Hydrogen Sulfide: Physiological Roles and Therapeutic Implications against COVID-19
- Authors: Abolfazli S.1, Ebrahimi N.2, Morabi E.3, Asgari Yazdi M.2, Zengin G.4, Sathyapalan T.5, Jamialahmadi T.6, Sahebkar A.6
-
Affiliations:
- Student Research Committee, School of Pharmacy, Mazandaran University of Medical Science
- Student Research Committee, School of Pharmacy, Mashhad University of Medical Sciences
- Student Research Committee, School of Pharmacy, Shahid Sadoughi University of Medical Science
- Department of Biology, Science Faculty, Selçuk University
- Academic Diabetes, Endocrinology and Metabolism, University of Hull
- Applied Biomedical Research Center, Mashhad University of Medical Sciences
- Issue: Vol 31, No 21 (2024)
- Pages: 3132-3148
- Section: Anti-Infectives and Infectious Diseases
- URL: https://cijournal.ru/0929-8673/article/view/644721
- DOI: https://doi.org/10.2174/0929867330666230502111227
- ID: 644721
Cite item
Full Text
Abstract
The COVID-19 pandemic due to severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) poses a major menace to economic and public health worldwide. Angiotensin-converting enzyme 2 (ACE2) and transmembrane protease serine 2 (TMPRSS2) are two host proteins that play an essential function in the entry of SARS-- COV-2 into host cells. Hydrogen sulfide (H2S), a new gasotransmitter, has been shown to protect the lungs from potential damage through its anti-inflammatory, antioxidant, antiviral, and anti-aging effects. It is well known that H2S is crucial in controlling the inflammatory reaction and the pro-inflammatory cytokine storm. Therefore, it has been suggested that some H2S donors may help treat acute lung inflammation. Furthermore, recent research illuminates a number of mechanisms of action that may explain the antiviral properties of H2S. Some early clinical findings indicate a negative correlation between endogenous H2S concentrations and COVID-19 intensity. Therefore, reusing H2S-releasing drugs could represent a curative option for COVID-19 therapy.
About the authors
Sajad Abolfazli
Student Research Committee, School of Pharmacy, Mazandaran University of Medical Science
Email: info@benthamscience.net
Nima Ebrahimi
Student Research Committee, School of Pharmacy, Mashhad University of Medical Sciences
Email: info@benthamscience.net
Etekhar Morabi
Student Research Committee, School of Pharmacy, Shahid Sadoughi University of Medical Science
Email: info@benthamscience.net
Mohammad Asgari Yazdi
Student Research Committee, School of Pharmacy, Mashhad University of Medical Sciences
Email: info@benthamscience.net
Gokhan Zengin
Department of Biology, Science Faculty, Selçuk University
Email: info@benthamscience.net
Thozhukat Sathyapalan
Academic Diabetes, Endocrinology and Metabolism, University of Hull
Email: info@benthamscience.net
Tannaz Jamialahmadi
Applied Biomedical Research Center, Mashhad University of Medical Sciences
Email: info@benthamscience.net
Amirhossein Sahebkar
Applied Biomedical Research Center, Mashhad University of Medical Sciences
Author for correspondence.
Email: info@benthamscience.net
References
- Citi, V.; Martelli, A.; Brancaleone, V.; Brogi, S.; Gojon, G.; Montanaro, R.; Morales, G.; Testai, L.; Calderone, V. Anti-inflammatory and antiviral roles of hydrogen sulfide: Rationale for considering H2S donors in COVID-19 therapy. Br. J. Pharmacol., 2020, 177(21), 4931-4941. doi: 10.1111/bph.15230 PMID: 32783196
- Dattilo, M. The role of host defences in Covid 19 and treatments thereof. Mol. Med., 2020, 26(1), 90. doi: 10.1186/s10020-020-00216-9 PMID: 32993497
- Noori, M.; Nejadghaderi, S.A.; Arshi, S.; Carson-Chahhoud, K.; Ansarin, K.; Kolahi, A.A.; Safiri, S. Potency of BNT162b2 and mRNA-1273 vaccine-induced neutralizing antibodies against severe acute respiratory syndrome-CoV-2 variants of concern: A systematic review of in vitro studies. Rev. Med. Virol., 2022, 32(2), e2277. doi: 10.1002/rmv.2277 PMID: 34286893
- COVID-19 weekly epidemiological update, 124 ed.; World Health Organization, 2023.
- Kim, S.Y.; Yeniova, A.Ö. Global, regional, and national incidence and mortality of COVID-19 in 237 countries and territories, January 2022: A systematic analysis for World Health Organization COVID-19 Dashboard. Life Cycle, 2022, 2, e10. doi: 10.54724/lc.2022.e10
- Hoffmann, M; Kleine-Weber, H; Schroeder, S; Krüger, N; Herrler, T; Erichsen, S SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. cell, 2020, 181(2), 271-280.e8..
- Sims, A.C.; Baric, R.S.; Yount, B.; Burkett, S.E.; Collins, P.L.; Pickles, R.J. Severe acute respiratory syndrome coronavirus infection of human ciliated airway epithelia: Role of ciliated cells in viral spread in the conducting airways of the lungs. J. Virol., 2005, 79(24), 15511-15524. doi: 10.1128/JVI.79.24.15511-15524.2005 PMID: 16306622
- Mason, R.J. Pathogenesis of COVID-19 from a cell biology perspective. Eur Respir J, 2020, 55(4), 2000607. doi: 10.1183/13993003.00607-2020
- Xu, Z.; Shi, L.; Wang, Y.; Zhang, J.; Huang, L.; Zhang, C.; Liu, S.; Zhao, P.; Liu, H.; Zhu, L.; Tai, Y.; Bai, C.; Gao, T.; Song, J.; Xia, P.; Dong, J.; Zhao, J.; Wang, F.S. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir. Med., 2020, 8(4), 420-422. doi: 10.1016/S2213-2600(20)30076-X PMID: 32085846
- Cascella, M.; Rajnik, M.; Aleem, A.; Dulebohn, S.C.; Di Napoli, R. Features, evaluation, and treatment of coronavirus (COVID-19); Statpearls, 2022.
- Yazdanpanah, F.; Hamblin, M.R.; Rezaei, N. The immune system and COVID-19: Friend or foe? Life Sci., 2020, 256, 117900. doi: 10.1016/j.lfs.2020.117900 PMID: 32502542
- Yang, A.P.; Liu, J.; Tao, W.; Li, H. The diagnostic and predictive role of NLR, d-NLR and PLR in COVID-19 patients. Int. Immunopharmacol., 2020, 84, 106504. doi: 10.1016/j.intimp.2020.106504 PMID: 32304994
- Fang, Y.; Zhang, H.; Xie, J.; Lin, M.; Ying, L.; Pang, P.; Ji, W. Sensitivity of chest CT for COVID-19: Comparison to RT-PCR. Radiology, 2020, 296(2), E115-E117. doi: 10.1148/radiol.2020200432 PMID: 32073353
- Deja-Sikora, E.; Gołębiewski, M.; Kalwasińska, A.; Krawiec, A.; Kosobucki, P.; Walczak, M. Comamonadaceae OTU as a remnant of an ancient microbial community in sulfidic waters. Microb. Ecol., 2019, 78(1), 85-101. doi: 10.1007/s00248-018-1270-5 PMID: 30341500
- Brglez, . Risk assessment of toxic hydrogen sulfide concentrations on swine farms. J. Clean. Prod., 2021, 312, 127746. doi: 10.1016/j.jclepro.2021.127746
- Wu, DD; Wang, DY; Li, HM; Guo, JC; Duan, SF; Ji, XY Hydrogen sulfide as a novel regulatory factor in liver health and disease. Oxid Med Cell Longev, 2019, 2019, 3831713. doi: 10.1155/2019/3831713
- Tomasova, L.; Konopelski, P.; Ufnal, M. Gut bacteria and hydrogen sulfide: the new old players in circulatory system homeostasis. Molecules, 2016, 21(11), 1558. doi: 10.3390/molecules21111558 PMID: 27869680
- Aroca, A.; Gotor, C.; Bassham, D.C.; Romero, L.C. Hydrogen sulfide: From a toxic molecule to a key molecule of cell life. Antioxidants, 2020, 9(7), 621. doi: 10.3390/antiox9070621 PMID: 32679888
- Munteanu, C.; Dogaru, G.; Rotariu, M.; Onose, G. Therapeutic gases used in balneotherapy and rehabilitation medicine - scientific relevance in the last ten years (2011 2020) - Synthetic literature review. Balneo PRM Res. J., 12(2)
- Cao, X.; Ding, L.; Xie, Z.; Yang, Y.; Whiteman, M.; Moore, P.K.; Bian, J.S. A review of hydrogen sulfide synthesis, metabolism, and measurement: Is modulation of hydrogen sulfide a novel therapeutic for cancer? Antioxid. Redox Signal., 2019, 31(1), 1-38. doi: 10.1089/ars.2017.7058 PMID: 29790379
- Mys, L.A.; Strutynska, N.A.; Goshovska, Y.V.; Sagach, V.F. Stimulation of the endogenous hydrogen sulfide synthesis suppresses oxidativenitrosative stress and restores endothelial-dependent vasorelaxation in old rats. Can. J. Physiol. Pharmacol., 2020, 98(5), 275-281. doi: 10.1139/cjpp-2019-0411 PMID: 31846354
- Zhang, Q.; Liu, Y.; Jia, X.; He, Y.; Zhang, R.; Guan, T.; Zhang, Q.; Yang, Y.; Liu, Y. Fluorescence turn offon mechanism of selective chemosensor for hydrogen sulfide: A theoretical perspective. J. Mol. Liq., 2021, 338, 116679. doi: 10.1016/j.molliq.2021.116679
- Panthi, S.; Manandhar, S.; Gautam, K. Hydrogen sulfide, nitric oxide, and neurodegenerative disorders. Transl. Neurodegener., 2018, 7(1), 3. doi: 10.1186/s40035-018-0108-x PMID: 29456842
- Malagrinò, F; Zuhra, K; Mascolo, L; Mastronicola, D; Vicente, JB; Forte, E Hydrogen sulfide oxidation: Adaptive changes in mitochondria of SW480 colorectal cancer cells upon exposure to hypoxia. Oxid. Med. Cell. Longev., 2019, 2019 doi: 10.1155/2019/8102936
- Szabo, C. Hydrogen sulfide, an endogenous stimulator of mitochondrial function in cancer cells. Cells, 2021, 10(2), 220. doi: 10.3390/cells10020220 PMID: 33499368
- Xiao, Q.; Ying, J.; Xiang, L.; Zhang, C. The biologic effect of hydrogen sulfide and its function in various diseases. Medicine, 2018, 97(44), e13065. doi: 10.1097/MD.0000000000013065 PMID: 30383685
- Wang, R. Physiological implications of hydrogen sulfide: a whiff exploration that blossomed. Physiol. Rev., 2012, 92(2), 791-896. doi: 10.1152/physrev.00017.2011 PMID: 22535897
- Lisjak, M.; Srivastava, N.; Teklic, T.; Civale, L.; Lewandowski, K.; Wilson, I.; Wood, M.E.; Whiteman, M.; Hancock, J.T. A novel hydrogen sulfide donor causes stomatal opening and reduces nitric oxide accumulation. Plant Physiol. Biochem., 2010, 48(12), 931-935. doi: 10.1016/j.plaphy.2010.09.016 PMID: 20970349
- Li, Z.G. Hydrogen sulfide: A multifunctional gaseous molecule in plants. Russ. J. Plant Physiol., 2013, 60(6), 733-740. doi: 10.1134/S1021443713060058
- Powell, C.R.; Dillon, K.M.; Matson, J.B. A review of hydrogen sulfide (H2S) donors: Chemistry and potential therapeutic applications. Biochem. Pharmacol., 2018, 149, 110-123. doi: 10.1016/j.bcp.2017.11.014 PMID: 29175421
- Perlot, T.; Penninger, J.M. ACE2 From the reninangiotensin system to gut microbiota and malnutrition. Microbes Infect., 2013, 15(13), 866-873. doi: 10.1016/j.micinf.2013.08.003 PMID: 23962453
- Galanopoulos, M.; Gkeros, F.; Doukatas, A.; Karianakis, G.; Pontas, C.; Tsoukalas, N.; Viazis, N.; Liatsos, C.; Mantzaris, G.J. COVID-19 pandemic: Pathophysiology and manifestations from the gastrointestinal tract. World J. Gastroenterol., 2020, 26(31), 4579-4588. doi: 10.3748/wjg.v26.i31.4579 PMID: 32884218
- Livanos, A.E.; Jha, D.; Cossarini, F.; Gonzalez-Reiche, A.S.; Tokuyama, M.; Aydillo, T. Gastrointestinal involvement attenuates COVID-19 severity and mortality. MedRxiv, 2020. doi: 10.1101/2020.09.07.20187666
- Xiao, F; Tang, M; Zheng, X; Liu, Y; Li, X; Shan, H Evidence for gastrointestinal infection of SARS-CoV-2. Gastroenterology, 2020, 158(6), 1831-1833. e3.
- Massironi, S.; Viganò, C.; Dioscoridi, L.; Filippi, E.; Pagliarulo, M.; Manfredi, G.; Conti, C.B.; Signorelli, C.; Redaelli, A.E.; Bonato, G.; Iiritano, E.; Frego, R.; Zucchini, N.; Ungari, M.; Pedaci, M.; Bono, F.; Di Bella, C.; Buscarini, E.; Mutignani, M.; Penagini, R.; Dinelli, M.E.; Invernizzi, P. Endoscopic findings in patients infected with 2019 novel coronavirus in Lombardy, Italy. Clin. Gastroenterol. Hepatol., 2020, 18(10), 2375-2377. doi: 10.1016/j.cgh.2020.05.045 PMID: 32480008
- Hunt, R.H.; East, J.E.; Lanas, A.; Malfertheiner, P.; Satsangi, J.; Scarpignato, C.; Webb, G.J. COVID-19 and gastrointestinal disease: Implications for the gastroenterologist. Dig. Dis., 2021, 39(2), 119-139. doi: 10.1159/000512152 PMID: 33040064
- Bourgonje, A.R.; Abdulle, A.E.; Timens, W.; Hillebrands, J.L.; Navis, G.J.; Gordijn, S.J.; Bolling, M.C.; Dijkstra, G.; Voors, A.A.; Osterhaus, A.D.M.E.; Voort, P.H.J.; Mulder, D.J.; Goor, H. Angiotensin-converting enzyme 2 (ACE2), SARS-CoV-2 and the pathophysiology of coronavirus disease 2019 (COVID-19). J. Pathol., 2020, 251(3), 228-248. doi: 10.1002/path.5471 PMID: 32418199
- Cao, X. COVID-19: Immunopathology and its implications for therapy. Nat. Rev. Immunol., 2020, 20(5), 269-270. doi: 10.1038/s41577-020-0308-3 PMID: 32273594
- Fara, A.; Mitrev, Z.; Rosalia, R.A.; Assas, B.M. Cytokine storm and COVID-19: A chronicle of pro-inflammatory cytokines. Open Biol., 2020, 10(9), 200160. doi: 10.1098/rsob.200160 PMID: 32961074
- Mehta, P.; McAuley, D.F.; Brown, M.; Sanchez, E.; Tattersall, R.S.; Manson, J.J. COVID-19: Consider cytokine storm syndromes and immunosuppression. Lancet, 2020, 395(10229), 1033-1034. doi: 10.1016/S0140-6736(20)30628-0 PMID: 32192578
- Li, Y.; Xiao, S.Y. Hepatic involvement in COVID-19 patients: Pathology, pathogenesis, and clinical implications. J. Med. Virol., 2020, 92(9), 1491-1494. doi: 10.1002/jmv.25973 PMID: 32369204
- Bloom, P.P.; Meyerowitz, E.A.; Reinus, Z.; Daidone, M.; Gustafson, J.; Kim, A.Y.; Schaefer, E.; Chung, R.T. Liver biochemistries in hospitalized patients with COVID-19. Hepatology, 2021, 73(3), 890-900. doi: 10.1002/hep.31326 PMID: 32415860
- Cai, Q.; Huang, D.; Yu, H.; Zhu, Z.; Xia, Z.; Su, Y.; Li, Z.; Zhou, G.; Gou, J.; Qu, J.; Sun, Y.; Liu, Y.; He, Q.; Chen, J.; Liu, L.; Xu, L. COVID-19: Abnormal liver function tests. J. Hepatol., 2020, 73(3), 566-574. doi: 10.1016/j.jhep.2020.04.006 PMID: 32298767
- Paramasivam, A.; Priyadharsini, J.V.; Raghunandhakumar, S.; Elumalai, P. A novel COVID-19 and its effects on cardiovascular disease. Hypertens. Res., 2020, 43(7), 729-730. doi: 10.1038/s41440-020-0461-x PMID: 32355222
- Lo Presti, E.; Nuzzo, D.; Al Mahmeed, W.; Al-Rasadi, K.; Al-Alawi, K.; Banach, M.; Banerjee, Y.; Ceriello, A.; Cesur, M.; Cosentino, F.; Firenze, A.; Galia, M.; Goh, S.Y.; Janez, A.; Kalra, S.; Kapoor, N.; Kempler, P.; Lessan, N.; Lotufo, P.; Papanas, N.; Rizvi, A.A.; Sahebkar, A.; Santos, R.D.; Stoian, A.P.; Toth, P.P.; Viswanathan, V.; Rizzo, M. Molecular and pro-inflammatory aspects of COVID-19: The impact on cardiometabolic health. Biochim. Biophys. Acta Mol. Basis Dis., 2022, 1868(12), 166559. doi: 10.1016/j.bbadis.2022.166559 PMID: 36174875
- Moayed, M.S.; Rahimi-Bashar, F.; Vahedian-Azimi, A.; Sathyapalan, T.; Guest, P.C.; Jamialahmadi, T. Cardiac injury in COVID-19: A systematic review. Adv Exp Med Biol, 2021, 1321, 325-333. doi: 10.1007/978-3-030-59261-5_29
- Saghafi, N.; Rezaee, S.A.; Momtazi-Borojeni, A.A.; Tavasolian, F.; Sathyapalan, T.; Abdollahi, E.; Sahebkar, A. The therapeutic potential of regulatory T cells in reducing cardiovascular complications in patients with severe COVID-19. Life Sci., 2022, 294, 120392. doi: 10.1016/j.lfs.2022.120392 PMID: 35149115
- Tajbakhsh, A.; Gheibi Hayat, S.M.; Taghizadeh, H.; Akbari, A.; inabadi, M.; Savardashtaki, A.; Johnston, T.P.; Sahebkar, A. COVID-19 and cardiac injury: Clinical manifestations, biomarkers, mechanisms, diagnosis, treatment, and follow up. Expert Rev. Anti Infect. Ther., 2021, 19(3), 345-357. doi: 10.1080/14787210.2020.1822737 PMID: 32921216
- Vicenzi, M.; Ruscica, M.; Jamialahmadi, T.; Sahebkar, A. Cardiovascular complications of COVID-19: toward better understanding, diagnosis, monitoring and management. Expert Rev. Anti Infect. Ther., 2022, 20(3), 325-326. doi: 10.1080/14787210.2021.1964695 PMID: 34343449
- Bansal, M. Cardiovascular disease and COVID-19. Diabetes Metab. Syndr., 2020, 14(3), 247-250. doi: 10.1016/j.dsx.2020.03.013 PMID: 32247212
- P, S.; v, A. COVID-19 and cardiovascular disease. Res. J. Med. Sci, 2020, 8(S1), 69-73. doi: 10.17727/JMSR.2020/8S1-8
- Lakkireddy, D.R.; Chung, M.K.; Gopinathannair, R.; Patton, K.K.; Gluckman, T.J.; Turagam, M.; Cheung, J.; Patel, P.; Sotomonte, J.; Lampert, R.; Han, J.K.; Rajagopalan, B.; Eckhardt, L.; Joglar, J.; Sandau, K.; Olshansky, B.; Wan, E.; Noseworthy, P.A.; Leal, M.; Kaufman, E.; Gutierrez, A.; Marine, J.E.; Wang, P.J.; Russo, A.M. Guidance for cardiac electrophysiology during the COVID-19 pandemic from the heart rhythm society COVID-19 task force; Electrophysiology section of the american college of cardiology; and the electrocardiography and arrhythmias committee of the council on clinical cardiology, American Heart Association. Circulation, 2020, 141(21), e823-e831. doi: 10.1161/CIRCULATIONAHA.120.047063 PMID: 32228309
- Varkey, J.N.; Frishman, W.H. Arrhythmogenesis and COVID-19. Cardiology, 2021, 29(6), 289-291. PMID: 34261901
- Zanza, C.; Racca, F.; Longhitano, Y.; Piccioni, A.; Franceschi, F.; Artico, M.; Abenavoli, L.; Maiese, A.; Passaro, G.; Volonnino, G.; La Russa, R. Risk management and treatment of coagulation disorders related to COVID-19 infection. Int. J. Environ. Res. Public Health, 2021, 18(3), 1268. doi: 10.3390/ijerph18031268 PMID: 33572570
- Ronco, C.; Reis, T. Kidney involvement in COVID-19 and rationale for extracorporeal therapies. Nat. Rev. Nephrol., 2020, 16(6), 308-310. doi: 10.1038/s41581-020-0284-7 PMID: 32273593
- Puelles, V.G.; Lütgehetmann, M.; Lindenmeyer, M.T.; Sperhake, J.P.; Wong, M.N.; Allweiss, L.; Chilla, S.; Heinemann, A.; Wanner, N.; Liu, S.; Braun, F.; Lu, S.; Pfefferle, S.; Schröder, A.S.; Edler, C.; Gross, O.; Glatzel, M.; Wichmann, D.; Wiech, T.; Kluge, S.; Pueschel, K.; Aepfelbacher, M.; Huber, T.B. Multiorgan and renal tropism of SARS-CoV-2. N. Engl. J. Med., 2020, 383(6), 590-592. doi: 10.1056/NEJMc2011400 PMID: 32402155
- Benedetti, C.; Waldman, M.; Zaza, G.; Riella, L.V.; Cravedi, P. COVID-19 and the kidneys: An update. Front. Med., 2020, 7, 423. doi: 10.3389/fmed.2020.00423 PMID: 32793615
- Kimura, H. Hydrogen sulfide: its production and functions; Wiley Online Library, 2011.
- Kimura, H. Hydrogen sulfide: From brain to gut. Antioxid. Redox Signal., 2010, 12(9), 1111-1123. doi: 10.1089/ars.2009.2919 PMID: 19803743
- Chen, M.; Pritchard, C.; Fortune, D.; Kodi, P.; Grados, M. Hydrogen sulfide: A target to modulate oxidative stress and neuroplasticity for the treatment of pathological anxiety. Expert Rev. Neurother., 2020, 20(1), 109-121. doi: 10.1080/14737175.2019.1668270 PMID: 31530193
- Zhang, J; Zhang, S; Shan, H; Zhang, M Biologic effect of hydrogen sulfide and its role in traumatic brain injury. Oxid Med Cell Longev, 2020, 2020, 7301615. doi: 10.1155/2020/7301615
- Zhang, X.; Bian, J.S. Hydrogen sulfide: A neuromodulator and neuroprotectant in the central nervous system. ACS Chem. Neurosci., 2014, 5(10), 876-883. doi: 10.1021/cn500185g PMID: 25230373
- King, A.L.; Lefer, D.J. Cytoprotective actions of hydrogen sulfide in ischaemia-reperfusion injury. Exp. Physiol., 2011, 96(9), 840-846. doi: 10.1113/expphysiol.2011.059725 PMID: 21666033
- Guidotti, T.L. Hydrogen sulfide. Int. J. Toxicol., 2010, 29(6), 569-581. doi: 10.1177/1091581810384882 PMID: 21076123
- Jin, Z.; Chan, H.; Ning, J.; Lu, K.; Ma, D. The role of hydrogen sulfide in pathologies of the vital organs and its clinical application. J. Physiol. Pharmacol., 2015, 66(2), 169-179. PMID: 25903948
- Kimura, H. Hydrogen sulfide: Its production, release and functions. Amino Acids, 2011, 41(1), 113-121. doi: 10.1007/s00726-010-0510-x PMID: 20191298
- Wang, R. The gasotransmitter role of hydrogen sulfide. Antioxid. Redox Signal., 2003, 5(4), 493-501. doi: 10.1089/152308603768295249 PMID: 13678538
- Cao, X.; Bian, J.S. The role of hydrogen sulfide in renal system. Front. Pharmacol., 2016, 7, 385. doi: 10.3389/fphar.2016.00385 PMID: 27803669
- Meng, G.; Ma, Y.; Xie, L.; Ferro, A.; Ji, Y. Emerging role of hydrogen sulfide in hypertension and related cardiovascular diseases. Br. J. Pharmacol., 2015, 172(23), 5501-5511. doi: 10.1111/bph.12900 PMID: 25204754
- Liu, Y.H.; Bian, J.S. Bicarbonate-dependent effect of hydrogen sulfide on vascular contractility in rat aortic rings. Am. J. Physiol. Cell Physiol., 2010, 299(4), C866-C872. doi: 10.1152/ajpcell.00105.2010 PMID: 20660164
- Lee, Z.W.; Zhou, J.; Chen, C.S.; Zhao, Y.; Tan, C.H.; Li, L.; Moore, P.K.; Deng, L.W. The slow-releasing hydrogen sulfide donor, GYY4137, exhibits novel anti-cancer effects in vitro and in vivo. PLoS One, 2011, 6(6), e21077. doi: 10.1371/journal.pone.0021077 PMID: 21701688
- Farrugia, G.; Szurszewski, J.H. Carbon monoxide, hydrogen sulfide, and nitric oxide as signaling molecules in the gastrointestinal tract. Gastroenterology, 2014, 147(2), 303-313. doi: 10.1053/j.gastro.2014.04.041 PMID: 24798417
- Beauchamp, R.O., Jr; Bus, J.S.; Popp, J.A.; Boreiko, C.J.; Andjelkovich, D.A.; Leber, P. A critical review of the literature on hydrogen sulfide toxicity. CRC Crit. Rev. Toxicol., 1984, 13(1), 25-97. doi: 10.3109/10408448409029321 PMID: 6378532
- Nicholls, P.; Marshall, D.C.; Cooper, C.E.; Wilson, M.T. Sulfide inhibition of and metabolism by cytochrome c oxidase. Biochem. Soc. Trans., 2013, 41(5), 1312-1316. doi: 10.1042/BST20130070 PMID: 24059525
- Rubright, S.L.M.; Pearce, L.L.; Peterson, J. Environmental toxicology of hydrogen sulfide. Nitric. Oxide., 2017, 71, 1-13. doi: 10.1016/j.niox.2017.09.011
- Dilek, N.; Papapetropoulos, A.; Toliver-Kinsky, T.; Szabo, C. Hydrogen sulfide: An endogenous regulator of the immune system. Pharmacol. Res., 2020, 161, 105119. doi: 10.1016/j.phrs.2020.105119 PMID: 32781284
- Rodrigues, C.; Percival, S. Immunomodulatory effects of glutathione, garlic derivatives, and hydrogen sulfide. Nutrients, 2019, 11(2), 295. doi: 10.3390/nu11020295 PMID: 30704060
- Wang, H.; Shi, X.; Qiu, M.; Lv, S.; Zheng, H.; Niu, B.; Liu, H. Hydrogen sulfide plays an important role by influencing NLRP3 inflammasome. Int. J. Biol. Sci., 2020, 16(14), 2752-2760. doi: 10.7150/ijbs.47595 PMID: 33110394
- Rose, P.; Zhu, Y-Z.; Moore, P.K. Hydrogen sulfide and the immune system. In: Advances in Hydrogen Sulfide Biology; Springer, 2021; pp. 99-128. doi: 10.1007/978-981-16-0991-6_5
- Tian, M.; Wang, Y.; Lu, Y.Q.; Yan, M.; Jiang, Y.H.; Zhao, D.Y. Correlation between serum H2S and pulmonary function in children with bronchial asthma. Mol. Med. Rep., 2012, 6(2), 335-338. doi: 10.3892/mmr.2012.904 PMID: 22562181
- Costantino, M.; Lampa, E.; Nappi, G. Effectiveness of sulphur spa therapy with politzer in the treatment of rhinogenic deafness. Acta Otorhinolaryngol. Ital., 2006, 26(1), 7-13. PMID: 18383751
- Bazhanov, N.; Ansar, M.; Ivanciuc, T.; Garofalo, R.P.; Casola, A. Hydrogen sulfide: A novel player in airway development, pathophysiology of respiratory diseases, and antiviral defenses. Am. J. Respir. Cell Mol. Biol., 2017, 57(4), 403-410. doi: 10.1165/rcmb.2017-0114TR PMID: 28481637
- Calderone, V.; Martelli, A.; Testai, L.; Citi, V.; Breschi, M.C. Using hydrogen sulfide to design and develop drugs. Expert Opin. Drug Discov., 2016, 11(2), 163-175. doi: 10.1517/17460441.2016.1122590 PMID: 26593865
- King, A.L.; Polhemus, D.J.; Bhushan, S.; Otsuka, H.; Kondo, K.; Nicholson, C.K.; Bradley, J.M.; Islam, K.N.; Calvert, J.W.; Tao, Y.X.; Dugas, T.R.; Kelley, E.E.; Elrod, J.W.; Huang, P.L.; Wang, R.; Lefer, D.J. Hydrogen sulfide cytoprotective signaling is endothelial nitric oxide synthase-nitric oxide dependent. Proc. Natl. Acad. Sci., 2014, 111(8), 3182-3187. doi: 10.1073/pnas.1321871111 PMID: 24516168
- Wang, R. Signaling pathways for the vascular effects of hydrogen sulfide. Curr. Opin. Nephrol. Hypertens., 2011, 20(2), 107-112. doi: 10.1097/MNH.0b013e3283430651 PMID: 21301337
- Perry, M.M.; Hui, C.K.; Whiteman, M.; Wood, M.E.; Adcock, I.; Kirkham, P.; Michaeloudes, C.; Chung, K.F. Hydrogen sulfide inhibits proliferation and release of IL-8 from human airway smooth muscle cells. Am. J. Respir. Cell Mol. Biol., 2011, 45(4), 746-752. doi: 10.1165/rcmb.2010-0304OC PMID: 21297080
- Zhang, G.; Wang, P.; Yang, G.; Cao, Q.; Wang, R. The inhibitory role of hydrogen sulfide in airway hyperresponsiveness and inflammation in a mouse model of asthma. Am. J. Pathol., 2013, 182(4), 1188-1195. doi: 10.1016/j.ajpath.2012.12.008 PMID: 23395089
- Saito, J; Zhang, Q; Hui, C; Macedo, P; Gibeon, D; Menzies-Gow, A Sputum hydrogen sulfide as a novel biomarker of obstructive neutrophilic asthma. J Allergy Clin Immunol, 2013, 131(1), 232-234. e3.. doi: 10.1016/j.jaci.2012.10.005
- Chen, Y.H.; Yao, W.Z.; Geng, B.; Ding, Y.L.; Lu, M.; Zhao, M.W.; Tang, C.S. Endogenous hydrogen sulfide in patients with COPD. Chest, 2005, 128(5), 3205-3211. doi: 10.1378/chest.128.5.3205 PMID: 16304263
- Chen, Y.H.; Wu, R.; Geng, B.; Qi, Y.F.; Wang, P.P.; Yao, W.Z.; Tang, C.S. Endogenous hydrogen sulfide reduces airway inflammation and remodeling in a rat model of asthma. Cytokine, 2009, 45(2), 117-123. doi: 10.1016/j.cyto.2008.11.009 PMID: 19117767
- Bates, M.N.; Crane, J.; Balmes, J.R.; Garrett, N. Investigation of hydrogen sulfide exposure and lung function, asthma and chronic obstructive pulmonary disease in a geothermal area of New Zealand. PLoS One, 2015, 10(3), e0122062. doi: 10.1371/journal.pone.0122062 PMID: 25822819
- Suzuki, Y.; Saito, J.; Kikuchi, M.; Uematsu, M.; Fukuhara, A.; Sato, S.; Munakata, M. Sputum-to-serum hydrogen sulphide ratio as a novel biomarker of predicting future risks of asthma exacerbation. Clin. Exp. Allergy, 2018, 48(9), 1155-1163. doi: 10.1111/cea.13173 PMID: 29758106
- Saito, J.; Mackay, A.J.; Rossios, C.; Gibeon, D.; Macedo, P.; Sinharay, R.; Bhavsar, P.K.; Wedzicha, J.A.; Chung, K.F. Sputum-to-serum hydrogen sulfide ratio in COPD. Thorax, 2014, 69(10), 903-909. doi: 10.1136/thoraxjnl-2013-204868 PMID: 25035127
- Wang, L.; Yu, H.; Zhang, Y.; Dong, C.; Liu, B. Intravenous controlled-release hydrogen sulfide protects against ventilator-induced lung injury. Exp. Lung Res., 2017, 43(9-10), 370-377. doi: 10.1080/01902148.2017.1381780 PMID: 29206492
- Basic, A.; Dahlén, G. Hydrogen sulfide production from subgingival plaque samples. Anaerobe, 2015, 35(Pt A), 21-27. doi: 10.1016/j.anaerobe.2014.09.017 PMID: 25280920
- Yang, G. H 2 S as a potential defense against COVID-19? Am. J. Physiol. Cell Physiol., 2020, 319(2), C244-C249. doi: 10.1152/ajpcell.00187.2020 PMID: 32515982
- Renieris, G; Katrini, K; Damoulari, C; Akinosoglou, K; Psarrakis, C; Kyriakopoulou, M Serum hydrogen sulfide and outcome association in pneumonia by the SARS-CoV-2 corona virus. Shock., 2020, 54(5), 633-637.
- Gubernatorova, E.O.; Gorshkova, E.A.; Polinova, A.I.; Drutskaya, M.S. IL-6: Relevance for immunopathology of SARS-CoV-2. Cytokine Growth Factor Rev., 2020, 53, 13-24. doi: 10.1016/j.cytogfr.2020.05.009 PMID: 32475759
- Kodela, R.; Nath, N.; Chattopadhyay, M.; Nesbitt, D.E.; Velázquez-Martínez, C.A.; Kashfi, K. Hydrogen sulfide-releasing naproxen suppresses colon cancer cell growth and inhibits NF-κB signaling. Drug Des. Devel. Ther., 2015, 9, 4873-4882. PMID: 26346117
- Ruan, Q.; Yang, K.; Wang, W.; Jiang, L.; Song, J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med., 2020, 46(5), 846-848. doi: 10.1007/s00134-020-05991-x PMID: 32125452
- Zhang, C.; Wu, Z.; Li, J.W.; Zhao, H.; Wang, G.Q. Cytokine release syndrome in severe COVID-19: interleukin-6 receptor antagonist tocilizumab may be the key to reduce mortality. Int. J. Antimicrob. Agents, 2020, 55(5), 105954. doi: 10.1016/j.ijantimicag.2020.105954 PMID: 32234467
- Tokuda, K.; Kida, K.; Marutani, E.; Crimi, E.; Bougaki, M.; Khatri, A.; Kimura, H.; Ichinose, F. Inhaled hydrogen sulfide prevents endotoxin-induced systemic inflammation and improves survival by altering sulfide metabolism in mice. Antioxid. Redox Signal., 2012, 17(1), 11-21. doi: 10.1089/ars.2011.4363 PMID: 22221071
- Wang, D; Hu, B; Hu, C; Zhu, F; Liu, X; Zhang, J Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirusinfected pneumonia in Wuhan, China. jama, 2020, 323(11), 1061-1069.
- Miller, T.W.; Wang, E.A.; Gould, S.; Stein, E.V.; Kaur, S.; Lim, L.; Amarnath, S.; Fowler, D.H.; Roberts, D.D. Hydrogen sulfide is an endogenous potentiator of T cell activation. J. Biol. Chem., 2012, 287(6), 4211-4221. doi: 10.1074/jbc.M111.307819 PMID: 22167178
- Dominic, P.; Ahmad, J.; Bhandari, R.; Pardue, S.; Solorzano, J.; Jaisingh, K.; Watts, M.; Bailey, S.R.; Orr, A.W.; Kevil, C.G.; Kolluru, G.K. Decreased availability of nitric oxide and hydrogen sulfide is a hallmark of COVID-19. Redox Biol., 2021, 43, 101982. doi: 10.1016/j.redox.2021.101982 PMID: 34020311
- Oldenburg, C.E.; Doan, T. Azithromycin for severe COVID-19. Lancet, 2020, 396(10256), 936-937. doi: 10.1016/S0140-6736(20)31863-8 PMID: 32896293
- Kimura, H. The physiological role of hydrogen sulfide and beyond. Nitric Oxide, 2014, 41, 4-10. doi: 10.1016/j.niox.2014.01.002 PMID: 24491257
- Kimura, H. Production and physiological effects of hydrogen sulfide. Antioxid. Redox Signal., 2014, 20(5), 783-793. doi: 10.1089/ars.2013.5309 PMID: 23581969
- Bazhanov, N; Escaffre, O; Freiberg, A; Garofalo, R; Casola, A Broad-range antiviral activity of hydrogen sulfide against highly pathogenic RNA viruses. Sci Rep, 2017, 7, 41029. doi: 10.1038/srep41029
- Ivanciuc, T.; Sbrana, E.; Ansar, M.; Bazhanov, N.; Szabo, C.; Casola, A.; Garofalo, R.P. Hydrogen sulfide is an antiviral and antiinflammatory endogenous gasotransmitter in the airways. Role in respiratory syncytial virus infection. Am. J. Respir. Cell Mol. Biol., 2016, 55(5), 684-696. doi: 10.1165/rcmb.2015-0385OC PMID: 27314446
- Mikami, Y.; Shibuya, N.; Kimura, Y.; Nagahara, N.; Yamada, M.; Kimura, H. Hydrogen sulfide protects the retina from light-induced degeneration by the modulation of Ca2+ influx. J. Biol. Chem., 2011, 286(45), 39379-39386. doi: 10.1074/jbc.M111.298208 PMID: 21937432
- Nagai, Y.; Tsugane, M.; Oka, J.I.; Kimura, H. Hydrogen sulfide induces calcium waves in astrocytes. FASEB J., 2004, 18(3), 557-559. doi: 10.1096/fj.03-1052fje PMID: 14734631
- Bartman, C.M.; Schiliro, M.; Helan, M.; Prakash, Y.S.; Linden, D.; Pabelick, C. Hydrogen sulfide, oxygen, and calcium regulation in developing human airway smooth muscle. FASEB J., 2020, 34(9), 12991-13004. doi: 10.1096/fj.202001180R PMID: 32777143
- Zhang, J.; Wang, X.; Chen, Y.; Yao, W. Correlation between levels of exhaled hydrogen sulfide and airway inflammatory phenotype in patients with chronic persistent asthma. Respirology, 2014, 19(8), 1165-1169. doi: 10.1111/resp.12372 PMID: 25168466
- Wu, R.; Yao, W.Z.; Chen, Y.H.; Geng, B.; Lu, M.; Tang, C.S. The regulatory effect of endogenous hydrogen sulfide on acute asthma. Zhonghua Jie He He Hu Xi Za Zhi, 2007, 30(7), 522-526. PMID: 17961407
- Bourgonje, A.R.; Offringa, A.K.; van Eijk, L.E.; Abdulle, A.E.; Hillebrands, J.L.; van der Voort, P.H.J.; van Goor, H.; van Hezik, E.J. N-acetylcysteine and hydrogen sulfide in coronavirus disease 2019. Antioxid. Redox Signal., 2021, 35(14), 1207-1225. doi: 10.1089/ars.2020.8247 PMID: 33607929
Supplementary files
