Performance of Green Desymmetrization Methods toward Bioactive Cephalostatin Analogues


Citar

Texto integral

Resumo

Since the discovery of cephalostatins, which have shown remarkable activity against human cancer cells, they have attracted the attention of researchers to target the synthesis of such impressive, complicated molecules using the green desymmetrization approach. In the current review, we report the progress in the desymmetrization of symmetrical bis-steroidal pyrazines (BSPs) as an approach toward potentially active anti-- cancer agents, namely cephalostatins/ ritterazines. The achievement of synthesizing a gram-scaled prodrug with comparable activity to the potent natural cephalostatins using green methods is our primary target. These synthetic methods can be scaled up based on the symmetrical coupling (SC) of two steroidal units of the same type. Our secondary target is the discovery of new green pathways that help in structural reconstruction programming toward the total synthesis of at least one potentially active family member. The strategy is based on functional group interconversions with high flexibility and brevity using green selective methods. The introduction of controlling groups using nontrivial reconstruction methodologies forms the backbone of our work. After certain modifications to the symmetrical BSP starting material, the resulting analogs underwent several chemoselective transformations through three main routes in rings F, D, and C. One of these routes is the chemoselective spiroketal opening (ring-F). The second route was the functionalization of the Δ14,15 bond (ring-D), including chlorination/dechlorination, in addition to epoxidation/ oxygenation processes. Finally, the introduction of the C-11 methoxy group as a directing group on ring-C led to several chemoselective transformations. Moreover, certain transformations on C-12 (ring-C), such as methylenation, followed by hydroboration- oxidation, led to a potentially active analog. The alignment of these results directs us toward the targets. Our efforts culminated in preparing effective anti-cancer prodrugs (8, 24, 30, and 31), which are able to overcome cancer drug resistance (chemoresistance) by inducing the atypical endoplasmic reticulum-mediated apoptosis pathway, which works through the release of Smac/Diablo and the activation of caspase-4. #This work is dedicated to Professor Helmut Duddeck-Leibniz Hannover University on his 77th Birthday on 19.06.2023.

Sobre autores

Mansour Nawasreh

Scientific Basic Sciences Department, Faculty of Engineering Technology, Al-Balqa Applied University

Autor responsável pela correspondência
Email: info@benthamscience.net

Lubna Tahtamouni

Department of Biology and Biotechnology, Faculty of Science,, The Hashemite University

Email: info@benthamscience.net

Bibliografia

  1. Pettit, G.R.; Inoue, M.; Kamano, Y.; Herald, D.L.; Arm, C.; Dufresne, C.; Christie, N.D.; Schmidt, J.M.; Doubek, D.L.; Krupa, T.S. Antineoplastic agents. 147. Isolation and structure of the powerful cell growth inhibitor cephalostatin 1. J. Am. Chem. Soc., 1988, 110(6), 2006-2007. doi: 10.1021/ja00214a078
  2. Pettit, G.R.; Xu, J.; Ichihara, Y.; Williams, M.D.; Boyd, M.R. Antineoplastic agents 285. Isolation and structures of cephalostatins 14 and 15. Can. J. Chemistry., 1994, 72(11), 2260-2267. doi: 10.1139/v94-288
  3. Pettit, G.R.; Xu, J.P.; Schmidt, J.M.; Boyd, M.R. Isolation and structure of the exceptional Pterobranchia human cancer inhibitors cephalostatins 16 and 17. Bioorg. Med. Chem. Lett., 1995, 5(17), 2027-2032. doi: 10.1016/0960-894X(95)00346-U
  4. Pettit, G.R.; Inoue, M.; Kamano, Y.; Dufresne, C.; Christie, N.; Niven, M.L.; Herald, D.L. Isolation and structure of the hemichordate cell growth inhibitors cephalostatins 2, 3, and 4. J. Chem. Soc. Chem. Commun., 1988, 865–67(13), 865. doi: 10.1039/c39880000865
  5. Pettit, G.R.; Tan, R.; Xu, J.; Ichihara, Y.; Williams, M.D.; Boyd, M.R. Antineoplastic agents. 398. Isolation and structure elucidation of cephalostatins 18 and 19. J. Nat. Prod., 1998, 61(7), 955-958. doi: 10.1021/np9800405 PMID: 9677284
  6. Pettit, GR; Xu, JP; Chapuis, JC The cephalostatins. 24. Isolation, structure, and cancer cell growth inhibition of cephalostatin 20. J. Nat. Prod., 2015, 78, 1446-1450. doi: 10.1021/acs.jnatprod.5b00129
  7. Fukuzawa, S.; Matsunaga, S.; Fusetani, N. Isolation and structure elucidation of ritterazines B and C, highly cytotoxic dimeric steroidal alkaloids, from the tunicate Ritterella tokioka. J. Org. Chem., 1995, 60(3), 608-614. doi: 10.1021/jo00108a024
  8. Fukuzawa, S.; Matsunaga, S.; Fusetani, N. Ten more ritterazines, cytotoxic steroidal alkaloids from the tunicate Ritterella tokioka. Tetrahedron, 1995, 51(24), 6707-6716. doi: 10.1016/0040-4020(95)00327-5
  9. Fukuzawa, S.; Matsunaga, S.; Fusetani, N. Isolation of 13 new ritterazines from the tunicate Ritterella tokioka and chemical transformation of ritterazine B. J. Org. Chem., 1997, 62(13), 4484-4491. doi: 10.1021/jo970091r PMID: 11671779
  10. Kramer, A.; Ullmann, U.; Winterfeldt, E. A short route to cephalostatin analogues. J. Chem. Soc., Perkin Trans. 1, 1993, 1(23), 2865-2867. doi: 10.1039/p19930002865
  11. Drögemüller, M.; Jautelat, R.; Winterfeldt, E. Directed synthesis of nonsymmetrical bis-steroidal pyrazines and the first biologically active cephalostatin analogues. Angew. Chem. Int. Ed., 1996, 35(1314), 1572-1574. doi: 10.1002/anie.199615721
  12. Drögemüller, M.; Flessner, T.; Jautelat, R.; Scholz, U.; Winterfeldt, E. Synthesis of cephalostatin analogues by symmetrical and non-symmetrical routes. Eur. J. Org. Chem., 1998, 1998(12), 2811-2831. doi: 10.1002/(SICI)1099-0690(199812)1998:123.0.CO;2-M
  13. Smith, S.C.; Heathcock, C.H. A convenient procedure for the synthesis of bis-steroidal pyrazines: models for the cephalostatins. J. Org. Chem., 1992, 57(24), 6379-6380. doi: 10.1021/jo00050a002
  14. Heathcock, C.H.; Smith, S.C. Synthesis and biological activity Of unsymmetrical bis-steroidal pyrazines related to the cytotoxic marine natural product cephalostatin 1. J. Org. Chem., 1994, 59(22), 6828-6839. doi: 10.1021/jo00101a052
  15. LaCour, T.G.; Guo, C.; Bhandaru, S.; Boyd, M.R.; Fuchs, P.L. Interphylal product splicing: The first total syntheses of cephalostatin 1, the north hemisphere of ritterazine G, and the highly active hybrid analogue, ritterostatin GN1N1. J. Am. Chem. Soc., 1998, 120(4), 692-707. doi: 10.1021/ja972160p
  16. Fortner, K.C.; Kato, D.; Tanaka, Y.; Shair, M.D. Enantioselective synthesis of (+)-cephalostatin 1. J. Am. Chem. Soc., 2010, 132(1), 275-280. doi: 10.1021/ja906996c PMID: 19968285
  17. Jeong, J.U.; Guo, C.; Fuchs, P.L. Synthesis of the south unit of cephalostatin. 7. Total syntheses of (+)-cephalostatin 7, (+)-cephalostatin 12, and (+)-ritterazine K 1. J. Am. Chem. Soc., 1999, 121(10), 2071-2084. doi: 10.1021/ja9817141
  18. Flessner, T.; Jautelat, R.; Scholz, U.; Winterfeldt, E. Cephalostatin analogues--synthesis and biological activity. Fortschr. Chem. Org. Naturst., 2004, 87, 1-80. doi: 10.1007/978-3-7091-0581-8_1 PMID: 15079895
  19. Nawasreh, M. Novel reactions in the cephalostatin series. Curr. Org. Chem., 2009, 13(4), 407-420. doi: 10.2174/138527209787582286
  20. Iglesias-Arteaga, M.A.; Morzycki, J.W. Cephalostatins and ritterazines. Alkaloids Chem. Biol., 2013, 72, 153-279. doi: 10.1016/B978-0-12-407774-4.00002-9 PMID: 24712099
  21. Pettit, G.R.; Kamano, Y.; Inoue, M.; Dufresne, C.; Boyd, M.R.; Herald, C.L.; Schmidt, J.M.; Doubek, D.L.; Christie, N.D. Antineoplastic agents. 214. Isolation and structure of cephalostatins 7-9. J. Org. Chem., 1992, 57(2), 429-431. doi: 10.1021/jo00028a007
  22. Bäsler, S.; Brunck, A.; Jautelat, R.; Winterfeldt, E. Synthesis of cytostatic tetradecacyclic pyrazines and a novel reduction-oxidation sequence for spiroketal opening in sapogenins. Helv. Chim. Acta, 2000, 83(8), 1854-1880. doi: 10.1002/1522-2675(20000809)83:83.0.CO;2-4
  23. Nawasreh, M.; Winterfeldt, E. Novel routes to nonsymmetric cephalostatin analogous. Curr. Org. Chem., 2003, 7, 649-658. doi: 10.2174/1385272033486774
  24. Nawasreh, M. Chemo-, regio-, and stereoselectivity of F-ring opening reactions in the cephalostatin series. Bioorg. Med. Chem., 2008, 16(1), 255-265. doi: 10.1016/j.bmc.2007.09.043 PMID: 17981469
  25. Nawasreh, M.M. Selective transformations of cephalostatin analogues. Pure Appl. Chem., 2011, 83(3), 699-707. doi: 10.1351/PAC-CON-10-08-15
  26. Nawasreh, M. Progress in chemo- and regioselective transformations of symmetrical cephalostatin analogues. Lett. Org. Chem., 2018, 15(2), 155-161. doi: 10.2174/1570178614666170907113121
  27. Salvador, J.A.R.; Carvalho, J.F.S.; Neves, M.A.C.; Silvestre, S.M.; Leitão, A.J.; Silva, M.M.C.; Sá e Melo, M.L. Anticancer steroids: Linking natural and semi-synthetic compounds. Nat. Prod. Rep., 2013, 30(2), 324-374. doi: 10.1039/C2NP20082A PMID: 23151898
  28. Nawasreh, M.; Kirschning, A.; Duddeck, H.; Dräger, G.; Fenske, D. Novel double functional protection of cephalostatin analogues using a gas-free chlorination method. Heliyon, 2020, 6(1), e03025. doi: 10.1016/j.heliyon.2019.e03025 PMID: 31909240
  29. Holland, H.L.; Chenchaiah, P.C.; Thomas, E.M.; Mader, B.; Dennis, M.J. Microbial hydroxylation of steroids. 9. Epoxidation of Δ 6 -3-ketosteroids by Rhizopus arrhizus ATCC 11145, and the mechanism of the 6β hydroxylase enzyme. Can. J. Chem., 1984, 62(12), 2740-2747. doi: 10.1139/v84-466
  30. Kurosawa, Y.; Hayano, M.; Bloom, B.M. The epoxidation of unsaturated steroids. Agric. Biol. Chem., 1961, 25(11), 838-843. doi: 10.1080/00021369.1961.10857887
  31. May, S.W. Enzymatic epoxidation reactions. Enzyme Microb. Technol., 1979, 1(1), 15-22. doi: 10.1016/0141-0229(79)90005-X
  32. Nawasreh, M. Dissertation-Hannover University, 2000.
  33. Nawasreh, M.M. Novel epoxidation/oxygenation method toward bioactive cephalostatins using common alkaline metals. ChemistrySelect, 2022, 7(6), e202103756. doi: 10.1002/slct.202103756
  34. Nawasreh, M. Chemo- and regioselective hydroboration of Δ14,15 in certain cephalostatin analogue. Chin. Chem. Lett., 2008, 19(12), 1391-1394. doi: 10.1016/j.cclet.2008.09.055
  35. Liew, S.K.; Malagobadan, S.; Arshad, N.M.; Nagoor, N.H. A review of the structure–activity relationship of natural and synthetic antimetastatic compounds. Biomolecules, 2020, 10(1), 138. doi: 10.3390/biom10010138 PMID: 31947704
  36. Nawasreh, M.M.; Alzyoud, E.I.; Al-Mazaydeh, Z.A.; Rammaha, M.S.; Yasin, S.R.; Tahtamouni, L.H. Biological activity and apoptotic signaling pathway of C11-functionalized cephalostatin 1 analogues. Steroids, 2020, 158, 108602. doi: 10.1016/j.steroids.2020.108602 PMID: 32092307
  37. Nawasreh, M. Stereoselective synthesis of bis-steroidal pyrazine derivatives. Nat. Prod. Res., 2007, 21(2), 91-99. doi: 10.1080/14786410500059243 PMID: 17380598
  38. Tahtamouni, L.H.; Nawasreh, M.M.; Al-Mazaydeh, Z.A.; Al-Khateeb, R.A.; Abdellatif, R.N.; Bawadi, R.M.; Bamburg, J.R.; Yasin, S.R. Cephalostatin 1 analogues activate apoptosis via the endoplasmic reticulum stress signaling pathway. Eur. J. Pharmacol., 2018, 818, 400-409. doi: 10.1016/j.ejphar.2017.11.025 PMID: 29154934
  39. Nawasreh, M.M. Novel Applications of Alkaline Metals in Cephalostatin Theme. 2023.
  40. Assessing national capacity for the prevention and control of noncommunicable diseases: report of the 2019 global survey. Geneva, World Health Organization, 2020.
  41. Debela, D.T.; Muzazu, S.G.Y.; Heraro, K.D.; Ndalama, M.T.; Mesele, B.W.; Haile, D.C.; Kitui, S.K.; Manyazewal, T. New approaches and procedures for cancer treatment: Current perspectives. SAGE Open Med., 2021, 9. doi: 10.1177/20503121211034366 PMID: 34408877
  42. DeVita, V.T., Jr; Chu, E. A history of cancer chemotherapy. Cancer Res., 2008, 68(21), 8643-8653. doi: 10.1158/0008-5472.CAN-07-6611 PMID: 18974103
  43. Bukowski, K.; Kciuk, M.; Kontek, R. Mechanisms of multidrug resistance in cancer chemotherapy. Int. J. Mol. Sci., 2020, 21(9), 3233. doi: 10.3390/ijms21093233 PMID: 32370233
  44. Hassan, O.M.;Razzak Mahmood, A.A.;Hamzah, A.H.; Tahtamouni, L.H.Design, synthesis, and molecular docking studies of 5-bromoindole-2-carboxylic acid hydrazone derivatives: In vitro anticancer and VEGFR-2 inhibitory effects. Chemistry Select, 2022, 7(46), e202203726. doi: 10.1002/slct.202203726
  45. Alsaad, H.; Kubba, A.; Tahtamouni, L.H.; Hamzah, A.H. Synthesis, docking study, and structure activity relationship of novel anti-tumor 1, 2, 4 triazole derivatives incorporating 2-(2, 3- dimethyl aminobenzoic acid) moiety. Pharmacia, 2022, 69(2), 415-428. doi: 10.3897/pharmacia.69.e83158
  46. Yaseen, Y.; Kubba, A.; Shihab, W.; Tahtamouni, L. Synthesis, docking study, and structure-activity relationship of novel niflumic acid derivatives acting as anticancer agents by inhibiting VEGFR or EGFR tyrosine kinase activities. Pharmacia, 2022, 69(3), 595-614. doi: 10.3897/pharmacia.69.e86504
  47. Singh, R.; Letai, A.; Sarosiek, K. Regulation of apoptosis in health and disease: The balancing act of BCL-2 family proteins. Nat. Rev. Mol. Cell Biol., 2019, 20(3), 175-193. doi: 10.1038/s41580-018-0089-8 PMID: 30655609
  48. Elmore, S. Apoptosis: A review of programmed cell death. Toxicol. Pathol., 2007, 35(4), 495-516. doi: 10.1080/01926230701320337 PMID: 17562483
  49. Dirsch, V.M.; Müller, I.M.; Eichhorst, S.T.; Pettit, G.R.; Kamano, Y.; Inoue, M.; Xu, J.P.; Ichihara, Y.; Wanner, G.; Vollmar, A.M. Cephalostatin 1 selectively triggers the release of Smac/DIABLO and subsequent apoptosis that is characterized by an increased density of the mitochondrial matrix. Cancer Res., 2003, 63(24), 8869-8876. PMID: 14695204
  50. Dirsch, V.M.; Vollmar, A.M. Cephalostatin 1-induced apoptosis in tumor cells. In: Application of Apoptosis to Cancer Treatment; Springer: Dordrecht, 2005. doi: 10.1007/1-4020-3302-8_9
  51. Liebezeit, G. Aquaculture of "non-food organisms" for natural substance production. Adv. Biochem. Eng. Biotechnol., 2005, 97, 1-28. doi: 10.1007/b135821 PMID: 16261804
  52. Lee, S.; LaCour, T.G.; Fuchs, P.L. Chemistry of trisdecacyclic pyrazine antineoplastics: The cephalostatins and ritterazines. Chem. Rev., 2009, 109(6), 2275-2314. doi: 10.1021/cr800365m PMID: 19438206
  53. Imperatore, C.; Aiello, A.; D’Aniello, F.; Senese, M.; Menna, M. Alkaloids from marine invertebrates as important leads for anticancer drugs discovery and development. Molecules, 2014, 19(12), 20391-20423. doi: 10.3390/molecules191220391 PMID: 25490431
  54. Rudy, A.; López-Antón, N.; Dirsch, V.M.; Vollmar, A.M. The cephalostatin way of apoptosis. J. Nat. Prod., 2008, 71(3), 482-486. doi: 10.1021/np070534e PMID: 18257532
  55. von Schwarzenberg, K.; Vollmar, A.M. Targeting apoptosis pathways by natural compounds in cancer: Marine compounds as lead structures and chemical tools for cancer therapy. Cancer Lett., 2013, 332(2), 295-303. doi: 10.1016/j.canlet.2010.07.004 PMID: 20673697
  56. Bahar, E.; Kim, J.Y.; Yoon, H. Chemotherapy resistance explained through endoplasmic reticulum stress-dependent signaling. Cancers, 2019, 11(3), 338. doi: 10.3390/cancers11030338 PMID: 30857233
  57. Sequist, L.V.; Waltman, B.A.; Dias-Santagata, D.; Digumarthy, S.; Turke, A.B.; Fidias, P.; Bergethon, K.; Shaw, A.T.; Gettinger, S.; Cosper, A.K.; Akhavanfard, S.; Heist, R.S.; Temel, J.; Christensen, J.G.; Wain, J.C.; Lynch, T.J.; Vernovsky, K.; Mark, E.J.; Lanuti, M.; Iafrate, A.J.; Mino-Kenudson, M.; Engelman, J.A. Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci. Transl. Med., 2011, 3(75), 75ra26. doi: 10.1126/scitranslmed.3002003 PMID: 21430269
  58. Yu, H.A.; Arcila, M.E.; Rekhtman, N.; Sima, C.S.; Zakowski, M.F.; Pao, W.; Kris, M.G.; Miller, V.A.; Ladanyi, M.; Riely, G.J. Analysis of tumor specimens at the time of acquired resistance to EGFR-TKI therapy in 155 patients with EGFR-mutant lung cancers. Clin. Cancer Res., 2013, 19(8), 2240-2247. doi: 10.1158/1078-0432.CCR-12-2246 PMID: 23470965
  59. Sicari, D.; Delaunay-Moisan, A.; Combettes, L. A guide to assessing endoplasmic reticulum homeostasis and stress in mammalian systems. FEBS J, 2019, 287(1), 27-42. doi: 10.1111/febs.15107
  60. Lin, Y.; Jiang, M.; Chen, W.; Zhao, T.; Wei, Y. Cancer and ER stress: Mutual crosstalk between autophagy, oxidative stress and inflammatory response. Biomed. Pharmacother., 2019, 118, 109249. doi: 10.1016/j.biopha.2019.109249 PMID: 31351428
  61. Avril, T.; Vauléon, E.; Chevet, E. Endoplasmic reticulum stress signaling and chemotherapy resistance in solid cancers. Oncogenesis, 2017, 6(8), e373. doi: 10.1038/oncsis.2017.72 PMID: 28846078
  62. Yamamuro, A.; Kishino, T.; Ohshima, Y.; Yoshioka, Y.; Kimura, T.; Kasai, A.; Maeda, S. Caspase-4 directly activates caspase-9 in endoplasmic reticulum stress-induced apoptosis in SH-SY5Y cells. J. Pharmacol. Sci., 2011, 115(2), 239-243. doi: 10.1254/jphs.10217SC
  63. Hu, P.; Han, Z.; Couvillon, A.D.; Exton, J.H. Critical role of endogenous Akt/IAPs and MEK1/ERK pathways in counteracting endoplasmic reticulum stress-induced cell death. J. Biol. Chem., 2004, 279(47), 49420-49429. doi: 10.1074/jbc.M407700200 PMID: 15339911
  64. Khaled, J.; Kopsida, M.; Lennernäs, H.; Heindryckx, F. Drug resistance and endoplasmic reticulum stress in hepatocellular carcinoma. Cells, 2022, 11(4), 632. doi: 10.3390/cells11040632 PMID: 35203283
  65. Oakes, S.A. Endoplasmic reticulum stress signaling in cancer cells. Am. J. Pathol., 2020, 190(5), 934-946. doi: 10.1016/j.ajpath.2020.01.010 PMID: 32112719
  66. Harrington, P.E.; Biswas, K.; Malwitz, D.; Tasker, A.S.; Mohr, C.; Andrews, K.L.; Dellamaggiore, K.; Kendall, R.; Beckmann, H.; Jaeckel, P.; Materna-Reichelt, S.; Allen, J.R.; Lipford, J.R. Unfolded protein response in cancer: IRE1α inhibition by selective kinase ligands does not impair tumor cell viability. ACS Med. Chem. Lett., 2015, 6(1), 68-72. doi: 10.1021/ml500315b PMID: 25589933
  67. Pytel, D.; Gao, Y.; Mackiewicz, K.; Katlinskaya, Y.V.; Staschke, K.A.; Paredes, M.C.G.; Yoshida, A.; Qie, S.; Zhang, G.; Chajewski, O.S.; Wu, L.; Majsterek, I.; Herlyn, M.; Fuchs, S.Y.; Diehl, J.A. PERK is a haploinsufficient tumor suppressor: Gene dose determines tumor-suppressive versus tumor promoting properties of PERK in melanoma. PLoS Genet., 2016, 12(12), e1006518. doi: 10.1371/journal.pgen.1006518 PMID: 27977682
  68. Wu, J.; Chen, S.; Liu, H.; Zhang, Z.; Ni, Z.; Chen, J.; Yang, Z.; Nie, Y.; Fan, D. Tunicamycin specifically aggravates ER stress and overcomes chemoresistance in multidrug-resistant gastric cancer cells by inhibiting N-glycosylation. J. Exp. Clin. Cancer Res., 2018, 37(1), 272. doi: 10.1186/s13046-018-0935-8 PMID: 30413206

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Bentham Science Publishers, 2024