PaSTe. Blockade of the Lipid Phenotype of Prostate Cancer as Metabolic Therapy: A Theoretical Proposal


Cite item

Full Text

Abstract

Background:Prostate cancer is the most frequently diagnosed malignancy in 112 countries and is the leading cause of death in eighteen. In addition to continuing research on prevention and early diagnosis, improving treatments and making them more affordable is imperative. In this sense, the therapeutic repurposing of low-cost and widely available drugs could reduce global mortality from this disease. The malignant metabolic phenotype is becoming increasingly important due to its therapeutic implications. Cancer generally is characterized by hyperactivation of glycolysis, glutaminolysis, and fatty acid synthesis. However, prostate cancer is particularly lipidic; it exhibits increased activity in the pathways for synthesizing fatty acids, cholesterol, and fatty acid oxidation (FAO).

Objective:Based on a literature review, we propose the PaSTe regimen (Pantoprazole, Simvastatin, Trimetazidine) as a metabolic therapy for prostate cancer. Pantoprazole and simvastatin inhibit the enzymes fatty acid synthase (FASN) and 3-hydroxy-3-methylglutaryl- coenzyme A reductase (HMGCR), therefore, blocking the synthesis of fatty acids and cholesterol, respectively. In contrast, trimetazidine inhibits the enzyme 3-β-Ketoacyl- CoA thiolase (3-KAT), an enzyme that catalyzes the oxidation of fatty acids (FAO). It is known that the pharmacological or genetic depletion of any of these enzymes has antitumor effects in prostatic cancer.

Results:Based on this information, we hypothesize that the PaSTe regimen will have increased antitumor effects and may impede the metabolic reprogramming shift. Existing knowledge shows that enzyme inhibition occurs at molar concentrations achieved in plasma at standard doses of these drugs.

Conclusion:We conclude that this regimen deserves to be preclinically evaluated because of its clinical potential for the treatment of prostate cancer.

About the authors

Adriana Romo-Perez

Instituto de Química, Universidad Nacional Autónoma de México

Email: info@benthamscience.net

Guadalupe Domínguez-Gómez

Subdirección de Investigación Básica, Instituto Nacional de Cancerologia

Email: info@benthamscience.net

Alma Chávez-Blanco

Subdirección de Investigación Básica, Instituto Nacional de Cancerologia

Email: info@benthamscience.net

Aurora González-Fierro

Subdirección de Investigación Básica, Instituto Nacional de Cancerologia

Email: info@benthamscience.net

José Correa-Basurto

Escuela Superior de Medicina,, Instituto Politécnico Nacional

Email: info@benthamscience.net

Alfonso Dueñas-González

Subdirección de Investigación Básica, Instituto Nacional de Cancerologia

Author for correspondence.
Email: info@benthamscience.net

References

  1. Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249. doi: 10.3322/caac.21660 PMID: 33538338
  2. Gandaglia, G.; Leni, R.; Bray, F.; Fleshner, N.; Freedland, S.J.; Kibel, A.; Stattin, P.; Van Poppel, H.; La Vecchia, C. Epidemiology and prevention of prostate cancer. Eur Urol Oncol., 2021, 4, 877-892. doi: 10.1016/j.euo.2021.09.006
  3. Tabayoyong, W.; Abouassaly, R. Prostate cancer screening and the associated controversy. Surg. Clin. North Am., 2015, 95(5), 1023-1039. doi: 10.1016/j.suc.2015.05.001 PMID: 26315521
  4. Prostate Cancer Treatment (PDQ®): Health Professional Version In: PDQ Cancer Information Summaries; National Cancer Institute (US): Bethesda (MD), 2002.
  5. Prager, G.W.; Braga, S.; Bystricky, B.; Qvortrup, C.; Criscitiello, C.; Esin, E.; Sonke, G.S.; Martínez, G.; Frenel, J.S.; Karamouzis, M.; Strijbos, M.; Yazici, O.; Bossi, P.; Banerjee, S.; Troiani, T.; Eniu, A.; Ciardiello, F.; Tabernero, J.; Zielinski, C.C.; Casali, P.G.; Cardoso, F.; Douillard, J.Y.; Jezdic, S.; McGregor, K.; Bricalli, G.; Vyas, M.; Ilbawi, A. Global cancer control: Responding to the growing burden, rising costs and inequalities in access. ESMO Open, 2018, 3(2), e000285. doi: 10.1136/esmoopen-2017-000285 PMID: 29464109
  6. Yousuf, Z.S. Financial toxicity of cancer care: It’s time to intervene. J. Natl. Cancer Inst., 2016, 108(5), djv370. doi: 10.1093/jnci/djv370 PMID: 26657334
  7. Ramsey, S.D.; Bansal, A.; Fedorenko, C.R.; Blough, D.K.; Overstreet, K.A.; Shankaran, V.; Newcomb, P. Financial insolvency as a risk factor for early mortality among patients with cancer. J. Clin. Oncol., 2016, 34(9), 980-986. doi: 10.1200/JCO.2015.64.6620 PMID: 26811521
  8. Jayadevappa, R.; Schwartz, J.S.; Chhatre, S.; Gallo, J.J.; Wein, A.J.; Malkowicz, S.B. The burden of out-of-pocket and indirect costs of prostate cancer. Prostate, 2010, 70(11), 1255-1264. doi: 10.1002/pros.21161 PMID: 20658653
  9. Gordon, L.G.; Walker, S.M.; Mervin, M.C.; Lowe, A.; Smith, D.P.; Gardiner, R.A.; Chambers, S.K. Financial toxicity: A potential side effect of prostate cancer treatment among Australian men. Eur. J. Cancer Care, 2017, 26(1), e12392. doi: 10.1111/ecc.12392 PMID: 26423576
  10. Housser, E.; Mathews, M.; LeMessurier, J.; Young, S.; Hawboldt, J.; West, R. Responses by breast and prostate cancer patients to out-of-pocket costs in Newfoundland and Labrador. Curr. Oncol., 2013, 20(3), 158-165. doi: 10.3747/co.20.1197 PMID: 23737684
  11. Koskinen, J.P.; Färkkilä, N.; Sintonen, H.; Saarto, T.; Taari, K.; Roine, R.P. The association of financial difficulties and out-of-pocket payments with health-related quality of life among breast, prostate and colorectal cancer patients. Acta Oncol., 2019, 58(7), 1062-1068. doi: 10.1080/0284186X.2019.1592218 PMID: 30943813
  12. Xu, W.Y.; Retchin, S.M.; Seiber, E.E.; Li, Y. Income-based disparities in financial burdens of medical spending under the affordable care act in families with individuals having chronic conditions. Inquiry, 2019, 56, 0046958019871815. doi: 10.1177/0046958019871815 PMID: 31455121
  13. Howard, D.H.; Quek, R.G.W.; Fox, K.M.; Arondekar, B.; Filson, C.P. The value of new drugs for advanced prostate cancer. Cancer, 2021, 127(18), 3457-3465. doi: 10.1002/cncr.33662 PMID: 34062620
  14. E.O.-O. and M. Roser. OurWorldInData.org; Financ Healthc, 2017.
  15. Allemani, C.; Matsuda, T.; Di Carlo, V.; Harewood, R.; Matz, M.; Nikšić, M.; Bonaventure, A.; Valkov, M.; Johnson, C.J.; Estève, J.; Ogunbiyi, O.J.; Azevedo e Silva, G.; Chen, W.Q.; Eser, S.; Engholm, G.; Stiller, C.A.; Monnereau, A.; Woods, R.R.; Visser, O.; Lim, G.H.; Aitken, J.; Weir, H.K.; Coleman, M.P.; Bouzbid, S.; Hamdi-Chérif, M.; Zaidi, Z.; Meguenni, K.; Regagba, D.; Bayo, S.; Cheick Bougadari, T.; Manraj, S.S.; Bendahhou, K.; Fabowale, A.; Bradshaw, D.; Somdyala, N.I.M.; Kumcher, I.; Moreno, F.; Calabrano, G.H.; Espinola, S.B.; Carballo, Q.B.; Fita, R.; Diumenjo, M.C.; Laspada, W.D.; Ibañez, S.G.; Lima, C.A.; De Souza, P.C.F.; Del Pino, K.; Laporte, C.; Curado, M.P.; de Oliveira, J.C.; Veneziano, C.L.A.; Veneziano, D.B.; Latorre, M.R.D.O.; Tanaka, L.F.; Rebelo, M.S.; Santos, M.O.; Galaz, J.C.; Aparicio Aravena, M.; Sanhueza Monsalve, J.; Herrmann, D.A.; Vargas, S.; Herrera, V.M.; Uribe, C.J.; Bravo, L.E.; Garcia, L.S.; Arias-Ortiz, N.E.; Morantes, D.; Jurado, D.M.; Yépez Chamorro, M.C.; Delgado, S.; Ramirez, M.; Galán Alvarez, Y.H.; Torres, P.; Martínez-Reyes, F.; Jaramillo, L.; Quinto, R.; Castillo, J.; Mendoza, M.; Cueva, P.; Yépez, J.G.; Bhakkan, B.; Deloumeaux, J.; Joachim, C.; Macni, J.; Carrillo, R.; Shalkow Klincovstein, J.; Rivera Gomez, R.; Poquioma, E.; Tortolero-Luna, G.; Zavala, D.; Alonso, R.; Barrios, E.; Eckstrand, A.; Nikiforuk, C.; Noonan, G.; Turner, D.; Kumar, E.; Zhang, B.; McCrate, F.R.; Ryan, S.; MacIntyre, M.; Saint-Jacques, N.; Nishri, D.E.; McClure, C.A.; Vriends, K.A.; Kozie, S.; Stuart-Panko, H.; Freeman, T.; George, J.T.; Brockhouse, J.T.; O’Brien, D.K.; Holt, A.; Almon, L.; Kwong, S.; Morris, C.; Rycroft, R.; Mueller, L.; Phillips, C.E.; Brown, H.; Cromartie, B.; Schwartz, A.G.; Vigneau, F.; Levin, G.M.; Wohler, B.; Bayakly, R.; Ward, K.C.; Gomez, S.L.; McKinley, M.; Cress, R.; Green, M.D.; Miyagi, K.; Ruppert, L.P.; Lynch, C.F.; Huang, B.; Tucker, T.C.; Deapen, D.; Liu, L.; Hsieh, M.C.; Wu, X.C.; Schwenn, M.; Gershman, S.T.; Knowlton, R.C.; Alverson, G.; Copeland, G.E.; Bushhouse, S.; Rogers, D.B.; Jackson-Thompson, J.; Lemons, D.; Zimmerman, H.J.; Hood, M.; Roberts-Johnson, J.; Rees, J.R.; Riddle, B.; Pawlish, K.S.; Stroup, A.; Key, C.; Wiggins, C.; Kahn, A.R.; Schymura, M.J.; Radhakrishnan, S.; Rao, C.; Giljahn, L.K.; Slocumb, R.M.; Espinoza, R.E.; Khan, F.; Aird, K.G.; Beran, T.; Rubertone, J.J.; Slack, S.J.; Garcia, L.; Rousseau, D.L.; Janes, T.A.; Schwartz, S.M.; Bolick, S.W.; Hurley, D.M.; Whiteside, M.A.; Miller-Gianturco, P.; Williams, M.A.; Herget, K.; Sweeney, C.; Johnson, A.T.; Keitheri Cheteri, M.B.; Migliore Santiago, P.; Blankenship, S.E.; Farley, S.; Borchers, R.; Malicki, R.; Espinoza, J.R.; Grandpre, J.; Wilson, R.; Edwards, B.K.; Mariotto, A.; Lei, Y.; Wang, N.; Chen, J.S.; Zhou, Y.; He, Y.T.; Song, G.H.; Gu, X.P.; Mei, D.; Mu, H.J.; Ge, H.M.; Wu, T.H.; Li, Y.Y.; Zhao, D.L.; Jin, F.; Zhang, J.H.; Zhu, F.D.; Junhua, Q.; Yang, Y.L.; Jiang, C.X.; Biao, W.; Wang, J.; Li, Q.L.; Yi, H.; Zhou, X.; Dong, J.; Li, W.; Fu, F.X.; Liu, S.Z.; Chen, J.G.; Zhu, J.; Li, Y.H.; Lu, Y.Q.; Fan, M.; Huang, S.Q.; Guo, G.P.; Zhaolai, H.; Wei, K.; Zeng, H.; Demetriou, A.V.; Mang, W.K.; Ngan, K.C.; Kataki, A.C.; Krishnatreya, M.; Jayalekshmi, P.A.; Sebastian, P.; Nandakumar, A.; Malekzadeh, R.; Roshandel, G.; Keinan-Boker, L.; Silverman, B.G.; Ito, H.; Nakagawa, H.; Sato, M.; Tobori, F.; Nakata, I.; Teramoto, N.; Hattori, M.; Kaizaki, Y.; Moki, F.; Sugiyama, H.; Utada, M.; Nishimura, M.; Yoshida, K.; Kurosawa, K.; Nemoto, Y.; Narimatsu, H.; Sakaguchi, M.; Kanemura, S.; Naito, M.; Narisawa, R.; Miyashiro, I.; Nakata, K.; Sato, S.; Yoshii, M.; Oki, I.; Fukushima, N.; Shibata, A.; Iwasa, K.; Ono, C.; Nimri, O.; Jung, K.W.; Won, Y.J.; Alawadhi, E.; Elbasmi, A.; Ab Manan, A.; Adam, F.; Sanjaajmats, E.; Tudev, U.; Ochir, C.; Al Khater, A.M.; El Mistiri, M.M.; Teo, Y.Y.; Chiang, C.J.; Lee, W.C.; Buasom, R.; Sangrajrang, S.; Kamsa-ard, S.; Wiangnon, S.; Daoprasert, K.; Pongnikorn, D.; Leklob, A.; Sangkitipaiboon, S.; Geater, S.L.; Sriplung, H.; Ceylan, O.; Kög, I.; Dirican, O.; Köse, T.; Gurbuz, T.; Karaşahin, F.E.; Turhan, D.; Aktaş, U.; Halat, Y.; Yakut, C.I.; Altinisik, M.; Cavusoglu, Y.; Türkköylü, A.; Üçüncü, N.; Hackl, M.; Zborovskaya, A.A.; Aleinikova, O.V.; Henau, K.; Van Eycken, L.; Valerianova, Z.; Yordanova, M.R.; Šekerija, M.; Dušek, L.; Zvolský, M.; Storm, H.; Innos, K.; Mägi, M.; Malila, N.; Seppä, K.; Jégu, J.; Velten, M.; Cornet, E.; Troussard, X.; Bouvier, A.M.; Guizard, A.V.; Bouvier, V.; Launoy, G.; Arveux, P.; Maynadié, M.; Mounier, M.; Woronoff, A.S.; Daoulas, M.; Robaszkiewicz, M.; Clavel, J.; Goujon, S.; Lacour, B.; Baldi, I.; Pouchieu, C.; Amadeo, B.; Coureau, G.; Orazio, S.; Preux, P.M.; Rharbaoui, F.; Marrer, E.; Trétarre, B.; Colonna, M.; Delafosse, P.; Ligier, K.; Plouvier, S.; Cowppli-Bony, A.; Molinié, F.; Bara, S.; Ganry, O.; Lapôtre-Ledoux, B.; Grosclaude, P.; Bossard, N.; Uhry, Z.; Bray, F.; Piñeros, M.; Stabenow, R.; Wilsdorf-Köhler, H.; Eberle, A.; Luttmann, S.; Löhden, I.; Nennecke, A.L.; Kieschke, J.; Sirri, E.; Emrich, K.; Zeissig, S.R.; Holleczek, B.; Eisemann, N.; Katalinic, A.; Asquez, R.A.; Kumar, V.; Petridou, E.; Ólafsdóttir, E.J.; Tryggvadóttir, L.; Clough-Gorr, K.; Walsh, P.M.; Sundseth, H.; Mazzoleni, G.; Vittadello, F.; Coviello, E.; Cuccaro, F.; Galasso, R.; Sampietro, G.; Giacomin, A.; Magoni, M.; Ardizzone, A.; D’Argenzio, A.; Castaing, M.; Grosso, G.; Lavecchia, A.M.; Sutera Sardo, A.; Gola, G.; Gatti, L.; Ricci, P.; Ferretti, S.; Serraino, D.; Zucchetto, A.; Celesia, M.V.; Filiberti, R.A.; Pannozzo, F.; Melcarne, A.; Quarta, F.; Russo, A.G.; Carrozzi, G.; Cirilli, C.; Cavalieri d’Oro, L.; Rognoni, M.; Fusco, M.; Vitale, M.F.; Usala, M.; Cusimano, R.; Mazzucco, W.; Michiara, M.; Sgargi, P.; Boschetti, L.; Borciani, E.; Seghini, P.; Maule, M.M.; Merletti, F.; Tumino, R.; Mancuso, P.; Vicentini, M.; Cassetti, T.; Sassatelli, R.; Falcini, F.; Giorgetti, S.; Caiazzo, A.L.; Cavallo, R.; Cesaraccio, R.; Pirino, D.R.; Contrino, M.L.; Tisano, F.; Fanetti, A.C.; Maspero, S.; Carone, S.; Mincuzzi, A.; Candela, G.; Scuderi, T.; Gentilini, M.A.; Piffer, S.; Rosso, S.; Barchielli, A.; Caldarella, A.; Bianconi, F.; Stracci, F.; Contiero, P.; Tagliabue, G.; Rugge, M.; Zorzi, M.; Beggiato, S.; Brustolin, A.; Berrino, F.; Gatta, G.; Sant, M.; Buzzoni, C.; Mangone, L.; Capocaccia, R.; De Angelis, R.; Zanetti, R.; Maurina, A.; Pildava, S.; Lipunova, N.; Vincerževskiené, I.; Agius, D.; Calleja, N.; Siesling, S.; Larønningen, S.; Møller, B.; Dyzmann-Sroka, A.; Trojanowski, M.; Góźdź, S.; Mężyk, R.; Mierzwa, T.; Molong, L.; Rachtan, J.; Szewczyk, S.; Błaszczyk, J.; Kępska, K.; Kościańska, B.; Tarocińska, K.; Zwierko, M.; Drosik, K.; Maksimowicz, K.M.; Purwin-Porowska, E.; Reca, E.; Wójcik-Tomaszewska, J.; Tukiendorf, A.; Grądalska-Lampart, M.; Radziszewska, A.U.; Gos, A.; Talerczyk, M.; Wyborska, M.; Didkowska, J.A.; Wojciechowska, U.; Bielska-Lasota, M.; Forjaz de Lacerda, G.; Rego, R.A.; Bastos, J.; Silva, M.A.; Antunes, L.; Laranja Pontes, J.; Mayer-da-Silva, A.; Miranda, A.; Blaga, L.M.; Coza, D.; Gusenkova, L.; Lazarevich, O.; Prudnikova, O.; Vjushkov, D.M.; Egorova, A.G.; Orlov, A.E.; Kudyakov, L.A.; Pikalova, L.V.; Adamcik, J.; Safaei Diba, C.; Primic-Žakelj, M.; Zadnik, V.; Larrañaga, N.; Lopez de Munain, A.; Herrera, A.A.; Redondas, R.; Marcos-Gragera, R.; Vilardell Gil, M.L.; Molina, E.; Sánchez Perez, M.J.; Franch Sureda, P.; Ramos Montserrat, M.; Chirlaque, M.D.; Navarro, C.; Ardanaz, E.E.; Guevara, M.M.; Fernández-Delgado, R.; Peris-Bonet, R.; Carulla, M.; Galceran, J.; Alberich, C.; Vicente-Raneda, M.; Khan, S.; Pettersson, D.; Dickman, P.; Avelina, I.; Staehelin, K.; Camey, B.; Bouchardy, C.; Schaffar, R.; Frick, H.; Herrmann, C.; Bulliard, J.L.; Maspoli-Conconi, M.; Kuehni, C.E.; Redmond, S.M.; Bordoni, A.; Ortelli, L.; Chiolero, A.; Konzelmann, I.; Matthes, K.L.; Rohrmann, S.; Broggio, J.; Rashbass, J.; Fitzpatrick, D.; Gavin, A.; Clark, D.I.; Deas, A.J.; Huws, D.W.; White, C.; Montel, L.; Rachet, B.; Turculet, A.D.; Stephens, R.; Chalker, E.; Phung, H.; Walton, R.; You, H.; Guthridge, S.; Johnson, F.; Gordon, P.; D’Onise, K.; Priest, K.; Stokes, B.C.; Venn, A.; Farrugia, H.; Thursfield, V.; Dowling, J.; Currow, D.; Hendrix, J.; Lewis, C. Global surveillance of trends in cancer survival 2000–14 (CONCORD-3): analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries. Lancet, 2018, 391(10125), 1023-1075. doi: 10.1016/S0140-6736(17)33326-3 PMID: 29395269
  16. Gonzalez-Fierro, A.; Dueñas-González, A. Drug repurposing for cancer therapy, easier said than done. Semin. Cancer Biol., 2021, 68, 123-131. doi: 10.1016/j.semcancer.2019.12.012 PMID: 31877340
  17. Tallman, M.; Lo-Coco, F.; Barnes, G.; Kruse, M.; Wildner, R.; Martin, M.; Mueller, U.; Tang, B. Cost-effectiveness analysis of treating acute promyelocytic leukemia patients with arsenic trioxide and retinoic acid in the United States. Clin. Lymphoma Myeloma Leuk, 2015, 15(2015), 771-777. doi: 10.1016/j.clml.2015.07.634
  18. Zhang, Y.; Yang, J.M. Altered energy metabolism in cancer. Cancer Biol. Ther., 2013, 14(2), 81-89. doi: 10.4161/cbt.22958 PMID: 23192270
  19. Pascale, R.M.; Calvisi, D.F.; Simile, M.M.; Feo, C.F.; Feo, F. The warburg effect 97 years after its discovery. Cancers, 2020, 12(10), 2819. doi: 10.3390/cancers12102819 PMID: 33008042
  20. Seyfried, T.N.; Arismendi-Morillo, G.; Mukherjee, P.; Chinopoulos, C. On the origin of ATP synthesis in cancer. iScience, 2020, 23(11), 101761. doi: 10.1016/j.isci.2020.101761 PMID: 33251492
  21. de la Cruz-López, K.G.; Castro-Muñoz, L.J.; Reyes-Hernández, D.O.; García-Carrancá, A.; Manzo-Merino, J. Lactate in the regulation of tumor microenvironment and therapeutic approaches. Front. Oncol., 2019, 9, 1143. doi: 10.3389/fonc.2019.01143 PMID: 31737570
  22. Kodama, M.; Nakayama, K.I. A second Warburg-like effect in cancer metabolism: The metabolic shift of glutamine-derived nitrogen. BioEssays, 2020, 42(12), 2000169. doi: 10.1002/bies.202000169 PMID: 33165972
  23. Alfarouk, K.O.; Ahmed, S.B.M.; Elliott, R.L.; Benoit, A.; Alqahtani, S.S.; Ibrahim, M.E.; Bashir, A.H.H.; Alhoufie, S.T.S.; Elhassan, G.O.; Wales, C.C.; Schwartz, L.H.; Ali, H.S.; Ahmed, A.; Forde, P.F.; Devesa, J.; Cardone, R.A.; Fais, S.; Harguindey, S.; Reshkin, S.J. The pentose phosphate pathway dynamics in cancer and its dependency on intracellular pH. Metabolites, 2020, 10(7), 285. doi: 10.3390/metabo10070285 PMID: 32664469
  24. Matés, J.M.; Campos-Sandoval, J.A.; de los Santos-Jiménez, J.; Márquez, J. Glutaminases regulate glutathione and oxidative stress in cancer. Arch. Toxicol., 2020, 94(8), 2603-2623. doi: 10.1007/s00204-020-02838-8 PMID: 32681190
  25. Yoo, H.C.; Yu, Y.C.; Sung, Y.; Han, J.M. Glutamine reliance in cell metabolism. Exp. Mol. Med., 2020, 52(9), 1496-1516. doi: 10.1038/s12276-020-00504-8 PMID: 32943735
  26. Zhu, L.; Ploessl, K.; Zhou, R.; Mankoff, D.; Kung, H.F. Metabolic imaging of glutamine in cancer. J. Nucl. Med., 2017, 58(4), 533-537. doi: 10.2967/jnumed.116.182345 PMID: 28232608
  27. Medes, G.; Thomas, A.; Weinhouse, S. Metabolism of neoplastic tissue. IV. A study of lipid synthesis in neoplastic tissue slices in vitro. Cancer Res., 1953, 13(1), 27-29. PMID: 13032945
  28. Pizer, E.S.; Kurman, R.J.; Pasternack, G.R.; Kuhajda, F.P. Expression of fatty acid synthase is closely linked to proliferation and stromal decidualization in cycling endometrium. Int. J. Gynecol. Pathol., 1997, 16(1), 45-51. doi: 10.1097/00004347-199701000-00008 PMID: 8986532
  29. Maningat, P.D.; Sen, P.; Rijnkels, M.; Sunehag, A.L.; Hadsell, D.L.; Bray, M.; Haymond, M.W. Gene expression in the human mammary epithelium during lactation: the milk fat globule transcriptome. Physiol. Genomics, 2009, 37(1), 12-22. doi: 10.1152/physiolgenomics.90341.2008 PMID: 19018045
  30. Nagarajan, S.R.; Butler, L.M.; Hoy, A.J. The diversity and breadth of cancer cell fatty acid metabolism. Cancer Metab., 2021, 9(1), 2. doi: 10.1186/s40170-020-00237-2 PMID: 33413672
  31. Balaban, S.; Nassar, Z.D.; Zhang, A.Y.; Hosseini-Beheshti, E.; Centenera, M.M.; Schreuder, M.; Lin, H.M.; Aishah, A.; Varney, B.; Liu-Fu, F.; Lee, L.S.; Nagarajan, S.R.; Shearer, R.F.; Hardie, R.A.; Raftopulos, N.L.; Kakani, M.S.; Saunders, D.N.; Holst, J.; Horvath, L.G.; Butler, L.M.; Hoy, A.J. Extracellular fatty acids are the major contributor to lipid synthesis in prostate cancer. Mol. Cancer Res., 2019, 17(4), 949-962. doi: 10.1158/1541-7786.MCR-18-0347 PMID: 30647103
  32. Vance, D.V.E. Biochemistry of Lipids, Lipoproteins and Membranes, 4th ed.; , 2022.
  33. Guerra, B.; Recio, C.; Aranda-Tavío, H.; Guerra-Rodríguez, M.; García-Castellano, J.M.; Fernández-Pérez, L. The mevalonate pathway, a metabolic target in cancer therapy. Front Oncol., 2021, 11, 626971. doi: 10.3389/fonc.2021.626971
  34. Göbel, A.; Rauner, M.; Hofbauer, L.C.; Rachner, T.D. Cholesterol and beyond - The role of the mevalonate pathway in cancer biology. Biochim Biophys Acta - Rev Cancer., 2020, 1873(2020), 188351. doi: 10.1016/j.bbcan.2020.188351
  35. De Oliveira, M.P.; Liesa, M. The role of mitochondrial fat oxidation in cancer cell proliferation and survival. Cells, 2020, 9(2020), 2600. doi: 10.3390/cells9122600
  36. Qu, Q.; Zeng, F.; Liu, X.; Wang, Q.J.; Deng, F. Fatty acid oxidation and carnitine palmitoyltransferase I: Emerging therapeutic targets in cancer. Cell Death Dis., 2016, 7(5), e2226-e2226. doi: 10.1038/cddis.2016.132 PMID: 27195673
  37. Carracedo, A.; Cantley, L.C.; Pandolfi, P.P. Cancer metabolism: Fatty acid oxidation in the limelight. Nat. Rev. Cancer, 2013, 13(4), 227-232. doi: 10.1038/nrc3483 PMID: 23446547
  38. Kwee, S.A.; Lim, J. Metabolic positron emission tomography imaging of cancer: Pairing lipid metabolism with glycolysis. World J. Radiol., 2016, 8(11), 851-856. doi: 10.4329/wjr.v8.i11.851 PMID: 27928466
  39. Menendez, J.A.; Lupu, R. Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat. Rev. Cancer, 2007, 7(10), 763-777. doi: 10.1038/nrc2222 PMID: 17882277
  40. Swinnen, J.V.; Brusselmans, K.; Verhoeven, G. Increased lipogenesis in cancer cells: New players, novel targets. Curr. Opin. Clin. Nutr. Metab. Care, 2006, 9(4), 358-365. doi: 10.1097/01.mco.0000232894.28674.30 PMID: 16778563
  41. Labbé, D.P.; Zadra, G.; Yang, M.; Reyes, J.M.; Lin, C.Y.; Cacciatore, S.; Ebot, E.M.; Creech, A.L.; Giunchi, F.; Fiorentino, M.; Elfandy, H.; Syamala, S.; Karoly, E.D.; Alshalalfa, M.; Erho, N.; Ross, A.; Schaeffer, E.M.; Gibb, E.A.; Takhar, M.; Den, R.B.; Lehrer, J.; Karnes, R.J.; Freedland, S.J.; Davicioni, E.; Spratt, D.E.; Ellis, L.; Jaffe, J.D.; DʼAmico, A.V.; Kantoff, P.W.; Bradner, J.E.; Mucci, L.A.; Chavarro, J.E.; Loda, M.; Brown, M. High-fat diet fuels prostate cancer progression by rewiring the metabolome and amplifying the MYC program. Nat. Commun., 2019, 10(1), 4358. doi: 10.1038/s41467-019-12298-z PMID: 31554818
  42. Purcell, S.A.; Oliveira, C.L.P.; Mackenzie, M.; Robson, P.; Lewis, J.; Prado, C.M. Body composition and prostate cancer risk: A systematic review of observational studies. Adv. Nutr., 2021. doi: 10.1093/advances/nmab153 PMID: 34918023
  43. Van Blarigan, E.L.; Kenfield, S.A.; Yang, M.; Sesso, H.D.; Ma, J.; Stampfer, M.J.; Chan, J.M.; Chavarro, J.E. Fat intake after prostate cancer diagnosis and mortality in the physicians’ health study. Cancer Causes Control, 2015, 26(8), 1117-1126. doi: 10.1007/s10552-015-0606-4 PMID: 26047644
  44. Kuhajda, F.P.; Jenner, K.; Wood, F.D.; Hennigar, R.A.; Jacobs, L.B.; Dick, J.D.; Pasternack, G.R. Fatty acid synthesis: A potential selective target for antineoplastic therapy. Proc. Natl. Acad. Sci., 1994, 91(14), 6379-6383. doi: 10.1073/pnas.91.14.6379 PMID: 8022791
  45. Fhu, C.W.; Ali, A. Fatty acid synthase: An emerging target in cancer. Mol, 2020, 25(2020), 3935. doi: 10.3390/molecules25173935
  46. Fiorentino, M.; Zadra, G.; Palescandolo, E.; Fedele, G.; Bailey, D.; Fiore, C.; Nguyen, P.L.; Migita, T.; Zamponi, R.; Di Vizio, D.; Priolo, C.; Sharma, C.; Xie, W.; Hemler, M.E.; Mucci, L.; Giovannucci, E.; Finn, S.; Loda, M. Overexpression of fatty acid synthase is associated with palmitoylation of Wnt1 and cytoplasmic stabilization of β- catenin in prostate cancer. Lab. Invest., 2008, 88(12), 1340-1348. doi: 10.1038/labinvest.2008.97 PMID: 18838960
  47. Migita, T.; Ruiz, S.; Fornari, A.; Fiorentino, M.; Priolo, C.; Zadra, G.; Inazuka, F.; Grisanzio, C.; Palescandolo, E.; Shin, E.; Fiore, C.; Xie, W.; Kung, A.L.; Febbo, P.G.; Subramanian, A.; Mucci, L.; Ma, J.; Signoretti, S.; Stampfer, M.; Hahn, W.C.; Finn, S.; Loda, M. Fatty acid synthase: A metabolic enzyme and candidate oncogene in prostate cancer. J. Natl. Cancer Inst., 2009, 101(7), 519-532. doi: 10.1093/jnci/djp030 PMID: 19318631
  48. Hsieh, A.C.; Small, E.J.; Ryan, C.J. Androgen-response elements in hormone-refractory prostate cancer: Implications for treatment development. Lancet Oncol., 2007, 8(10), 933-939. doi: 10.1016/S1470-2045(07)70316-9 PMID: 17913662
  49. Shah, U.; Dhir, R.; Gollin, S.; Chandran, U.; Lewis, D.; Acquafondata, M.; Pflug, B. Fatty acid synthase gene overexpression and copy number gain in prostate adenocarcinoma. Hum. Pathol., 2006, 37(4), 401-409. doi: 10.1016/j.humpath.2005.11.022
  50. Antonarakis, E.S.; Armstrong, A.J.; Dehm, S.M.; Luo, J. Androgen receptor variant-driven prostate cancer: clinical implications and therapeutic targeting. Prostate Cancer Prostatic Dis., 2016, 19(3), 231-241. doi: 10.1038/pcan.2016.17 PMID: 27184811
  51. Ettinger, S.L.; Sobel, R.; Whitmore, T.G.; Akbari, M.; Bradley, D.R.; Gleave, M.E.; Nelson, C.C. Dysregulation of sterol response element-binding proteins and downstream effectors in prostate cancer during progression to androgen independence. Cancer Res., 2004, 64(6), 2212-2221. doi: 10.1158/0008-5472.CAN-2148-2 PMID: 15026365
  52. Chen, M.; Zhang, J.; Sampieri, K.; Clohessy, J.G.; Mendez, L.; Gonzalez-Billalabeitia, E.; Liu, X.S.; Lee, Y.R.; Fung, J.; Katon, J.M.; Menon, A.V.; Webster, K.A.; Ng, C.; Palumbieri, M.D.; Diolombi, M.S.; Breitkopf, S.B.; Teruya-Feldstein, J.; Signoretti, S.; Bronson, R.T.; Asara, J.M.; Castillo-Martin, M.; Cordon-Cardo, C.; Pandolfi, P.P. An aberrant SREBP-dependent lipogenic program promotes metastatic prostate cancer. Nat. Genet., 2018, 50(2), 206-218. doi: 10.1038/s41588-017-0027-2 PMID: 29335545
  53. Zadra, G.; Photopoulos, C.; Loda, M. The fat side of prostate cancer. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2013, 1831(10), 1518-1532. doi: 10.1016/j.bbalip.2013.03.010 PMID: 23562839
  54. Wang, J.; Li, Y. CD36 tango in cancer: Signaling pathways and functions. Theranostics, 2019, 9(17), 4893-4908. doi: 10.7150/thno.36037 PMID: 31410189
  55. Amiri, M.; Yousefnia, S.; Seyed Forootan, F.; Peymani, M.; Ghaedi, K.; Nasr Esfahani, M.H. Diverse roles of fatty acid binding proteins (FABPs) in development and pathogenesis of cancers. Gene, 2018, 676, 171-183. doi: 10.1016/j.gene.2018.07.035 PMID: 30021130
  56. Anderson, C.M.; Stahl, A. SLC27 fatty acid transport proteins. Mol. Aspects Med., 2013, 34(2-3), 516-528. doi: 10.1016/j.mam.2012.07.010 PMID: 23506886
  57. Liu, Y.; Zuckier, L.S.; Ghesani, N.V. Dominant uptake of fatty acid over glucose by prostate cells: A potential new diagnostic and therapeutic approach. Anticancer Res., 2010, 30(2), 369-374. PMID: 20332441
  58. Tang, N-T.; D Snook, R.; Brown, M.D.; Haines, B.A.; Ridley, A.; Gardner, P.; Denbigh, J.L. Fatty-acid uptake in prostate cancer cells using dynamic microfluidic raman technology. Molecules, 2020, 25(7), 1652. doi: 10.3390/molecules25071652 PMID: 32260207
  59. Tousignant, K.D.; Rockstroh, A.; Taherian Fard, A.; Lehman, M.L.; Wang, C.; McPherson, S.J.; Philp, L.K.; Bartonicek, N.; Dinger, M.E.; Nelson, C.C.; Sadowski, M.C. Lipid uptake is an androgen-enhanced lipid supply pathway associated with prostate cancer disease progression and bone metastasis. Mol Cancer Res., 2019, 17(2019), 1166-1179. doi: 10.1158/1541-7786.MCR-18-1147
  60. Watt, M.J.; Clark, A.K.; Selth, L.A.; Haynes, V.R.; Lister, N.; Rebello, R.; Porter, L.H.; Niranjan, B.; Whitby, S.T.; Lo, J.; Huang, C.; Schittenhelm, R.B.; Anderson, K.E.; Furic, L.; Wijayaratne, P.R.; Matzaris, M.; Montgomery, M.K.; Papargiris, M.; Norden, S.; Febbraio, M.; Risbridger, G.P.; Frydenberg, M.; Nomura, D.K.; Taylor, R.A. Suppressing fatty acid uptake has therapeutic effects in preclinical models of prostate cancer. Sci. Transl. Med., 2019, 11(478), eaau5758. doi: 10.1126/scitranslmed.aau5758 PMID: 30728288
  61. Butler, L.M.; Perone, Y.; Dehairs, J.; Lupien, L.E.; de Laat, V.; Talebi, A.; Loda, M.; Kinlaw, W.B.; Swinnen, J.V. Lipids and cancer: Emerging roles in pathogenesis, diagnosis and therapeutic intervention. Adv. Drug Deliv. Rev., 2020, 159, 245-293. doi: 10.1016/j.addr.2020.07.013 PMID: 32711004
  62. Brohée, L.; Demine, S.; Willems, J.; Arnould, T.; Colige, A.C.; Deroanne, C.F. Lipin-1 regulates cancer cell phenotype and is a potential target to potentiate rapamycin treatment. Oncotarget, 2015, 6(13), 11264-11280. doi: 10.18632/oncotarget.3595 PMID: 25834103
  63. Challapalli, A.; Trousil, S.; Hazell, S.; Kozlowski, K.; Gudi, M.; Aboagye, E.O.; Mangar, S. Exploiting altered patterns of choline kinase-alpha expression on human prostate tissue to prognosticate prostate cancer. J. Clin. Pathol., 2015, 68(9), 703-709. doi: 10.1136/jclinpath-2015-202859 PMID: 26041862
  64. Ramírez de Molina, A.; Gallego-Ortega, D.; Sarmentero, J.; Bañez-Coronel, M.; Martín-Cantalejo, Y.; Lacal, J.C. Choline kinase is a novel oncogene that potentiates RhoA-induced carcinogenesis. Cancer Res., 2005, 65(13), 5647-5653. doi: 10.1158/0008-5472.CAN-04-4416 PMID: 15994937
  65. Daaka, Y. G proteins in cancer: The prostate cancer paradigm. Sci. STKE, 2004, 2004(216), re2. doi: 10.1126/stke.2162004re2 PMID: 14734786
  66. Koizumi, A.; Narita, S.; Nakanishi, H.; Ishikawa, M.; Eguchi, S.; Kimura, H.; Takasuga, S.; Huang, M.; Inoue, T.; Sasaki, J.; Yoshioka, T.; Habuchi, T.; Sasaki, T. Increased fatty acyl saturation of phosphatidylinositol phosphates in prostate cancer progression. Sci. Rep., 2019, 9(1), 13257. doi: 10.1038/s41598-019-49744-3 PMID: 31520002
  67. Ingram, L.M.; Finnerty, M.C.; Mansoura, M.; Chou, C.W.; Cummings, B.S. Identification of lipidomic profiles associated with drug-resistant prostate cancer cells. Lipids Health Dis., 2021, 20(1), 15. doi: 10.1186/s12944-021-01437-5 PMID: 33596934
  68. Resh, M.D. Fatty acylation of proteins: The long and the short of it. Prog. Lipid Res., 2016, 63, 120-131. doi: 10.1016/j.plipres.2016.05.002 PMID: 27233110
  69. Goligorsky, M.S.; Li, H.; Brodsky, S.; Chen, J. Relationships between caveolae and eNOS: Everything in proximity and the proximity of everything. Am. J. Physiol. Renal Physiol., 2002, 283(1), F1-F10. doi: 10.1152/ajprenal.00377.2001 PMID: 12060581
  70. Li, T.; Li, D.; Sha, J.; Sun, P.; Huang, Y. MicroRNA-21 directly targets MARCKS and promotes apoptosis resistance and invasion in prostate cancer cells. Biochem. Biophys. Res. Commun., 2009, 383(3), 280-285. doi: 10.1016/j.bbrc.2009.03.077 PMID: 19302977
  71. Tan, Y.; Sementino, E.; Liu, Z.; Cai, K.Q.; Testa, J.R. Wnt signaling mediates oncogenic synergy between Akt and Dlx5 in T-cell lymphomagenesis by enhancing cholesterol synthesis. Sci. Rep., 2020, 10(1), 15837. doi: 10.1038/s41598-020-72822-w PMID: 32985581
  72. Kim, S.; Yang, X.; Li, Q.; Wu, M.; Costyn, L.; Beharry, Z.; Bartlett, M.G.; Cai, H. Myristoylation of Src kinase mediates Src-induced and high-fat diet–accelerated prostate tumor progression in mice. J. Biol. Chem., 2017, 292(45), 18422-18433. doi: 10.1074/jbc.M117.798827 PMID: 28939770
  73. Yang, X.; Ma, Y.; Li, N.; Cai, H.; Bartlett, M.G. Development of a method for the determination of Acyl-CoA compounds by liquid chromatography mass spectrometry to probe the metabolism of fatty acids. Anal Chem., 2017, 89(2017), 813-821. doi: 10.1021/acs.analchem.6b03623
  74. Fhu, C.W.; Ali, A. Protein lipidation by palmitoylation and myristoylation in cancer. Front. Cell Dev. Biol., 2021, 9, 673647. doi: 10.3389/fcell.2021.673647 PMID: 34095144
  75. Kurayoshi, M.; Yamamoto, H.; Izumi, S.; Kikuchi, A. Post-translational palmitoylation and glycosylation of Wnt-5a are necessary for its signalling. Biochem. J., 2007, 402(3), 515-523. doi: 10.1042/BJ20061476 PMID: 17117926
  76. Goodwin, J.S.; Drake, K.R.; Rogers, C.; Wright, L.; Lippincott-Schwartz, J.; Philips, M.R.; Kenworthy, A.K. Depalmitoylated Ras traffics to and from the Golgi complex via a nonvesicular pathway. J. Cell Biol., 2005, 170(2), 261-272. doi: 10.1083/jcb.200502063 PMID: 16027222
  77. Cuiffo, B.; Ren, R. Palmitoylation of oncogenic NRAS is essential for leukemogenesis. Blood, 2010, 115(17), 3598-3605. doi: 10.1182/blood-2009-03-213876 PMID: 20200357
  78. Azbazdar, Y.; Ozalp, O.; Sezgin, E.; Veerapathiran, S.; Duncan, A.L.; Sansom, M.S.P.; Eggeling, C.; Wohland, T.; Karaca, E.; Ozhan, G. More favorable palmitic acid over palmitoleic acid modification of Wnt3 ensures its localization and activity in plasma membrane domains. Front. Cell Dev. Biol., 2019, 7, 281. doi: 10.3389/fcell.2019.00281 PMID: 31803740
  79. Price, D.T.; Coleman, R.E.; Liao, R.P.; Robertson, C.N.; Polascik, T.J.; Degrado, T.R. Comparison of 18 Ffluorocholine and 18 Ffluorodeoxyglucose for positron emission tomography of androgen dependent and androgen independent prostate cancer. J. Urol., 2002, 168(1), 273-280. doi: 10.1016/S0022-5347(05)64906-3 PMID: 12050555
  80. Liu, Y. Fatty acid oxidation is a dominant bioenergetic pathway in prostate cancer. Prostate Cancer Prostatic Dis., 2006, 9(3), 230-234. doi: 10.1038/sj.pcan.4500879 PMID: 16683009
  81. Zha, S.; Ferdinandusse, S.; Denis, S.; Wanders, R.J.; Ewing, C.M.; Luo, J.; De Marzo, A.M.; Isaacs, W.B. Alpha-methylacyl-CoA racemase as an androgen-independent growth modifier in prostate cancer. Cancer Res., 2003, 63(21), 7365-7376. PMID: 14612535
  82. Lin, J.; Xu, J.; Tian, H.; Gao, X.; Chen, Q.; Gu, Q.; Xu, G.; Song, J.; Zhao, F. Identification of candidate prostate cancer biomarkers in prostate needle biopsy specimens using proteomic analysis. Int. J. Cancer, 2007, 121(12), 2596-2605. doi: 10.1002/ijc.23016 PMID: 17722004
  83. Nassar, Z.D.; Mah, C.Y.; Dehairs, J.; Burvenich, I.J.G.; Irani, S.; Centenera, M.M.; Helm, M.; Shrestha, R.K.; Moldovan, M.; Don, A.S.; Holst, J.; Scott, A.M.; Horvath, L.G.; Lynn, D.J.; Selth, L.A.; Hoy, A.J.; Swinnen, J.V.; Butler, L.M. Human DECR1 is an androgen-repressed survival factor that regulates PUFA oxidation to protect prostate tumor cells from ferroptosis. eLife, 2020, 9, e54166. doi: 10.7554/eLife.54166 PMID: 32686647
  84. Schlaepfer, I.R.; Rider, L.; Rodrigues, L.U.; Gijón, M.A.; Pac, C.T.; Romero, L.; Cimic, A.; Sirintrapun, S.J.; Glodé, L.M.; Eckel, R.H.; Cramer, S.D. Lipid catabolism via CPT1 as a therapeutic target for prostate cancer. Mol. Cancer Ther., 2014, 13(10), 2361-2371. doi: 10.1158/1535-7163.MCT-14-0183 PMID: 25122071
  85. Iglesias-Gato, D.; Thysell, E.; Tyanova, S.; Crnalic, S.; Santos, A.; Lima, T.S.; Geiger, T.; Cox, J.; Widmark, A.; Bergh, A.; Mann, M.; Flores-Morales, A.; Wikström, P. The proteome of prostate cancer bone metastasis reveals heterogeneity with prognostic implications. Clin. Cancer Res., 2018, 24(2018), 5433-5444. doi: 10.1158/1078-0432.CCR-18-1229
  86. Ren, S.; Shao, Y.; Zhao, X.; Hong, C.S.; Wang, F.; Lu, X.; Li, J.; Ye, G.; Yan, M.; Zhuang, Z.; Xu, C.; Xu, G.; Sun, Y. Integration of metabolomics and transcriptomics reveals major metabolic pathways and potential biomarker involved in prostate cancer. Mol. Cell. Proteomics, 2016, 15(1), 154-163. doi: 10.1074/mcp.M115.052381 PMID: 26545398
  87. Andersen, M.K.; Høiem, T.S.; Claes, B.S.R.; Balluff, B.; Martin-Lorenzo, M.; Richardsen, E.; Krossa, S.; Bertilsson, H.; Heeren, R.M.A.; Rye, M.B.; Giskeødegård, G.F.; Bathen, T.F.; Tessem, M.B. Spatial differentiation of metabolism in prostate cancer tissue by MALDI-TOF MSI. Cancer Metab., 2021, 9(1), 9. doi: 10.1186/s40170-021-00242-z PMID: 33514438
  88. Xue, L.; Qi, H.; Zhang, H.; Ding, L.; Huang, Q.; Zhao, D.; Wu, B.J.; Li, X. Targeting SREBP-2-regulated mevalonate metabolism for cancer therapy. Front. Oncol., 2020, 10, 1510. doi: 10.3389/fonc.2020.01510 PMID: 32974183
  89. Pelton, K.; Freeman, M.R.; Solomon, K.R. Cholesterol and prostate cancer. Curr. Opin. Pharmacol., 2012, 12(6), 751-759. doi: 10.1016/j.coph.2012.07.006 PMID: 22824430
  90. Eberlé, D.; Hegarty, B.; Bossard, P.; Ferré, P.; Foufelle, F. SREBP transcription factors: Master regulators of lipid homeostasis. Biochimie, 2004, 86(11), 839-848. doi: 10.1016/j.biochi.2004.09.018 PMID: 15589694
  91. Li, X.; Wu, J.B.; Li, Q.; Shigemura, K.; Chung, L.W.K.; Huang, W.C. SREBP-2 promotes stem cell-like properties and metastasis by transcriptional activation of c-Myc in prostate cancer. Oncotarget, 2016, 7(11), 12869-12884. doi: 10.18632/oncotarget.7331 PMID: 26883200
  92. Chandra, N.C.; Singh, G.; Sankanagoudar, S.; Dogra, P. Interlink between cholesterol & cell cycle in prostate carcinoma. Indian J. Med. Res., 2017, 146(S8), 38. doi: 10.4103/ijmr.IJMR_1639_15 PMID: 29578193
  93. Staubach, S.; Hanisch, F.G. Lipid rafts: Signaling and sorting platforms of cells and their roles in cancer. Expert Rev. Proteomics, 2011, 8(2), 263-277. doi: 10.1586/epr.11.2 PMID: 21501018
  94. Oh, H.Y.; Lee, E.J.; Yoon, S.; Chung, B.H.; Cho, K.S.; Hong, S.J. Cholesterol level of lipid raft microdomains regulates apoptotic cell death in prostate cancer cells through EGFR-mediated Akt and ERK signal transduction. Prostate, 2007, 67(10), 1061-1069. doi: 10.1002/pros.20593 PMID: 17469127
  95. Karpen, H.E.; Bukowski, J.T.; Hughes, T.; Gratton, J.P.; Sessa, W.C.; Gailani, M.R. The sonic hedgehog receptor patched associates with caveolin-1 in cholesterol-rich microdomains of the plasma membrane. J. Biol. Chem., 2001, 276(22), 19503-19511. doi: 10.1074/jbc.M010832200 PMID: 11278759
  96. Hyuga, T.; Alcantara, M.; Kajioka, D.; Haraguchi, R.; Suzuki, K.; Miyagawa, S.; Kojima, Y.; Hayashi, Y.; Yamada, G. Hedgehog signaling for urogenital organogenesis and prostate cancer: An implication for the epithelial–mesenchyme interaction (EMI). Int. J. Mol. Sci., 2019, 21(1), 58. doi: 10.3390/ijms21010058 PMID: 31861793
  97. Chen, P.; Zhang, Y.; Xue, B.; Xu, G. Association of Caveolin-1 expression with prostate cancer: A systematic review and meta-analysis. Front. Oncol., 2021, 10, 562774. doi: 10.3389/fonc.2020.562774 PMID: 33489874
  98. Williams, T.M.; Hassan, G.S.; Li, J.; Cohen, A.W.; Medina, F.; Frank, P.G.; Pestell, R.G.; Di Vizio, D.; Loda, M.; Lisanti, M.P. Caveolin-1 promotes tumor progression in an autochthonous mouse model of prostate cancer: genetic ablation of Cav-1 delays advanced prostate tumor development in tramp mice. J. Biol. Chem., 2005, 280(26), 25134-25145. doi: 10.1074/jbc.M501186200 PMID: 15802273
  99. Montgomery, R.B.; Mostaghel, E.A.; Vessella, R.; Hess, D.L.; Kalhorn, T.F.; Higano, C.S.; True, L.D.; Nelson, P.S. Maintenance of intratumoral androgens in metastatic prostate cancer: a mechanism for castration-resistant tumor growth. Cancer Res., 2008, 68(11), 4447-4454. doi: 10.1158/0008-5472.CAN-08-0249 PMID: 18519708
  100. Mostaghel, E.A.; Page, S.T.; Lin, D.W.; Fazli, L.; Coleman, I.M.; True, L.D.; Knudsen, B.; Hess, D.L.; Nelson, C.C.; Matsumoto, A.M.; Bremner, W.J.; Gleave, M.E.; Nelson, P.S. Intraprostatic androgens and androgen-regulated gene expression persist after testosterone suppression: therapeutic implications for castration-resistant prostate cancer. Cancer Res., 2007, 67(10), 5033-5041. doi: 10.1158/0008-5472.CAN-06-3332 PMID: 17510436
  101. Locke, J.A.; Guns, E.S.; Lubik, A.A.; Adomat, H.H.; Hendy, S.C.; Wood, C.A.; Ettinger, S.L.; Gleave, M.E.; Nelson, C.C. Androgen levels increase by intratumoral de novo steroidogenesis during progression of castration-resistant prostate cancer. Cancer Res., 2008, 68(15), 6407-6415. doi: 10.1158/0008-5472.CAN-07-5997 PMID: 18676866
  102. Dillard, P.R.; Lin, M.F.; Khan, S.A. Androgen-independent prostate cancer cells acquire the complete steroidogenic potential of synthesizing testosterone from cholesterol. Mol. Cell. Endocrinol., 2008, 295(1-2), 115-120. doi: 10.1016/j.mce.2008.08.013 PMID: 18782595
  103. Griffiths, M.; Keast, D.; Crawford, M.; Palmer, T.N.; Patrick, G. The role of glutamine and glucose analogues in metabolic inhibition of human myeloid leukaemia in vitro. Int. J. Biochem., 1993, 25(12), 1749-1755. doi: 10.1016/0020-711X(88)90303-5 PMID: 8138012
  104. Meijer, T.W.H.; Peeters, W.J.M.; Dubois, L.J.; van Gisbergen, M.W.; Biemans, R.; Venhuizen, J.H.; Span, P.N.; Bussink, J. Targeting glucose and glutamine metabolism combined with radiation therapy in non-small cell lung cancer. Lung Cancer, 2018, 126, 32-40. doi: 10.1016/j.lungcan.2018.10.016 PMID: 30527190
  105. Sun, L.; Yin, Y.; Clark, L.H.; Sun, W.; Sullivan, S.A.; Tran, A.Q.; Han, J.; Zhang, L.; Guo, H.; Madugu, E.; Pan, T.; Jackson, A.L.; Kilgore, J.; Jones, H.M.; Gilliam, T.P.; Zhou, C.; Bae-Jump, V.L. Dual inhibition of glycolysis and glutaminolysis as a therapeutic strategy in the treatment of ovarian cancer. Oncotarget, 2017, 8(38), 63551-63561. doi: 10.18632/oncotarget.18854 PMID: 28969010
  106. Wu, H.; Li, Z.; Yang, P.; Zhang, L.; Fan, Y.; Li, Z. PKM2 depletion induces the compensation of glutaminolysis through β-catenin/c-Myc pathway in tumor cells. Cell. Signal., 2014, 26(11), 2397-2405. doi: 10.1016/j.cellsig.2014.07.024 PMID: 25041845
  107. Schlaepfer, I.R.; Glodé, L.M.; Hitz, C.A.; Pac, C.T.; Boyle, K.E.; Maroni, P.; Deep, G.; Agarwal, R.; Lucia, S.M.; Cramer, S.D.; Serkova, N.J.; Eckel, R.H. Inhibition of lipid oxidation increases glucose metabolism and enhances 2-Deoxy-2-18FFluoro-d-glucose uptake in prostate cancer mouse xenografts. Mol. Imaging Biol., 2015, 17(4), 529-538. doi: 10.1007/s11307-014-0814-4 PMID: 25561013
  108. Cardoso, H.J.; Figueira, M.I.; Vaz, C.V.; Carvalho, T.M.A.; Brás, L.A.; Madureira, P.A.; Oliveira, P.J.; Sardão, V.A.; Socorro, S. Glutaminolysis is a metabolic route essential for survival and growth of prostate cancer cells and a target of 5α-dihydrotestosterone regulation. Cell Oncol., 2021, 44(2), 385-403. doi: 10.1007/s13402-020-00575-9 PMID: 33464483
  109. Cervantes-Madrid, D.; Dominguez-Gomez, G.; Gonzalez-Fierro, A.; Perez-Cardenas, E.; Taja-Chayeb, L.; Trejo-Becerril, C.; Duenas-Gonzalez, A. Feasibility and antitumor efficacy in vivo, of simultaneously targeting glycolysis, glutaminolysis and fatty acid synthesis using lonidamine, 6-diazo-5-oxo-L-norleucine and orlistat in colon cancer. Oncol. Lett., 2017, 13(3), 1905-1910. doi: 10.3892/ol.2017.5615 PMID: 28454342
  110. Kendir, C.; van den Akker, M.; Vos, R.; Metsemakers, J. Cardiovascular disease patients have increased risk for comorbidity: A cross-sectional study in the Netherlands. Eur. J. Gen. Pract., 2018, 24(1), 45-50. doi: 10.1080/13814788.2017.1398318 PMID: 29168400
  111. Singh, S.; Karthikeyan, C.; Moorthy, N.S.H.N. Recent advances in the development of fatty acid synthase inhibitors as anticancer agents. Mini Rev. Med. Chem., 2020, 20(18), 1820-1837. doi: 10.2174/1389557520666200811100845 PMID: 32781957
  112. Fako, V.E.; Wu, X.; Pflug, B.; Liu, J.Y.; Zhang, J.T. Repositioning proton pump inhibitors as anticancer drugs by targeting the thioesterase domain of human fatty acid synthase. J. Med. Chem., 2015, 58(2), 778-784. doi: 10.1021/jm501543u PMID: 25513712
  113. Fitton, A.; Wiseman, L. Pantoprazole. Drugs, 1996, 51(3), 460-482. doi: 10.2165/00003495-199651030-00012 PMID: 8882382
  114. Patel, K.J.; Lee, C.; Tan, Q.; Tannock, I.F. Use of the proton pump inhibitor pantoprazole to modify the distribution and activity of doxorubicin: A potential strategy to improve the therapy of solid tumors. Clin. Cancer Res., 2013, 19(24), 6766-6776. doi: 10.1158/1078-0432.CCR-13-0128 PMID: 24141627
  115. Brana, I.; Ocana, A.; Chen, E.X.; Razak, A.R.A.; Haines, C.; Lee, C.; Douglas, S.; Wang, L.; Siu, L.L.; Tannock, I.F.; Bedard, P.L. A phase I trial of pantoprazole in combination with doxorubicin in patients with advanced solid tumors: evaluation of pharmacokinetics of both drugs and tissue penetration of doxorubicin. Invest. New Drugs, 2014, 32(6), 1269-1277. doi: 10.1007/s10637-014-0159-5 PMID: 25213162
  116. Tan, Q.; Joshua, A.M.; Saggar, J.K.; Yu, M.; Wang, M.; Kanga, N.; Zhang, J.Y.; Chen, X.; Wouters, B.G.; Tannock, I.F. Effect of pantoprazole to enhance activity of docetaxel against human tumour xenografts by inhibiting autophagy. Br. J. Cancer, 2015, 112(5), 832-840. doi: 10.1038/bjc.2015.17 PMID: 25647012
  117. Hansen, A.R.; Tannock, I.F.; Templeton, A.; Chen, E.; Evans, A.; Knox, J.; Prawira, A.; Sridhar, S.S.; Tan, S.; Vera-Badillo, F.; Wang, L.; Wouters, B.G.; Joshua, A.M. Pantoprazole affecting docetaxel resistance pathways via autophagy (PANDORA): Phase II trial of high dose pantoprazole (Autophagy Inhibitor) with docetaxel in metastatic castration-resistant prostate cancer (mCRPC). Oncologist, 2019, 24(9), 1188-1194. doi: 10.1634/theoncologist.2018-0621 PMID: 30952818
  118. Li, Z.; He, P.; Long, Y.; Yuan, G.; Shen, W.; Chen, Z.; Zhang, B.; Wang, Y.; Yue, D.; Seidl, C.; Zhang, X. Drug repurposing of pantoprazole and vitamin C targeting tumor microenvironment conditions improves anticancer effect in metastatic castration-resistant prostate cancer. Front. Oncol., 2021, 11, 660320. doi: 10.3389/fonc.2021.660320 PMID: 34307134
  119. Kochuparambil, S.T.; Al-Husein, B.; Goc, A.; Soliman, S.; Somanath, P.R. Anticancer efficacy of simvastatin on prostate cancer cells and tumor xenografts is associated with inhibition of Akt and reduced prostate-specific antigen expression. J. Pharmacol. Exp. Ther., 2011, 336(2), 496-505. doi: 10.1124/jpet.110.174870 PMID: 21059805
  120. Park, Y.H.; Seo, S.Y.; Lee, E.; Ku, J.H.; Kim, H.H.; Kwak, C. Simvastatin induces apoptosis in castrate resistant prostate cancer cells by deregulating nuclear factor-κB pathway. J. Urol., 2013, 189(4), 1547-1552. doi: 10.1016/j.juro.2012.10.030 PMID: 23085058
  121. Goc, A.; Kochuparambil, S.T.; Al-Husein, B.; Al-Azayzih, A.; Mohammad, S.; Somanath, P.R. Simultaneous modulation of the intrinsic and extrinsic pathways by simvastatin in mediating prostate cancer cell apoptosis. BMC Cancer, 2012, 12(1), 409. doi: 10.1186/1471-2407-12-409 PMID: 22974127
  122. Oliveira, K.A.P.; Zecchin, K.G.; Alberici, L.C.; Castilho, R.F.; Vercesi, A.E. Simvastatin inducing PC3 prostate cancer cell necrosis mediated by calcineurin and mitochondrial dysfunction. J. Bioenerg. Biomembr., 2008, 40(4), 307-314. doi: 10.1007/s10863-008-9155-9 PMID: 18679777
  123. Sekine, Y.; Furuya, Y.; Nishii, M.; Koike, H.; Matsui, H.; Suzuki, K. Simvastatin inhibits the proliferation of human prostate cancer PC-3 cells via down-regulation of the insulin-like growth factor 1 receptor. Biochem. Biophys. Res. Commun., 2008, 372(2), 356-361. doi: 10.1016/j.bbrc.2008.05.043 PMID: 18489904
  124. Furuya, Y.; Sekine, Y.; Kato, H.; Miyazawa, Y.; Koike, H.; Suzuki, K. Low-density lipoprotein receptors play an important role in the inhibition of prostate cancer cell proliferation by statins. Prostate Int., 2016, 4(2), 56-60. doi: 10.1016/j.prnil.2016.02.003 PMID: 27358845
  125. Murtola, T.J.; Pennanen, P.; Syvälä, H.; Bläuer, M.; Ylikomi, T.; Tammela, T.L.J. Effects of simvastatin, acetylsalicylic acid, and rosiglitazone on proliferation of normal and cancerous prostate epithelial cells at therapeutic concentrations. Prostate, 2009, 69(9), 1017-1023. doi: 10.1002/pros.20951 PMID: 19301305
  126. Iannelli, F.; Roca, M.S.; Lombardi, R.; Ciardiello, C.; Grumetti, L.; De Rienzo, S.; Moccia, T.; Vitagliano, C.; Sorice, A.; Costantini, S.; Milone, M.R.; Pucci, B.; Leone, A.; Di Gennaro, E.; Mancini, R.; Ciliberto, G.; Bruzzese, F.; Budillon, A. Synergistic antitumor interaction of valproic acid and simvastatin sensitizes prostate cancer to docetaxel by targeting CSCs compartment via YAP inhibition. J. Exp. Clin. Cancer Res., 2020, 39(1), 213. doi: 10.1186/s13046-020-01723-7 PMID: 33032653
  127. Gordon, J.A.; Midha, A.; Szeitz, A.; Ghaffari, M.; Adomat, H.H.; Guo, Y.; Klassen, T.L.; Guns, E.S.; Wasan, K.M.; Cox, M.E. Oral simvastatin administration delays castration-resistant progression and reduces intratumoral steroidogenesis of LNCaP prostate cancer xenografts. Prostate Cancer Prostatic Dis., 2016, 19(1), 21-27. doi: 10.1038/pcan.2015.37 PMID: 26238234
  128. Thysell, E.; Surowiec, I.; Hörnberg, E.; Crnalic, S.; Widmark, A.; Johansson, A.I.; Stattin, P.; Bergh, A.; Moritz, T.; Antti, H.; Wikström, P. Metabolomic characterization of human prostate cancer bone metastases reveals increased levels of cholesterol. PLoS One, 2010, 5(12), e14175. doi: 10.1371/journal.pone.0014175 PMID: 21151972
  129. Nordstrand, A.; Lundholm, M.; Larsson, A.; Lerner, U.H.; Widmark, A.; Wikström, P. Inhibition of the insulin-like growth factor-1 receptor enhances effects of simvastatin on prostate cancer cells in co-culture with bone. Cancer Microenviron., 2013, 6(3), 231-240. doi: 10.1007/s12307-013-0129-z PMID: 23335094
  130. Murtola, T.J.; Syvälä, H.; Tolonen, T.; Helminen, M.; Riikonen, J.; Koskimäki, J.; Pakarainen, T.; Kaipia, A.; Isotalo, T.; Kujala, P.; Tammela, T.L.J. Atorvastatin versus placebo for prostate cancer before radical prostatectomy-a randomized, double-blind, placebo-controlled clinical trial. Eur. Urol., 2018, 74(6), 697-701. doi: 10.1016/j.eururo.2018.06.037 PMID: 30031572
  131. Knuuttila, E.; Riikonen, J.; Syvälä, H.; Auriola, S.; Murtola, T.J. Access and concentrations of atorvastatin in the prostate in men with prostate cancer. Prostate, 2019, 79(12), 1427-1434. doi: 10.1002/pros.23863 PMID: 31231865
  132. Allott, E.H.; Csizmadi, I.; Howard, L.E.; Muller, R.L.; Moreira, D.M.; Andriole, G.L.; Roehrborn, C.G.; Freedland, S.J. Statin use and longitudinal changes in prostate volume; results from the REduction by DUtasteride of prostate Cancer Events (REDUCE) trial. BJU Int., 2020, 125(2), 226-233. doi: 10.1111/bju.14905 PMID: 31479563
  133. Hamilton, R.J.; Ding, K.; Crook, J.M.; O’Callaghan, C.J.; Higano, C.S.; Dearnaley, D.P.; Horwitz, E.M.; Goldenberg, S.L.; Gospodarowicz, M.K.; Klotz, L. The association between statin use and outcomes in patients initiating androgen deprivation therapy. Eur Urol., 2021, 79(2021), 446-452. doi: 10.1016/j.eururo.2020.12.031
  134. Peltomaa, A.I.; Raittinen, P.; Talala, K.; Taari, K.; Tammela, T.L.J.; Auvinen, A.; Murtola, T.J. Prostate cancer prognosis after initiation of androgen deprivation therapy among statin users. A population-based cohort study. Prostate Cancer Prostatic Dis., 2021, 24(3), 917-924. doi: 10.1038/s41391-021-00351-2 PMID: 33790420
  135. Moon, S.J.; Lee, S.; Jang, K.; Yu, K.S.; Yim, S.V.; Kim, B.H. Comparative pharmacokinetic and tolerability evaluation of two simvastatin 20 mg formulations in healthy Korean male volunteers. Transl. Clin. Pharmacol., 2017, 25(1), 10-14. doi: 10.12793/tcp.2017.25.1.10 PMID: 32095453
  136. Rupp, H.; Zarain-Herzberg, A. Therapeutic potential of CPT I inhibitors: cardiac gene transcription as a target. Expert Opin. Investig. Drugs, 2002, 11(3), 345-356. doi: 10.1517/13543784.11.3.345 PMID: 11866664
  137. Chong, C.R.; Sallustio, B.; Horowitz, J.D. Drugs that affect cardiac metabolism: Focus on perhexiline. Cardiovasc. Drugs Ther., 2016, 30(4), 399-405. doi: 10.1007/s10557-016-6664-3 PMID: 27106834
  138. Liu, Z.; Wang, D.; Liu, D.; Liu, J.; Zhou, G. Trimetazidine protects against LPS-induced acute lung injury through mTOR/SGK1 pathway. Int. J. Clin. Exp. Med., 2016, 9, 13950-13957.
  139. Singh, D.; Chander, V.; Chopra, K. Carvedilol and trimetazidine attenuates ferric nitrilotriacetate-induced oxidative renal injury in rats. Toxicology, 2003, 191(2-3), 143-151. doi: 10.1016/S0300-483X(03)00259-2 PMID: 12965117
  140. Tikhaze, A.K.; Lankin, V.Z.; Zharova, E.A.; Kolycheva, S.V. Trimetazidine as indirect antioxidant. Bull. Exp. Biol. Med., 2000, 130(10), 951-953. doi: 10.1023/A:1002801504611 PMID: 11177290
  141. Lestuzzi, C.; Crivellari, D.; Rigo, F.; Viel, E.; Meneguzzo, N. Capecitabine cardiac toxicity presenting as effort angina: A case report. J. Cardiovasc. Med., 2010, 11(9), 700-703. doi: 10.2459/JCM.0b013e328332e873 PMID: 20093950
  142. Tallarico, D.; Rizzo, V.; di Maio, F.; Petretto, F.; Bianco, G.; Placanica, G.; Marziali, M.; Paravati, V.; Gueli, N.; Meloni, F.; Campbell, S.V. Myocardial cytoprotection by trimetazidine against anthracycline-induced cardiotoxicity in anticancer chemotherapy. Angiology, 2003, 54(2), 219-227. doi: 10.1177/000331970305400212 PMID: 12678198
  143. Ferraro, E.; Pin, F.; Gorini, S.; Pontecorvo, L.; Ferri, A.; Mollace, V.; Costelli, P.; Rosano, G. Improvement of skeletal muscle performance in ageing by the metabolic modulator Trimetazidine. J. Cachexia Sarcopenia Muscle, 2016, 7(4), 449-457. doi: 10.1002/jcsm.12097 PMID: 27239426
  144. Gatta, L.; Vitiello, L.; Gorini, S.; Chiandotto, S.; Costelli, P.; Giammarioli, A.M.; Malorni, W.; Rosano, G.; Ferraro, E. Modulating the metabolism by trimetazidine enhances myoblast differentiation and promotes myogenesis in cachectic tumor-bearing c26 mice. Oncotarget, 2017, 8(69), 113938-113956. doi: 10.18632/oncotarget.23044 PMID: 29371959
  145. Molinari, F.; Pin, F.; Gorini, S.; Chiandotto, S.; Pontecorvo, L.; Penna, F.; Rizzuto, E.; Pisu, S.; Musarò, A.; Costelli, P.; Rosano, G.; Ferraro, E. The mitochondrial metabolic reprogramming agent trimetazidine as an ‘exercise mimetic’ in cachectic C26-bearing mice. J. Cachexia Sarcopenia Muscle, 2017, 8(6), 954-973. doi: 10.1002/jcsm.12226 PMID: 29130633
  146. Andela, V.B.; Altuwaijri, S.; Wood, J.; Rosier, R.N. Inhibition of β-oxidative respiration is a therapeutic window associated with the cancer chemo-preventive activity of PPARγ agonists. FEBS Lett., 2005, 579(7), 1765-1769. doi: 10.1016/j.febslet.2005.01.082 PMID: 15757673
  147. Halama, A.; Kulinski, M.; Dib, S.S.; Zaghlool, S.B.; Siveen, K.S.; Iskandarani, A.; Zierer, J.; Prabhu, K.S.; Satheesh, N.J.; Bhagwat, A.M.; Uddin, S.; Kastenmüller, G.; Elemento, O.; Gross, S.S.; Suhre, K. Accelerated lipid catabolism and autophagy are cancer survival mechanisms under inhibited glutaminolysis. Cancer Lett., 2018, 430, 133-147. doi: 10.1016/j.canlet.2018.05.017 PMID: 29777783
  148. Lee, J.S.; Oh, S.J.; Choi, H.J.; Kang, J.H.; Lee, S.H.; Ha, J.S.; Woo, S.M.; Jang, H.; Lee, H.; Kim, S.Y. ATP production relies on fatty acid oxidation rather than glycolysis in pancreatic ductal adenocarcinoma. Cancers, 2020, 12(9), 2477. doi: 10.3390/cancers12092477 PMID: 32882923
  149. Atlı Şekeroğlu, Z.; Şekeroğlu, V.; Işık, S.; Aydın, B. Trimetazidine alone or in combination with gemcitabine and/or abraxane decreased cell viability, migration and ATP levels and induced apoptosis of human pancreatic cells. Clin. Res. Hepatol. Gastroenterol., 2021, 45(6), 101632. doi: 10.1016/j.clinre.2021.101632 PMID: 33662778
  150. Amoedo, N.D.; Sarlak, S.; Obre, E.; Esteves, P.; Bégueret, H.; Kieffer, Y.; Rousseau, B.; Dupis, A.; Izotte, J.; Bellance, N.; Dard, L.; Redonnet-Vernhet, I.; Punzi, G.; Rodrigues, M.F.; Dumon, E.; Mafhouf, W.; Guyonnet-Dupérat, V.; Gales, L.; Palama, T.; Bellvert, F.; Dugot-Senan, N.; Claverol, S.; Baste, J.M.; Lacombe, D.; Rezvani, H.R.; Pierri, C.L.; Mechta-Grigoriou, F.; Thumerel, M.; Rossignol, R. Targeting the mitochondrial trifunctional protein restrains tumor growth in oxidative lung carcinomas. J. Clin. Invest., 2021, 131(1), e133081. doi: 10.1172/JCI133081 PMID: 33393495
  151. Nenchev, N.; Skopek, J.; Arora, D.; Samad, A.; Kaplan, S.; Domahidy, M.; Voogd, H.; Böhmert, S.; Ramos, R.S.; Jain, S. Effect of age and renal impairment on the pharmacokinetics and safety of trimetazidine: An open-label multiple-dose study. Drug Dev. Res., 2020, 81(5), 564-572. doi: 10.1002/ddr.21654 PMID: 32128844
  152. Strebhardt, K.; Ullrich, A. Paul Ehrlich’s magic bullet concept: 100 years of progress. Nat. Rev. Cancer, 2008, 8(6), 473-480. doi: 10.1038/nrc2394 PMID: 18469827
  153. Medina-Franco, J.L.; Giulianotti, M.A.; Welmaker, G.S.; Houghten, R.A. Shifting from the single to the multitarget paradigm in drug discovery. Drug Discov. Today, 2013, 18(9-10), 495-501. doi: 10.1016/j.drudis.2013.01.008 PMID: 23340113
  154. Turanli, B.; Zhang, C.; Kim, W.; Benfeitas, R.; Uhlen, M.; Arga, K.Y.; Mardinoglu, A. Discovery of therapeutic agents for prostate cancer using genome-scale metabolic modeling and drug repositioning. EBioMedicine, 2019, 42, 386-396. doi: 10.1016/j.ebiom.2019.03.009 PMID: 30905848
  155. Yang, Y.; Mamouni, K.; Li, X.; Chen, Y.; Kavuri, S.; Du, Y.; Fu, H.; Kucuk, O.; Wu, D. Repositioning dopamine D2 receptor agonist bromocriptine to enhance docetaxel chemotherapy and treat bone metastatic prostate cancer. Mol. Cancer Ther., 2018, 17(9), 1859-1870. doi: 10.1158/1535-7163.MCT-17-1176 PMID: 29907594
  156. Wang, M.; Shim, J.S.; Li, R.J.; Dang, Y.; He, Q.; Das, M.; Liu, J.O. Identification of an old antibiotic clofoctol as a novel activator of unfolded protein response pathways and an inhibitor of prostate cancer. Br. J. Pharmacol., 2014, 171(19), 4478-4489. doi: 10.1111/bph.12800 PMID: 24903412
  157. Gayvert, K.M.; Dardenne, E.; Cheung, C.; Boland, M.R.; Lorberbaum, T.; Wanjala, J.; Chen, Y.; Rubin, M.A.; Tatonetti, N.P.; Rickman, D.S.; Elemento, O. A computational drug repositioning approach for targeting oncogenic transcription factors. Cell Rep., 2016, 15(11), 2348-2356. doi: 10.1016/j.celrep.2016.05.037 PMID: 27264179
  158. Platz, E.A.; Yegnasubramanian, S.; Liu, J.O.; Chong, C.R.; Shim, J.S.; Kenfield, S.A.; Stampfer, M.J.; Willett, W.C.; Giovannucci, E.; Nelson, W.G. A novel two-stage, transdisciplinary study identifies digoxin as a possible drug for prostate cancer treatment. Cancer Discov., 2011, 1(1), 68-77. doi: 10.1158/2159-8274.CD-10-0020 PMID: 22140654
  159. Lu, C.; Li, X.; Ren, Y.; Zhang, X. Disulfiram: A novel repurposed drug for cancer therapy. Cancer Chemother. Pharmacol., 2021, 87(2), 159-172. doi: 10.1007/s00280-020-04216-8 PMID: 33426580
  160. Kondratskyi, A.; Kondratska, K.; Vanden Abeele, F.; Gordienko, D.; Dubois, C.; Toillon, R.A.; Slomianny, C.; Lemière, S.; Delcourt, P.; Dewailly, E.; Skryma, R.; Biot, C.; Prevarskaya, N. Ferroquine, the next generation antimalarial drug, has antitumor activity. Sci. Rep., 2017, 7(1), 15896. doi: 10.1038/s41598-017-16154-2 PMID: 29162859
  161. Elhasasna, H.; Khan, R.; Bhanumathy, K.K.; Vizeacoumar, F.S.; Walke, P.; Bautista, M.; Dahiya, D.K.; Maranda, V.; Patel, H.; Balagopal, A.; Alli, N.; Krishnan, A.; Freywald, A.; Vizeacoumar, F.J. A drug repurposing screen identifies fludarabine phosphate as a potential therapeutic agent for N-MYC overexpressing neuroendocrine prostate cancers. Cells, 2022, 11(14), 2246. doi: 10.3390/cells11142246 PMID: 35883689
  162. Qi, C.; Bin Li; Yang, Y.; Yang, Y.; Li, J.; Zhou, Q.; Wen, Y.; Zeng, C.; Zheng, L.; Zhang, Q.; Li, J.; He, X.; Zhou, J.; Shao, C.; Wang, L. Glipizide suppresses prostate cancer progression in the TRAMP model by inhibiting angiogenesis. Sci. Rep., 2016, 6(1), 27819. doi: 10.1038/srep27819 PMID: 27292155
  163. Tsubamoto, H.; Ueda, T.; Inoue, K.; Sakata, K.; Shibahara, H.; Sonoda, T. Repurposing itraconazole as an anticancer agent. Oncol. Lett., 2017, 14(2), 1240-1246. doi: 10.3892/ol.2017.6325 PMID: 28789339
  164. Sulsenti, R.; Frossi, B.; Bongiovanni, L.; Cancila, V.; Ostano, P.; Fischetti, I.; Enriquez, C.; Guana, F.; Chiorino, G.; Tripodo, C.; Pucillo, C.E.; Colombo, M.P.; Jachetti, E. Repurposing of the antiepileptic drug levetiracetam to restrain neuroendocrine prostate cancer and inhibit mast cell support to adenocarcinoma. Front. Immunol., 2021, 12, 622001. doi: 10.3389/fimmu.2021.622001 PMID: 33737929
  165. Rushworth, L.K.; Hewit, K.; Munnings-Tomes, S.; Somani, S.; James, D.; Shanks, E.; Dufès, C.; Straube, A.; Patel, R.; Leung, H.Y. Repurposing screen identifies mebendazole as a clinical candidate to synergise with docetaxel for prostate cancer treatment. Br. J. Cancer, 2020, 122(4), 517-527. doi: 10.1038/s41416-019-0681-5 PMID: 31844184
  166. Albayrak, G.; Konac, E.; Dikmen, A.U.; Bilen, C.Y. Memantine induces apoptosis and inhibits cell cycle progression in LNCaP prostate cancer cells. Hum. Exp. Toxicol., 2018, 37(9), 953-958. doi: 10.1177/0960327117747025 PMID: 29226720
  167. Gillessen, S.; Gilson, C.; James, N.; Adler, A.; Sydes, M.R.; Clarke, N. Repurposing metformin as therapy for prostate cancer within the STAMPEDE trial platform. Eur. Urol., 2016, 70(6), 906-908. doi: 10.1016/j.eururo.2016.07.015 PMID: 27450106
  168. Iwamoto, Y.; Ishii, K.; Kanda, H.; Kato, M.; Miki, M.; Kajiwara, S.; Arima, K.; Shiraishi, T.; Sugimura, Y. Combination treatment with naftopidil increases the efficacy of radiotherapy in PC-3 human prostate cancer cells. J. Cancer Res. Clin. Oncol., 2017, 143(6), 933-939. doi: 10.1007/s00432-017-2367-9 PMID: 28243746
  169. Florent, R.; Poulain, L.; N’Diaye, M. Drug repositioning of the α1-adrenergic receptor antagonist naftopidil: A potential new anti-cancer drug? Int. J. Mol. Sci., 2020, 21(15), 5339. doi: 10.3390/ijms21155339 PMID: 32727149
  170. Guan, M.; Su, L.; Yuan, Y.C.; Li, H.; Chow, W.A. Nelfinavir and nelfinavir analogs block site-2 protease cleavage to inhibit castration-resistant prostate cancer. Sci. Rep., 2015, 5(1), 9698. doi: 10.1038/srep09698 PMID: 25880275
  171. Lu, W.; Lin, C.; Roberts, M.J.; Waud, W.R.; Piazza, G.A.; Li, Y. Niclosamide suppresses cancer cell growth by inducing Wnt co-receptor LRP6 degradation and inhibiting the Wnt/β-catenin pathway. PLoS One, 2011, 6(12), e29290. doi: 10.1371/journal.pone.0029290 PMID: 22195040
  172. Chang, W.L.; Hsu, L.C.; Leu, W.J.; Chen, C.S.; Guh, J.H. Repurposing of nitroxoline as a potential anticancer agent against human prostate cancer - a crucial role on AMPK/mTOR signaling pathway and the interplay with Chk2 activation. Oncotarget, 2015, 6(37), 39806-39820. doi: 10.18632/oncotarget.5655 PMID: 26447757
  173. Hafeez, B.B.; Ganju, A.; Sikander, M.; Kashyap, V.K.; Hafeez, Z.B.; Chauhan, N.; Malik, S.; Massey, A.E.; Tripathi, M.K.; Halaweish, F.T.; Zafar, N.; Singh, M.M.; Yallapu, M.M.; Chauhan, S.C.; Jaggi, M. Ormeloxifene suppresses prostate tumor growth and metastatic phenotypes via inhibition of oncogenic β-catenin signaling and EMT progression. Mol. Cancer Ther., 2017, 16(10), 2267-2280. doi: 10.1158/1535-7163.MCT-17-0157 PMID: 28615299
  174. Ho, C.H.; Hsu, J.L.; Liu, S.P.; Hsu, L.C.; Chang, W.L.; Chao, C.C.K.; Guh, J.H. Repurposing of phentolamine as a potential anticancer agent against human castration-resistant prostate cancer: A central role on microtubule stabilization and mitochondrial apoptosis pathway. Prostate, 2015, 75(13), 1454-1466. doi: 10.1002/pros.23033 PMID: 26180030
  175. Shaw, V.; Srivastava, S.; Srivastava, S.K. Repurposing antipsychotics of the diphenylbutylpiperidine class for cancer therapy. Semin. Cancer Biol., 2021, 68, 75-83. doi: 10.1016/j.semcancer.2019.10.007 PMID: 31618686
  176. Dilly, S.J.; Clark, A.J.; Marsh, A.; Mitchell, D.A.; Cain, R.; Fishwick, C.W.G.; Taylor, P.C. A chemical genomics approach to drug reprofiling in oncology: Antipsychotic drug risperidone as a potential adenocarcinoma treatment. Cancer Lett., 2017, 393, 16-21. doi: 10.1016/j.canlet.2017.01.042 PMID: 28188816
  177. Sadowski, M.C.; Pouwer, R.H.; Gunter, J.H.; Lubik, A.A.; Quinn, R.J.; Nelson, C.C. The fatty acid synthase inhibitor triclosan: repurposing an anti-microbial agent for targeting prostate cancer. Oncotarget, 2014, 5(19), 9362-9381. doi: 10.18632/oncotarget.2433 PMID: 25313139
  178. Turanli, B.; Gulfidan, G.; Arga, K.Y. Transcriptomic-guided drug repositioning supported by a new bioinformatics search tool: geneXpharma. OMICS, 2017, 21(10), 584-591. doi: 10.1089/omi.2017.0127 PMID: 29049014

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers