/journal.pone.0063845 PMID: 23671702
- Liang, D.; Wen, Z.; Han, W.; Li, W.; Pan, L.; Zhang, R. Curcumin protects against inflammation and lung injury in rats with acute pulmonary embolism with the involvement of microRNA-21/PTEN/NF-κB axis. Mol. Cell. Biochem., 2021, 476(7), 2823-2835. doi: 10.1007/s11010-021-04127-z PMID: 33730297
- Li, N.; Liu, T. H.; Yu, J. Z.; Li, C. X.; Liu, Y.; Wu, Y. Y.; Yang, Z. S.; Yuan, J. L. Curcumin and curcumol inhibit NF-κB and TGF-β1/smads signaling pathways in CSEtreated RAW246.7 cells. Evid.-based Complement. Altern. Med., 2019, 3035125.
- Qiu, X.; Du, Y.; Lou, B.; Zuo, Y.; Shao, W.; Huo, Y.; Huang, J.; Yu, Y.; Zhou, B.; Du, J.; Fu, H.; Bu, X. Synthesis and identification of new 4-arylidene curcumin analogues as potential anticancer agents targeting nuclear factor-κB signaling pathway. J. Med. Chem., 2010, 53(23), 8260-8273. doi: 10.1021/jm1004545 PMID: 21070043
- Marquardt, J.U.; Gomez-Quiroz, L.; Arreguin Camacho, L.O.; Pinna, F.; Lee, Y.H.; Kitade, M.; Domínguez, M.P.; Castven, D.; Breuhahn, K.; Conner, E.A.; Galle, P.R.; Andersen, J.B.; Factor, V.M.; Thorgeirsson, S.S. Curcumin effectively inhibits oncogenic NF-κB signaling and restrains stemness features in liver cancer. J. Hepatol., 2015, 63(3), 661-669. doi: 10.1016/j.jhep.2015.04.018 PMID: 25937435
- Notarbartolo, M.; Poma, P.; Perri, D.; Dusonchet, L.; Cervello, M.; DAlessandro, N. Antitumor effects of curcumin, alone or in combination with cisplatin or doxorubicin, on human hepatic cancer cells. Analysis of their possible relationship to changes in NF-kB activation levels and in IAP gene expression. Cancer Lett., 2005, 224(1), 53-65. doi: 10.1016/j.canlet.2004.10.051 PMID: 15911101
- Bortel, N.; Armeanu-Ebinger, S.; Schmid, E.; Kirchner, B.; Frank, J.; Kocher, A.; Schiborr, C.; Warmann, S.; Fuchs, J.; Ellerkamp, V. Effects of curcumin in pediatric epithelial liver tumors: Inhibition of tumor growth and alpha-fetoprotein in vitro and in vivo involving the NFkappaB- and the beta-catenin pathways. Oncotarget, 2015, 6(38), 40680-40691. doi: 10.18632/oncotarget.5673 PMID: 26515460
- Adewale, O.; Akomolafe, S.F.; Asogwa, N.T. Curcumin alleviates potassium bromate-induced hepatic damage by repressing CRP induction through TNF-α and IL-1βand by suppressing oxidative stress. Notulae Scientia Biologicae, 2019, 11(4), 337-344.
- Ibrahim Fouad, G.; Ahmed, K.A. Curcumin ameliorates doxorubicin-induced cardiotoxicity and hepatotoxicity via suppressing oxidative stress and modulating iNOS, NF-κB, and TNF-α in Rats. Cardiovasc. Toxicol., 2022, 22(2), 152-166. doi: 10.1007/s12012-021-09710-w PMID: 34837640
- El-Houseini, M.E.; El-Agoza, I.A.; Sakr, M.M.; El-Malky, G.M. Novel protective role of curcumin and taurine combination against experimental hepatocarcinogenesis. Exp. Ther. Med., 2017, 13(1), 29-36. doi: 10.3892/etm.2016.3952 PMID: 28123463
- Reuter, S.; Eifes, S.; Dicato, M.; Aggarwal, B.B.; Diederich, M. Modulation of anti-apoptotic and survival pathways by curcumin as a strategy to induce apoptosis in cancer cells. Biochem. Pharmacol., 2008, 76(11), 1340-1351. doi: 10.1016/j.bcp.2008.07.031 PMID: 18755156
- Hu, S.; Xu, Y.; Meng, L.; Huang, L.; Sun, H. Curcumin inhibits proliferation and promotes apoptosis of breast cancer cells. Exp. Ther. Med., 2018, 16(2), 1266-1272. doi: 10.3892/etm.2018.6345 PMID: 30116377
- Rowe, D.L.; Ozbay, T.; ORegan, R.M.; Nahta, R. Modulation of the BRCA1 protein and induction of apoptosis in triple negative breast cancer cell lines by the polyphenolic compound curcumin. Breast Cancer (Auckl.), 2009, 3, BCBCR.S3067. doi: 10.4137/BCBCR.S3067 PMID: 19809577
- Elmegeed, G.A.; Yahya, S.M.M.; Abd-Elhalim, M.M.; Mohamed, M.S.; Mohareb, R.M.; Elsayed, G.H. Evaluation of heterocyclic steroids and curcumin derivatives as anti-breast cancer agents: Studying the effect on apoptosis in MCF-7 breast cancer cells. Steroids, 2016, 115, 80-89. doi: 10.1016/j.steroids.2016.08.014 PMID: 27553725
- Huang, Y.W.; Chen, J.H.; Qin, Z.X.; Chen, J.K.; Hu, R.D.; Wu, Z.; Lin, X. Chloride channel involved in the regulation of curcumin-induced apoptosis of human breast cancer cells-. Asian Pac. J. Trop. Med., 2018, 11, 240-244.
- Ali, N.M.; Yeap, S.K.; Abu, N.; Lim, K.L.; Ky, H.; Pauzi, A.Z.M.; Ho, W.Y.; Tan, S.W.; Alan-Ong, H.K.; Zareen, S.; Alitheen, N.B.; Akhtar, M.N. Synthetic curcumin derivative DK1 possessed G2/M arrest and induced apoptosis through accumulation of intracellular ROS in MCF-7 breast cancer cells. Cancer Cell Int., 2017, 17(1), 30. doi: 10.1186/s12935-017-0400-3 PMID: 28239299
- Wang, Y.; Xiao, J.; Zhou, H.; Yang, S.; Wu, X.; Jiang, C.; Zhao, Y.; Liang, D.; Li, X.; Liang, G. A novel monocarbonyl analogue of curcumin, (1E,4E)-1,5-bis(2,3-dimethoxyphenyl)penta-1,4-dien-3-one, induced cancer cell H460 apoptosis via activation of endoplasmic reticulum stress signaling pathway. J. Med. Chem., 2011, 54(11), 3768-3778. doi: 10.1021/jm200017g PMID: 21504179
- Wang, A.; Wang, J.; Zhang, S.; Zhang, H.; Xu, Z.; Li, X. Curcumin inhibits the development of non small cell lung cancer by inhibiting autophagy and apoptosis. Exp. Ther. Med., 2017, 14(5), 5075-5080. doi: 10.3892/etm.2017.5172 PMID: 29201217
- Liu, Z.; Sun, Y.; Ren, L.; Huang, Y.; Cai, Y.; Weng, Q.; Shen, X.; Li, X.; Liang, G.; Wang, Y. Evaluation of a curcumin analog as an anti-cancer agent inducing ER stress-mediated apoptosis in non-small cell lung cancer cells. BMC Cancer, 2013, 13, 494.
- Ye, M.; Zhang, J.; Zhang, J.; Miao, Q.; Yao, L.; Zhang, J. Curcumin promotes apoptosis by activating the p53-miR-192-5p/215-XIAP pathway in non-small cell lung cancer. Cancer Lett., 2015, 357(1), 196-205. doi: 10.1016/j.canlet.2014.11.028 PMID: 25444916
- Zhang, J.; Du, Y.; Wu, C.; Ren, X.; Ti, X.; Shi, J.; Zhao, F.; Yin, H. Curcumin promotes apoptosis in human lung adenocarcinoma cells through miR-186* signaling pathway. Oncol. Rep., 2010, 24(5), 1217-1223. doi: 10.3892/or_00000975 PMID: 20878113
- Zhao, Z.; Yang, Y.; Liu, W.; Li, Z. T59, a new compound reconstructed from curcumin, induces cell apoptosis through reactive oxygen species activation in human lung cancer cells. Molecules, 2018, 23(6), 1251. doi: 10.3390/molecules23061251 PMID: 29882920
- Ye, M.X.; Zhao, Y.L.; Li, Y.; Miao, Q.; Li, Z.K.; Ren, X.L.; Song, L.Q.; Yin, H.; Zhang, J. Curcumin reverses cis-platin resistance and promotes human lung adenocarcinoma A549/DDP cell apoptosis through HIF-1α and caspase-3 mechanisms. Phytomedicine, 2012, 19(8-9), 779-787. doi: 10.1016/j.phymed.2012.03.005 PMID: 22483553
- Nair, P.; Malhotra, A.; Dhawan, D.K. Curcumin and quercetin trigger apoptosis during benzo(a)pyrene-induced lung carcinogenesis. Mol. Cell. Biochem., 2015, 400(1-2), 51-56. doi: 10.1007/s11010-014-2261-6 PMID: 25359171
- Kang, J.H.; Kang, H.S.; Kim, I.K.; Lee, H.Y.; Ha, J.H.; Yeo, C.D.; Kang, H.H.; Moon, H.S.; Lee, S.H. Curcumin sensitizes human lung cancer cells to apoptosis and metastasis synergistically combined with carboplatin. Exp. Biol. Med., 2015, 240(11), 1416-1425. doi: 10.1177/1535370215571881 PMID: 25716014
- Zhou, T.; Ye, L.; Bai, Y.; Sun, A.; Cox, B.; Liu, D.; Li, Y.; Liotta, D.; Snyder, J.P.; Fu, H.; Huang, B. Autophagy and apoptosis in hepatocellular carcinoma induced by EF25-(GSH)2: a novel curcumin analog. PLoS One, 2014, 9(9), e107876. doi: 10.1371/journal.pone.0107876 PMID: 25268357
- Zhao, X.; Chen, Q.; Liu, W.; Li, Y.; Tang, H.; Liu, X.; Yang, X. Codelivery of doxorubicin and curcumin with lipid nanoparticles results in improved efficacy of chemotherapy in liver cancer. Int. J. Nanomedicine, 2014, 10, 257-270. PMID: 25565818
- Muangnoi, C.; Na Bhuket, P.R.; Jithavech, P.; Supasena, W.; Paraoan, L.; Patumraj, S.; Rojsitthisak, P. Curcumin diethyl disuccinate, a prodrug of curcumin, enhances anti-proliferative effect of curcumin against HepG2 cells via apoptosis induction - Scientific Reports. Nature, 2019.
- Wang, J.; Xie, H.; Gao, F.; Zhao, T.; Yang, H.; Kang, B. Curcumin induces apoptosis in p53-null Hep3B cells through a TAp73/DNp73-dependent pathway. Tumour Biol., 2016, 37(3), 4203-4212. doi: 10.1007/s13277-015-4029-3 PMID: 26490992
- Sumirtanurdin, R.; Sungkar, S.; Hisprastin, Y.; Sidharta, K.D.; Nurhikmah, D.D. Molecular docking simulation studies of curcumin and its derivatives as cyclin-dependent kinase 2 inhibitors. Turk. J. Pharm. Sci., 2020, 17(4), 417-423.
- Kesharwani, R.K.; Singh, D.B.; Singh, D.V.; Misra, K. Computational study of curcumin analogues by targeting DNA topoisomerase II: A structure-based drug designing approach. Netw. Model. Anal. Health Inform. Bioinform., 2018, 7(1), 15. doi: 10.1007/s13721-018-0179-8
- Yadav, I.S.; Nandekar, P.P.; Shrivastava, S.; Sangamwar, A.; Chaudhury, A.; Agarwal, S.M. Ensemble docking and molecular dynamics identify knoevenagel curcumin derivatives with potent anti-EGFR activity. Gene, 2014, 539(1), 82-90. doi: 10.1016/j.gene.2014.01.056 PMID: 24491504
- Laali, K.K.; Greves, W.J.; Zwarycz, A.T.; Correa Smits, S.J.; Troendle, F.J.; Borosky, G.L.; Akhtar, S.; Manna, A.; Paulus, A.; Chanan-Khan, A.; Nukaya, M.; Kennedy, G.D. Synthesis, computational docking study, and biological evaluation of a library of heterocyclic curcuminoids with remarkable antitumor activity. ChemMedChem, 2018, 13(18), 1895-1908. doi: 10.1002/cmdc.201800320 PMID: 30079563
- Ghrifi, F.; Allam, L.; Wiame, L.; Ibrahimi, A. Curcumin-synthetic analogs library screening by docking and quantitative structure-activity relationship studies for AXL tyrosine kinase inhibition in cancers. J. Comput. Biol., 2019, 26(10), 1156-1167.
- Bhuvaneswari, K.; Sivaguru, P.; Lalitha, A. Synthesis, biological evaluation and molecular docking of novel curcumin derivatives as Bcl-2 inhibitors targeting human breast cancer MCF-7 cells. ChemistrySelect, 2017, 2(35), 11552-11560. doi: 10.1002/slct.201702406
- Pushpalatha, R.; Selvamuthukumar, S.; Kilimozhi, D. Comparative insilico docking analysis of curcumin and resveratrol on breast cancer proteins and their synergistic effect on MCF-7 cell line. J. Young Pharm., 2017, 9(4), 480-485.
- Widyananda, M.H.; Ansori, A.N.M.; Kharisma, V.D. Investigating the potential of curcumin, demethoxycurcumin and bisdemethoxycurcumin as wildtype and mutant her2 inhibitors against various cancer types using bioinformatics analysis. Biochem. Cell. Arch., 2021, 21, 3335-3343.
- Panda, S.S.; Tran, Q.L.; Rajpurohit, P.; Pillai, G.G.; Thomas, S.J.; Bridges, A.E.; Capito, J.E.; Thangaraju, M.; Lokeshwar, B.L. Design, synthesis, and molecular docking studies of curcumin hybrid conjugates as potential therapeutics for breast cancer. Pharmaceuticals, 2022, 15(4), 451. doi: 10.3390/ph15040451 PMID: 35455448
- Mirzai, M.; Nazemi, H. In silico interactions between curcumin derivatives and monoamine oxidase-A enzyme. Biointerface Res. Appl. Chem., 2021.
- Zuo, Y.; Huang, J.; Zhou, B.; Wang, S.; Shao, W.; Zhu, C.; Lin, L.; Wen, G.; Wang, H.; Du, J.; Bu, X. Synthesis, cytotoxicity of new 4-arylidene curcumin analogues and their multi-functions in inhibition of both NF-κB and Akt signalling. Eur. J. Med. Chem., 2012, 55, 346-357. doi: 10.1016/j.ejmech.2012.07.039 PMID: 22889562
- Ahsan, M.J.; Choudhary, K.; Jadav, S.S.; Yasmin, S.; Ansari, M.Y.; Sreenivasulu, R. Synthesis, antiproliferative activity, and molecular docking studies of curcumin analogues bearing pyrazole ring. Med. Chem. Res., 2015, 24(12), 4166-4180. doi: 10.1007/s00044-015-1457-y
- Rodrigues, F.C.; Kumar, N.V.A.; Hari, G.; Pai, K.S.R.; Thakur, G. The inhibitory potency of isoxazole-curcumin analogue for the management of breast cancer: A comparative in vitro and molecular modeling investigation. Chem. Zvesti, 2021, 75(11), 5995-6008. doi: 10.1007/s11696-021-01775-9
- Hoda, N.; Naz, H.; Jameel, E.; Shandilya, A.; Dey, S.; Hassan, M.I.; Ahmad, F.; Jayaram, B. Curcumin specifically binds to the human calcium-calmodulin-dependent protein kinase IV: fluorescence and molecular dynamics simulation studies. J. Biomol. Struct. Dyn., 2016, 34(3), 572-584. doi: 10.1080/07391102.2015.1046934 PMID: 25929263
- Chaudhary, M.; Kumar, N.; Baldi, A.; Chandra, R.; Arockia Babu, M.; Madan, J. Chloro and bromo-pyrazole curcumin Knoevenagel condensates augmented anticancer activity against human cervical cancer cells: Design, synthesis, in silico docking and in vitro cytotoxicity analysis. J. Biomol. Struct. Dyn., 2020, 38(1), 200-218. doi: 10.1080/07391102.2019.1578264 PMID: 30784365
- Sufi, S.A.; Adigopula, L.N.; Syed, S.B.; Mukherjee, V.; Coumar, M.S.; Rao, H.S.; Rajagopalan, R. In-silico and in-vitro anti-cancer potential of a curcumin analogue (1E, 6E)-1, 7-di (1H-indol-3-yl) hepta-1, 6-diene-3, 5-dione. Biomed. Pharmacother., 2017, 85, 389-398.
- Bustanji, Y.; Taha, M.O.; Almasri, I.M.; Al-Ghussein, M.A.S.; Mohammad, M.K.; Alkhatib, H.S. Inhibition of glycogen synthase kinase by curcumin: Investigation by simulated molecular docking and subsequent in vitro/in vivo evaluation. J. Enzyme Inhib. Med. Chem., 2009, 24(3), 771-778. doi: 10.1080/14756360802364377 PMID: 18720192
- Furlan, V.; Konc, J.; Bren, U. Inverse molecular docking as a novel approach to study anticarcinogenic and anti-neuroinflammatory effects of curcumin. Molecules, 2018, 23(12), 3351. doi: 10.3390/molecules23123351 PMID: 30567342
- Rampogu, S.; Lee, G.; Park, J.S.; Lee, K.W.; Kim, M.O. Molecular docking and molecular dynamics simulations discover curcumin analogue as a plausible dual inhibitor for SARS-CoV-2. Int. J. Mol. Sci., 2022, 23(3), 1771. doi: 10.3390/ijms23031771 PMID: 35163692
- Bukhari, S.N.A.; Jantan, I.; Unsal Tan, O.; Sher, M. Naeem-ul-Hassan, M.; Qin, H.L. Biological activity and molecular docking studies of curcumin-related αβ-unsaturated carbonyl-based synthetic compounds as anticancer agents and mushroom tyrosinase inhibitors. J. Agric. Food Chem., 2014, 62(24), 5538-5547. doi: 10.1021/jf501145b PMID: 24901506
- Sarhan, A.E.; Elhefny, E.A.; Nasef, A.M.; Aly, M.S.; Fawzy, N.M. Synthesis, cytotoxicity evaluation, and molecular docking studies of novel pyrrole derivatives of khellin and visnagin via one-pot condensation reaction with curcumin. Russ. J. Bioorganic Chem., 2020, 46(6), 1117-1127. doi: 10.1134/S1068162020060072
- Cheemanapalli, S.; Chinthakunta, N.; Shaikh, N.M.; Shivaranjani, V.; Pamuru, R.R.; Chitta, S.K. Comparative binding studies of curcumin and tangeretin on up-stream elements of NF-kB cascade: A combined molecular docking approach. Netw. Model. Anal. Health Inform. Bioinform., 2019, 8(1), 15. doi: 10.1007/s13721-019-0196-2
- Ali, A.; Ali, A.; Tahir, A.; Bakht, M.A. Salahuddin; Ahsan, M.J. Molecular engineering of curcumin, an active constituent of Curcuma longa L. (Turmeric) of the family Zingiberaceae with improved antiproliferative activity. Plants, 2021, 10(8), 1559. doi: 10.3390/plants10081559 PMID: 34451604
- Chowrasia, D.; Jafri, A.; Azad, I.; Rais, J.; Sharma, N.; Khan, F.; Kumar, A.; Kumar, S.; Arshad, M. In vitro and in silico growth inhibitory, anti-ovarian & anti-lung carcinoma effects of 1,5 diarylpenta-1,4-dien-3-one as synthetically modified curcumin analogue. J. Biomol. Struct. Dyn., 2021, 1-18. Advance online publication PMID: 33955334
- Kumar, A.; Bora, U. Molecular docking studies of curcumin natural derivatives with DNA topoisomerase I and II-DNA complexes. Interdiscip. Sci., 2014, 6(4), 285-291. doi: 10.1007/s12539-012-0048-6 PMID: 25118649
- Liang, Y.; Zhang, T.; Ren, L.; Jing, S.; Li, Z.; Zuo, P.; Li, T.; Wang, Y.; Zhang, J.; Wei, Z. Cucurbitacin IIb induces apoptosis and cell cycle arrest through regulating EGFR/MAPK pathway. Environ. Toxicol. Pharmacol., 2021, 81, 103542. doi: 10.1016/j.etap.2020.103542 PMID: 33161110
- Aman, L.O.; Kartasasmita, R.E.; Tjahjono, D.H. Virtual screening of curcumin analogues as DYRK2 inhibitor: Pharmacophore analysis, molecular docking and dynamics, and ADME prediction. F1000 Res., 2021, 10, 394. doi: 10.12688/f1000research.28040.1
- Shah, V.; Bhaliya, J.; Patel, G.M. In silico docking and ADME study of deketene curcumin derivatives (DKC) as an aromatase inhibitor or antagonist to the estrogen-alpha positive receptor (Erα+): potent application of breast cancer. Struct. Chem., 2022, 33(2), 571-600. doi: 10.1007/s11224-021-01871-2 PMID: 35106036
- Kandagalla, S.; Sharath, B.S.; Bharath, B.R. hani, U.; Manjunatha, H. Molecular docking analysis of curcumin analogues against kinase domain of ALK5. In Silico Pharmacol., 2017, 5(1), 15. doi: 10.1007/s40203-017-0034-0 PMID: 29308351
- Ramya, P.V.S.; Guntuku, L.; Angapelly, S.; Digwal, C.S.; Lakshmi, U.J.; Sigalapalli, D.K.; Babu, B.N.; Naidu, V.G.M.; Kamal, A. Synthesis and biological evaluation of curcumin inspired imidazo1,2-apyridine analogues as tubulin polymerization inhibitors. Eur. J. Med. Chem., 2018, 143, 216-231. doi: 10.1016/j.ejmech.2017.11.010 PMID: 29174816
- Liu, M.; Yuan, M.; Luo, M.; Bu, X.; Luo, H.B.; Hu, X. Binding of curcumin with glyoxalase I: Molecular docking, molecular dynamics simulations, and kinetics analysis. Biophys. Chem., 2010, 147(1-2), 28-34. doi: 10.1016/j.bpc.2009.12.007 PMID: 20071071
- Mahajanakatti, A.B.; Murthy, G.; Sharma, N.; Skariyachan, S. Exploring inhibitory potential of curcumin against various cancer targets by in silico virtual screening. Interdiscip. Sci., 2014, 6(1), 13-24. doi: 10.1007/s12539-014-0170-8 PMID: 24464700
- Sharma, R.; Jadav, S.S.; Yasmin, S.; Bhatia, S.; Khalilullah, H.; Ahsan, M.J. Simple, efficient, and improved synthesis of Biginelli-type compounds of curcumin as anticancer agents. Med. Chem. Res., 2015, 24(2), 636-644. doi: 10.1007/s00044-014-1146-2
Supplementary files
