A meta-analysis study of melatonin effect on the behavior of rats kept under standard conditions

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

It is known that the pineal gland hormone melatonin, synthesized during hours of darkness, regulates daily and seasonal changes in metabolism, reproduction and behavior. To date, many experimental studies have been conducted investigating the effects of exogenous melatonin administration on behavior in various tests in rats. The aim of this work is to use meta-analysis to investigate melatonin effects on the behavior of rats kept under standard conditions. We selected 57 publications for meta-analysis that studied melatonin monotherapy: 35 papers with the open field (OF) test, 23 papers with the elevated plus maze (EPM), 12 publications with the forced swim (FS) test, and 21 papers with the Morris pool (MP). The meta-analysis showed that a single peripheral administration of melatonin in low doses (≤ 1 mg/kg/day) increases the locomotor activity of rats in the OF test. Long-term administration of melatonin also contributed to an increase in the locomotor activity of rats. Melatonin has an anxiolytic effect, which is confirmed by an increase in the time spent by rats in the center of the OF test and in the open arms of EPM. A reduction in the immobilization period in the FS test indicates an antidepressant effect of the hormone. The anxiolytic and antidepressant effects were more pronounced in females than in males. No convincing evidence of a dose effect on the anxiolytic and antidepressant effects of melatonin was obtained. With melatonin therapy, there was a tendency to increase the time for rats to search for a platform in MP. In most studies, the hormone was administered intraperitoneally, and researchers usually used young animals. For these reasons, we were unable to correctly assess dependence of melatonin effects on the route of administration and the age of rats.

About the authors

N. V. Kuzmenko

Almazov National Medical Research Centre; First Pavlov State Medical University of St. Petersburg

Author for correspondence.
Email: nat.kuzmencko2011@yandex.ru
Russian Federation, St. Petersburg; St. Petersburg

V. A. Tsyrlin

Almazov National Medical Research Centre

Email: nat.kuzmencko2011@yandex.ru
Russian Federation, St. Petersburg

М. G. Pliss

Almazov National Medical Research Centre

Email: nat.kuzmencko2011@yandex.ru
Russian Federation, St. Petersburg

М. М. Galagudza

Almazov National Medical Research Centre

Email: nat.kuzmencko2011@yandex.ru
Russian Federation, St. Petersburg

References

  1. Wang YQ, Jiang YJ, Zou MS, Liu J, Zhao HQ, Wang YH (2022) Antidepressant actions of melatonin and melatonin receptor agonist: Focus on pathophysiology and treatment. Behav Brain Res 420: 113724. https://doi.org/10.1016/j.bbr.2021.113724
  2. Pérez-Lloret S, Cardinali DP (2021) Melatonin as a Chronobiotic and Cytoprotective Agent in Parkinson's Disease. Front Pharmacol 12: 650597. https://doi.org/10.3389/fphar.2021.650597
  3. Paribello P, Manchia M, Bosia M, Pinna F, Carpiniello B, Comai S (2022) Melatonin and aggressive behavior: A systematic review of the literature on preclinical and clinical evidence. J Pineal Res 72(4): e12794. https://doi.org/10.1111/jpi.12794
  4. Zakaria R, Ahmad AH, Othman Z (2016) The Potential Role of Melatonin on Memory Function: Lessons from Rodent Studies. Folia Biol (Praha) 62(5): 181–187. https://fb.cuni.cz/file/5818/fb2016a0022.pdf
  5. Sumsuzzman DM, Choi J, Jin Y, Hong Y (2021) Neurocognitive effects of melatonin treatment in healthy adults and individuals with Alzheimer's disease and insomnia: A systematic review and meta-analysis of randomized controlled trials. Neurosci Biobehav Rev 127: 459–473. https://doi.org/10.1016/j.neubiorev.2021.04.034
  6. Morera-Fumero AL, Abreu-Gonzalez P (2013) Role of melatonin in schizophrenia. Int J Mol Sci 14(5): 9037–9050. https://doi.org/10.3390/ijms14059037
  7. Muñoz-Jurado A, Escribano BM, Caballero-Villarraso J, Galván A, Agüera E, Santamaría A, Túnez I (2022) Melatonin and multiple sclerosis: Antioxidant, anti-inflammatory and immunomodulator mechanism of action. Inflammopharmacology 30(5): 1569–1596. https://doi.org/10.1007/s10787-022-01011-0
  8. Sadanandan N, Cozene B, Cho J, Park YJ, Saft M, Gonzales-Portillo B, Borlongan CV (2020) Melatonin-A Potent Therapeutic for Stroke and Stroke-Related Dementia. Antioxidants (Basel) 9(8): 672. https://doi.org/10.3390/antiox9080672
  9. Ng KY, Leong MK, Liang H, Paxinos G (2017) Melatonin receptors: Distribution in mammalian brain and their respective putative functions. Brain Struct Funct 222(7): 2921–2939. https://doi.org/10.1007/s00429-017-1439-6
  10. Richter HG, Torres-Farfan C, Garcia-Sesnich J, Abarzua-Catalan L, Henriquez MG, Alvarez-Felmer M, Gaete F, Rehren GE, Seron-Ferre M (2008) Rhythmic expression of functional MT1 melatonin receptors in the rat adrenal gland. Endocrinology 149(3): 995–1003. https://doi.org/10.1210/en.2007-1009
  11. Torres-Farfan C, Richter HG, Rojas-García P, Vergara M, Forcelledo ML, Valladares LE, Torrealba F, Valenzuela GJ, Serón-Ferré M (2003) mt1 Melatonin receptor in the primate adrenal gland: Inhibition of adrenocorticotropin-stimulated cortisol production by melatonin. J Clin Endocrinol Metab 88(1): 450–458. https://doi.org/10.1210/jc.2002-021048
  12. Кузьменко НВ, Цырлин ВА, Плисс МГ (2024) Метаанализ экспериментальных исследований влияния монотерапии мелатонином на уровень тиреоидных гормонов и глюкокортикоидов у крыс, содержащихся в стандартных условиях. Пробл эндокринол 70(5): 91–105. [Kuzmenko NV, Tsyrlin VA, Pliss MG (2024) Meta-analysis of experimental studies of the effect of melatonin monotherapy on the levels of thyroid hormones and glucocorticoids in rats kept under standard condition. Probl Endocrinol 70(5): 91–105. (In Russ)]. https://doi.org/10.14341/probl13396
  13. Cardinali DP, Cutrera R, Castrillón P, Esquifino AI (1996) Diurnal rhythms in ornithine decarboxylase activity and norepinephrine and acetylcholine synthesis and acetylcholine synthesis of rat submaxillary lymph nodes: Effect of pinealectomy, superior cervical ganglionectomy and melatonin replacement. Neuroimmunomodulation 3(2-3): 102–111. https://doi.org/10.1159/000097234
  14. Kachi T, Quay WB, Banerji TK, Imagawa T (1990) Effects of pinealectomy on the mitotic activity of adrenomedullary chromaffin cells in relation to time of day. J Pineal Res 8(1): 21–34. https://doi.org/10.1111/j.1600-079x.1990.tb00803.x
  15. Ivanisević-Milovanović OK, Demajo M, Karakasević A, Pantić V (1995) The effect of constant light on the concentration of catecholamines of the hypothalamus and adrenal glands, circulatory hadrenocorticotropin hormone and progesterone. J Endocrinol Invest 18(5): 378–383. https://doi.org/10.1007/BF03347842
  16. Cunnane SC, Manku MS, Oka M, Horrobin DF (1980) Enhanced vascular reactivity to various vasoconstrictor agents following pinealectomy in the rat: role of melatonin. Can J Physiol Pharmacol 58(3): 287–293. https://doi.org/10.1139/y80-049
  17. Kurcer Z, Sahna E, Olmez E (2006) Vascular reactivity to various vasoconstrictor agents and endothelium-dependent relaxations of rat thoracic aorta in the long-term period of pinealectomy. J Pharmacol Sci 101(4): 329–334. https://doi.org/10.1254/jphs.fp0060380
  18. Sugden D, Morris RD (1979) Changes in regional brain levels of tryptophan, 5-hydroxytryptamine, 5-hydroxyindoleacetic acid, dopamine and noradrenaline after pinealectomy in the rat. J Neurochem 32(5): 1593–1595. https://doi.org/10.1111/j.1471-4159.1979.tb11105.x
  19. Appenrodt E, Kröning G, Schwarzberg H (1999) Increased plasma ACTH in rats exposed to the elevated plus-maze is independent of the pineal gland. Psychoneuroendocrinology 24(8): 833–838. https://doi.org/10.1016/s0306-4530(99)00040-2
  20. Tchekalarova J, Atanasova M, Ivanova N, Boyadjiev N, Mitreva R, Georgieva K (2020) Endurance training exerts time-dependent modulation on depressive responses and circadian rhythms of corticosterone and BDNF in the rats with pinealectomy. Brain Res Bull 162: 40–48. https://doi.org/10.1016/j.brainresbull.2020.05.012
  21. Nenchovska Z, Atanasova M, Ivanova N, Mitreva R, Tchekalarova J (2022) Emotional Disturbance in Two Models of Melatonin Deficiency: A Comparative Study. Proc Bulgar Acad Sci 75(1): 143–149. https://doi.org/10.7546/CRABS.2022.01.17
  22. Kaya А, Karakaş А, Coşkun Н (2011) The effects of the time of the day and the pinealectomy on anxiety-like behaviour in male Wistar rats. Biol Rhythm Res 42(5): 367–383. https://doi.org/10.1080/09291016.2010.525380
  23. Tchekalarova J, Nenchovska Z, Kortenska L, Uzunova V, Georgieva I, Tzoneva R (2022) Impact of Melatonin Deficit on Emotional Status and Oxidative Stress-Induced Changes in Sphingomyelin and Cholesterol Level in Young Adult, Mature, and Aged Rats. Int J Mol Sci 23(5): 2809. https://doi.org/10.3390/ijms23052809
  24. Karakaş A, Coşkun H, Kaya A, Kücük A, Gündüz B (2011) The effects of the intraamygdalar melatonin injections on the anxiety like behavior and the spatial memory performance in male Wistar rats. Behav Brain Res 222(1): 141–150. https://doi.org/10.1016/j.bbr.2011.03.029
  25. Tapia-Osorio A, Salgado-Delgado R, Angeles-Castellanos M, Escobar C (2013) Disruption of circadian rhythms due to chronic constant light leads to depressive and anxiety-like behaviors in the rat. Behav Brain Res 252: 1–9. https://doi.org/10.1016/j.bbr.2013.05.028
  26. Sarena P, Sharma A, Urmera MT, Tambuwala MM, Aljabali AAA, Chellappan DK, Dua K, Taliyan R, Goyal R (2022) Chronic Light-Distorted Glutamate-Cortisol Signaling, Behavioral and Histological Markers, and Induced Oxidative Stress and Dementia: An Amelioration by Melatonin. ACS Chem Neurosci 13(11): 1604–1614. https://doi.org/10.1021/acschemneuro.1c00531
  27. Виноградова ИА (2006) Сравнительное изучение влияния различных световых режимов на психоэмоциональные проявления и двигательную активность у крыс. Вестн Новосибирск гос универ Cерия: биол клин мед 4(2): 69–77. [Vinogradova IA (2006) Comparative study of the influence of different light regimes on psychoemotional manifestations and movement activity of rats. Vestn Novosibirsk Gos Univer Series: biol clin med 4(2): 69–77. (In Russ)].
  28. Zaretsky DV, Zaretskaia MV, DiMicco JA (2016) Characterization of the relationship between spontaneous locomotor activity and cardiovascular parameters in conscious freely moving rats. Physiol Behav 154: 60–67. https://doi.org/10.1016/j.physbeh.2015.11.014
  29. Ostrowska Z, Kos-Kudla B, Nowak M, Swietochowska E, Marek B, Gorski J, Kajdaniuk D, Wolkowska K (2003) The relationship between bone metabolism, melatonin and other hormones in sham-operated and pinealectomized rats. Endocr Regul 37(4): 211–224.
  30. Konakchieva R, Mitev Y, Almeida OF, Patchev VK (1998) Chronic melatonin treatment counteracts glucocorticoid-induced dysregulation of the hypothalamic-pituitary-adrenal axis in the rat. Neuroendocrinology 67(3): 171м180. https://doi.org/10.1159/000054312
  31. Hermes B, Hiemke C, Reuss S (1994) Day- and nighttime content of monoamines and their metabolites in the pineal gland of rat and hamster. Neurosci Lett 179(1–2): 119–122. https://doi.org/10.1016/0304-3940(94)90949-0
  32. Himanshu, Dharmila, Sarkar D, Nutan (2020) A Review of Behavioral Tests to Evaluate Different Types of Anxiety and Anti-anxiety Effects. Clin Psychopharmacol Neurosci 18(3): 341–351. https://doi.org/10.9758/cpn.2020.18.3.341
  33. Bogdanova OV, Kanekar S, D'Anci KE, Renshaw PF (2013) Factors influencing behavior in the forced swim test. Physiol Behav 118: 227–239. https://doi.org/10.1016/j.physbeh.2013.05.012
  34. Othman MZ, Hassan Z, Che Has AT (2022) Morris water maze: a versatile and pertinent tool for assessing spatial learning and memory. Exp Anim 71(3): 264–280. https://doi.org/10.1538/expanim.21-0120
  35. Borenstein M, Hedges LV, Higgins JPT, Rothstein HR (2009) Introduction to Meta-analysis. Wiley: Chichester.
  36. Wilhelm EA, Jesse CR, Bortolatto CF, Nogueira CW (2013) Correlations between behavioural and oxidative parameters in a rat quinolinic acid model of Huntington's disease: protective effect of melatonin. Eur J Pharmacol 701(1–3): 65–72. https://doi.org/10.1016/j.ejphar.2013.01.007
  37. Бейер ЭВ, Хажбиев АА, Арушанян ЭБ (2013) Влияние мелатонина на поведенческую активность некоторых ноотропных средств. Экспер клин фармакол 76(10): 3–5. [Beĭer ÉV, Khazhbiev AA, Arushanian ÉB (2013) The optimizing influence of melatonin on the behavioral activity of cognitive enhancers. Eksp Klin Farmakol 76(10): 3–5. (In Russ)]. https://doi.org/10.30906/0869-2092-2013-76-10-3-5
  38. Golombek DA, Martini M, Cardinali DP (1993) Melatonin as an anxiolytic in rats: time dependence and interaction with the central GABAergic system. Eur J Pharmacol 237(2-3): 231–236. https://doi.org/10.1016/0014-2999(93)90273-k
  39. Gönenç S, Uysal N, Açikgöz O, Kayatekin BM, Sönmez A, Kiray M, Aksu I, Güleçer B, Topçu A, Semin I (2005) Effects of melatonin on oxidative stress and spatial memory impairment induced by acute ethanol treatment in rats. Physiol Res 54(3): 341–348.
  40. Hirai K, Kita M, Ohta H, Nishikawa H, Fujiwara Y, Ohkawa S, Miyamoto M (2005) Ramelteon (TAK-375) accelerates reentrainment of circadian rhythm after a phase advance of the light-dark cycle in rats. J Biol Rhythms 20(1): 27–37. https://doi.org/10.1177/0748730404269890
  41. Loiseau F, Le Bihan C, Hamon M, Thiébot MH (2006) Effects of melatonin and agomelatine in anxiety-related procedures in rats: interaction with diazepam. Eur Neuropsychopharmacol 16(6): 417–428. https://doi.org/10.1016/j.euroneuro.2005.11.007
  42. Ochoa-Sanchez R, Rainer Q, Comai S, Spadoni G, Bedini A, Rivara S, Fraschini F, Mor M, Tarzia G, Gobbi G (2012) Anxiolytic effects of the melatonin MT(2) receptor partial agonist UCM765: Comparison with melatonin and diazepam. Prog Neuropsychopharmacol Biol Psychiatry 39(2): 318–325. https://doi.org/10.1016/j.pnpbp.2012.07.003
  43. Плисс МГ, Кузьменко НВ, Рубанова НС, Цырлин ВА (2019) Дозозависимое действие мелатонина на функционирование сердечно-сосудистой системы и на поведение нормотензивных крыс разного возраста. Успехи геронтол 32(1): 76–84. [Pliss MG, Kuzmenko NV, Rubanova NS, Tsyrlin VA (2019) Dose-dependent effects of melatonin on the functioning of the cardiovascular system and on the behavior of normotensive rats of different ages. Adv Gerontol 32(1-2): 76–84. (In Russ)]. https://doi.org/10.1134/S2079057019030111
  44. Salami M, Talaei SA, Davari S, Hamidi G (2012) Interaction of visual experience and melatonin in the spatial task learning. Biol Rhythm Res 43(4): 385–396. https://doi.org/10.1080/09291016.2011.593849
  45. Yang Z, Li C, Huang F (2013) Melatonin impaired acquisition but not expression of contextual fear in rats. Neurosci Lett 552: 10–14. https://doi.org/10.1016/j.neulet.2013.07.025
  46. Abílio VC, Vera JA Jr, Ferreira LS, Duarte CR, Martins CR, Torres-Leite D, Ribeiro Rde A, Frussa-Filho R (2003) Effects of melatonin on behavioral dopaminergic supersensitivity. Life Sci 72(26): 3003–3015. https://doi.org/10.1016/s0024-3205(03)00231-5
  47. Ahmed MA, Ahmed HI, El-Morsy EM (2013) Melatonin protects against diazinon-induced neurobehavioral changes in rats. Neurochem Res 38(10): 2227–2236. https://doi.org/10.1007/s11064-013-1134-9
  48. Alghamdi BS (2022) The Effect of Melatonin and Exercise on Social Isolation-Related Behavioral Changes in Aged Rats. Front Aging Neurosci 14: 828965. https://doi.org/10.3389/fnagi.2022.828965
  49. Allagui MS, Feriani A, Saoudi M, Badraoui R, Bouoni Z, Nciri R, Murat JC, Elfeki A (2014) Effects of melatonin on aluminium-induced neurobehavioral and neurochemical changes in aging rats. Food Chem Toxicol 70: 84–93. https://doi.org/10.1016/j.fct.2014.03.043
  50. Арушанян ЭБ, Наумов СС (2010) Сравнительная оценка психотропной и хронотропной активности препаратов растительных адаптогенов и мелаксена. Экспер клин фармакол 1: 7–9. [Arushanian EB, Naumov SS (2010) Comparative experimental study of the psychotropic and chronotropic activity of adaptogenic phytopreparations and melaxen. Eksp Klin Farmakol 73(1): 7–9. (In Russ)]. https://doi.org/10.30906/0869-2092-2010-73-1-7-9
  51. Арушанян ЭБ, Попов АВ (2013) В низкой дозе мелатонин усиливает психотропную и хронотропную активность тофизопама у крыс. Экспер клин фармакол 76(4): 15–17. [Arushanian ÉB, Popov AV (2013) Pineal hormone melatonin in low doses potentiates psychotropic and chronotropic activity of tofisopam in rats. Eksp Klin Farmakol 76(4): 15–17. (In Russ)]. https://doi.org/10.30906/0869-2092-2013-76-4-15-17
  52. Aygun H, Savas Gul S (2018) Effects of melatonin and agomelatine on doxorubicin induced anxiety and depression-like behaviors in rats. Med Sci and Discov 5(7): 253–259. https://doi.org/10.17546/msd.433289
  53. Bassani TB, Gradowski RW, Zaminelli T, Barbiero JK, Santiago RM, Boschen SL, da Cunha C, Lima MM, Andreatini R, Vital MA (2014) Neuroprotective and antidepressant-like effects of melatonin in a rotenone-induced Parkinson's disease model in rats. Brain Res 1593: 95–105. https://doi.org/10.1016/j.brainres.2014.09.068
  54. Bavithra S, Selvakumar K, Sundareswaran L, Arunakaran J (2017) Neuroprotective Effect of Melatonin Against PCBs Induced Behavioural, Molecular and Histological Changes in Cerebral Cortex of Adult Male Wistar Rats. Neurochem Res 42(2): 428–438. https://doi.org/10.1007/s11064-016-2087-6
  55. Baydas G, Ozer M, Yasar A, Tuzcu M, Koz ST (2005) Melatonin improves learning and memory performances impaired by hyperhomocysteinemia in rats. Brain Res 1046(1-2): 187–194. https://doi.org/10.1016/j.brainres.2005.04.011
  56. Brotto LA, Barr AM, Gorzalka BB (2000) Sex differences in forced-swim and open-field test behaviours after chronic administration of melatonin. Eur J Pharmacol 402(1-2): 87–93. https://doi.org/10.1016/s0014-2999(00)00491-x
  57. Cao XJ, Wang M, Chen WH, Zhu DM, She JQ, Ruan DY (2009) Effects of chronic administration of melatonin on spatial learning ability and long-term potentiation in lead-exposed and control rats. Biomed Environ Sci 22(1): 70–75. https://doi.org/10.1016/S0895-3988(09)60025-8
  58. Chen LY, Renn TY, Liao WC, Mai FD, Ho YJ, Hsiao G, Lee AW, Chang HM (2017) Melatonin successfully rescues hippocampal bioenergetics and improves cognitive function following drug intoxication by promoting Nrf2-ARE signaling activity. J Pineal Res 63(2). https://doi.org/10.1111/jpi.12417
  59. Durappanavar PN, Nadoor P, Waghe P, Pavithra BH, Jayaramu GM (2019) Melatonin Ameliorates Neuropharmacological and Neurobiochemical Alterations Induced by Subchronic Exposure to Arsenic in Wistar Rats. Biol Trace Elem Res 190(1): 124–139. https://doi.org/10.1007/s12011-018-1537-1
  60. Dwivedi S, Nagarajan R, Hanif K, Siddiqui HH, Nath C, Shukla R (2013) Standardized Extract of Bacopa monniera Attenuates Okadaic Acid Induced Memory Dysfunction in Rats: Effect on Nrf2 Pathway. Evid Based Complement Alternat Med 2013: 294501. https://doi.org/10.1155/2013/294501
  61. El Mrabet FZ, Ouaaki S, Mesfioui A, El Hessni A, Ouichou A (2012) Pinealectomy and exogenous melatonin regulate anxiety-like and depressive-like behaviors in male and female Wistar rats. Neurosci Med 3 (4): 394–403. http://dx.doi.org/10.4236/nm.2012.34049
  62. Ergenc M, Ozacmak HS, Turan I, Ozacmak VH (2022) Melatonin reverses depressive and anxiety like-behaviours induced by diabetes: Involvement of oxidative stress, age, rage and S100B levels in the hippocampus and prefrontal cortex of rats. Arch Physiol Biochem 128(2): 402–410. https://doi.org/10.1080/13813455.2019.1684954
  63. Gáll Z, Boros B, Kelemen K, Urkon M, Zolcseak I, Márton K, Kolcsar M (2024) Melatonin improves cognitive dysfunction and decreases gliosis in the streptozotocin-induced rat model of sporadic Alzheimer's disease. Front Pharmacol 15: 1447757. https://doi.org/10.3389/fphar.2024.1447757
  64. Gomaa AM, Galal HM, Abou-Elgait AT (2017) Neuroprotective effects of melatonin administration against chronic immobilization stress in rats. Int J Physiol Pathophysiol Pharmacol 9(2): 16–27.
  65. Hill MN, Brotto LA, Lee TT, Gorzalka BB (2003) Corticosterone attenuates the antidepressant-like effects elicited by melatonin in the forced swim test in both male and female rats. Prog Neuropsychopharmacol Biol Psychiatry 27(6): 905–911. https://doi.org/10.1016/S0278-5846(03)00149-0
  66. Idowu AJ, Olatunji-Bello I (2015) The therapeutic potential of melatonin on neuronal function during normal ageing in male rats. J Afr Ass Physiol Sci 3(1): 36–40.
  67. Kamsrijai U, Wongchitrat P, Nopparat C, Satayavivad J, Govitrapong P (2020) Melatonin attenuates streptozotocin-induced Alzheimer-like features in hyperglycemic rats. Neurochem Int 132: 104601. https://doi.org/10.1016/j.neuint.2019.104601
  68. Karakas A, Coskun H, Kaya A (2011) The effects of pinealectomy, melatonin injections and implants on the spatial memory performance of male Wistar rats. Biol Rhythm Res 42(6): 457–472. https://doi.org/10.1080/09291016.2010.537443
  69. Krsková L, Vrabcová M, Zeman M (2007) Effect of melatonin on exploration and anxiety in normotensive and hypertensive rats with high activity of renin-angiotensin system. Neuroendocrinol Lett 28(3): 295–301.
  70. Kwon KJ, Lee EJ, Kim MK, Jeon SJ, Choi YY, Shin CY, Han SH (2015) The potential role of melatonin on sleep deprivation-induced cognitive impairments: implication of FMRP on cognitive function. Neuroscience 301: 403–414. https://doi.org/10.1016/j.neuroscience.2015.05.079
  71. Lamtai M, Azirar S, Zghari O, Ouakki S, El Hessni A, Mesfioui A, Ouichou A (2021) Melatonin Ameliorates Cadmium-Induced Affective and Cognitive Impairments and Hippocampal Oxidative Stress in Rat. Biol Trace Elem Res 199(4): 1445–1455. https://doi.org/10.1007/s12011-020-02247-z
  72. Liu XJ, Yuan L, Yang D, Han WN, Li QS, Yang W, Liu QS, Qi JS (2013) Melatonin protects against amyloid-β-induced impairments of hippocampal LTP and spatial learning in rats. Synapse 67(9): 626–636. https://doi.org/10.1002/syn.21677
  73. Liu Y, Ni C, Tang Y, Tian X, Zhou Y, Qian M, Li Z, Chui D, Guo X (2013) Melatonin attenuates isoflurane-induced acute memory impairments in aged rats. Basic Clin Pharmacol Toxicol 113(4): 215–220. https://doi.org/10.1111/bcpt.12079
  74. Mokhtari T, Yue LP, Hu L (2023) Exogenous melatonin alleviates neuropathic pain-induced affective disorders by suppressing NF-κB / NLRP3 pathway and apoptosis. Sci Rep13(1): 2111. https://doi.org/10.1038/s41598-023-28418-1
  75. Najafi N, Barangi S, Moosavi Z, Aghaee-Bakhtiari SH, Mehri S, Karimi G (2024) Melatonin Attenuates Arsenic-Induced Neurotoxicity in Rats Through the Regulation of miR-34a/miR-144 in Sirt1/Nrf2 Pathway. Biol Trace Elem Res 202(7): 3163–3179. https://doi.org/10.1007/s12011-023-03897-5
  76. Nedzvetsky VS, Nerush PA, Kirichenko SV (2003) Effects of Melatonin on Behavioral Reactions and on the Expression of NCAM in Rats. Neurophysiology 35(2): 102–107. https://doi.org/10.1023/A:1026012724578
  77. Norman TR, Cranston I, Irons JA, Gabriel C, Dekeyne A, Millan MJ, Mocaër E (2012) Agomelatine suppresses locomotor hyperactivity in olfactory bulbectomised rats: a comparison to melatonin and to the 5-HT(2c) antagonist, S32006. Eur J Pharmacol 674(1): 27–32. https://doi.org/10.1016/j.ejphar.2011.10.010
  78. Omeiza NA, Abdulrahim HA, Alagbonsi AI, Ezurike PU, Soluoku TK, Isiabor H, Alli-Oluwafuyi AA (2021) Melatonin salvages lead-induced neuro-cognitive shutdown, anxiety, and depressive-like symptoms via oxido-inflammatory and cholinergic mechanisms. Brain Behav 11(8): e2227. https://doi.org/10.1002/brb3.2227
  79. Ouakki S, Mrabet F, Lagbouri I, Hessni A, Mesfioui A, Pévet P, Challet E, Ouichou A (2013) Melatonin and Diazepam Affect Anxiety-Like and Depression-Like Behavior in Wistar Rats: Possible Interaction with Central GABA Neurotransmission. J Behav Brain Sci 3(7): 522–533. https://doi.org/10.4236/jbbs.2013.37055
  80. Promyo K, Iqbal F, Chaidee N, Chetsawang B (2020) Aluminum chloride-induced amyloid β accumulation and endoplasmic reticulum stress in rat brain are averted by melatonin. Food Chem Toxicol 146: 111829. https://doi.org/10.1016/j.fct.2020.111829
  81. Rezqaoui A, Boumlah S, El Hessni A, El Brouzi MY, El Hamzaoui A, Ibouzine-Dine L, Benkirane S, Adnani M, Mesfioui A (2024) Evaluating the Protective Effects of Melatonin Against Chronic Iron Administration in Male Wistar Rats: A Comparative Analysis of Affective, Cognitive, and Oxidative Stress with EDTA Chelator. Biol Trace Elem Res 202(10): 4531–4546. https://doi.org/10.1007/s12011-023-04006-2
  82. Rudnitskaya EA, Maksimova KY, Muraleva NA, Logvinov SV, Yanshole LV, Kolosova NG, Stefanova NA (2015) Beneficial effects of melatonin in a rat model of sporadic Alzheimer's disease. Biogerontology16(3): 303–316. https://doi.org/10.1007/s10522-014-9547-7
  83. Souza LC, Wilhelm EA, Bortolatto CF, Nogueira CW, Boeira SP, Jesse CR (2014) The protective effect of melatonin against brain oxidative stress and hyperlocomotion in a rat model of mania induced by ouabain. Behav Brain Res 271: 316–324. https://doi.org/10.1016/j.bbr.2014.06.030
  84. Spasojevic N, Stefanovic B, Jovanovic P, Dronjak S (2016) Anxiety and Hyperlocomotion Induced by Chronic Unpredictable Mild Stress Can Be Moderated with Melatonin Treatment. Folia Biol (Praha) 62(6): 250–257.
  85. Tasset I, Medina FJ, Peña J, Jimena I, Del Carmen Muñoz M, Salcedo M, Ruiz C, Feijóo M, Montilla P, Túnez I (2010) Olfactory bulbectomy induced oxidative and cell damage in rat: Protective effect of melatonin. Physiol Res 59(1): 105–112. https://doi.org/10.33549/physiolres.931684
  86. Tasset I, Agüera E, Olmo-Camacho R, Escribano B, Sánchez-López F, Delgado MJ, Cruz AH, Gascón F, Luque E, Peña J, Jimena IM, Túnez I (2011) Melatonin improves 3-nitropropionic acid induced behavioral alterations and neurotrophic factors levels. Prog Neuropsychopharmacol Biol Psychiatry 35(8): 1944–1949. https://doi.org/10.1016/j.pnpbp.2011.09.005
  87. Tzoneva R, Georgieva I, Ivanova N, Uzunova V, Nenchovska Z, Apostolova S, Stoyanova T, Tchekalarova J (2021) The Role of Melatonin on Behavioral Changes and Concomitant Oxidative Stress in icvAβ1-42 Rat Model with Pinealectomy. Int J Mol Sci 22(23): 12763. https://doi.org/10.3390/ijms222312763
  88. Uzbay T, Parlakpinar H, Akdag E, Celik T, Yararbas G, Ulusoy G, Acet A, Kose A, Kayir H (2013) Chronic melatonin treatment reverses disruption of prepulse inhibition in pinealectomized and pinealectomized-plus-ovariectomized rats. Behav Brain Res 239: 1–7. https://doi.org/10.1016/j.bbr.2012.10.008
  89. Wang X, Wang ZH, Wu YY, Tang H, Tan L, Wang X, Gao XY, Xiong YS, Liu D, Wang JZ, Zhu LQ (2013) Melatonin attenuates scopolamine-induced memory/synaptic disorder by rescuing EPACs/miR-124/Egr1 pathway. Mol Neurobiol 47(1): 373–381. https://doi.org/10.1007/s12035-012-8355-9
  90. Xu Y, Wang S, Jiang L, Wang H, Yang Y, Li M, Wang X, Zhao X, Xie K (2016) Identify Melatonin as a Novel Therapeutic Reagent in the Treatment of 1-Bromopropane(1-BP) Intoxication. Medicine (Baltimore) 95(3): e2203. https://doi.org/10.1097/MD.0000000000002203
  91. Xuyan Z, Ping YJ, Zhongjing W, Sheng D, Li L, Fan Y (2017) Melatonin reverses type 2 diabetes-induced cognitive deficits via attenuation of oxidative/nitrosative stress and NF-κβ-mediated neuroinflammation in rat hippocampus. Trop J Pharm Res 16(12): 2865–2875. https://doi.org/10.4314/tjpr.v16i12.10
  92. Yildirim FB, Ozsoy O, Tanriover G, Kaya Y, Ogut E, Gemici B, Dilmac S, Ozkan A, Agar A, Aslan M (2014) Mechanism of the beneficial effect of melatonin in experimental Parkinson's disease. Neurochem Int 79: 1–11. https://doi.org/10.1016/j.neuint.2014.09.005
  93. Gaffori O, van Ree JM (1985) Beta-endorphin-(10-16) antagonizes behavioral responses elicited by melatonin following injection into the nucleus accumbens of rats. Life Sci 37(4): 357–364. https://doi.org/10.1016/0024-3205(85)90506-5
  94. Gaffori O, Van Ree JM (1985) Serotonin and antidepressant drugs antagonize melatonin-induced behavioural changes after injection into the nucleus accumbens of rats. Neuropharmacology 24(3): 237–244. https://doi.org/10.1016/0028-3908(85)90080-2
  95. Sharif R, Aghsami M, Gharghabi M, Sanati M, Khorshidahmad T, Vakilzadeh G, Mehdizadeh H, Gholizadeh S, Taghizadeh G, Sharifzadeh M (2017) Melatonin reverses H-89 induced spatial memory deficit: Involvement of oxidative stress and mitochondrial function. Behav Brain Res 316: 115–124. https://doi.org/10.1016/j.bbr.2016.08.040
  96. Mirunalini S, Subramanian P (2005) Temporal oscillations of thyroid hormones in long term melatonin treated rats. Pharmazie 60(1): 52–56. https://www.ingentaconnect.com/content/govi/pharmaz/2005/00000060/00000001/art00010?crawler=true
  97. Lang U, Aubert ML, Conne BS, Bradtke JC, Sizonenko PC (1983) Influence of exogenous melatonin on melatonin secretion and the neuroendocrine reproductive axis of intact male rats during sexual maturation. Endocrinology 112(5): 1578–1584. https://doi.org/10.1210/endo-112-5-1578
  98. Salehi B, Sharopov F, Fokou PVT, Kobylinska A, Jonge L, Tadio K, Sharifi-Rad J, Posmyk MM, Martorell M, Martins N, Iriti M (2019) Melatonin in Medicinal and Food Plants: Occurrence, Bioavailability, and Health Potential for Humans. Cells 8(7): 681. https://doi.org/10.3390/cells8070681
  99. Pechanova O, Paulis L, Simko F (2014) Peripheral and central effects of melatonin on blood pressure regulation. Int J Mol Sci 15(10): 17920–17937. https://doi.org/10.3390/ijms151017920
  100. Jockers R, Maurice P, Boutin JA, Delagrange P (2008) Melatonin receptors, heterodimerization, signal transduction and binding sites: what's new? Br J Pharmacol 154(6): 1182–1195. https://doi.org/10.1038/bjp.2008.184
  101. Ma H, Kang J, Fan W, He H, Huang F (2021) ROR: Nuclear Receptor for Melatonin or Not? Molecules 26(9): 2693. https://doi.org/10.3390/molecules26092693
  102. Liu J, Clough SJ, Dubocovich ML (2017) Role of the MT1 and MT2 melatonin receptors in mediating depressive- and anxiety-like behaviors in C3H/HeN mice. Genes Brain Behav 16(5): 546–553. https://doi.org/10.1111/gbb.12369
  103. Comai S, Ochoa-Sanchez R, Dominguez-Lopez S, Bambico FR, Gobbi G (2015) Melancholic-Like behaviors and circadian neurobiological abnormalities in melatonin MT1 receptor knockout mice. Int J Neuropsychopharmacol 18(3): pyu075. https://doi.org/10.1093/ijnp/pyu075
  104. Sumaya IC, Masana MI, Dubocovich ML (2005) The antidepressant-like effect of the melatonin receptor ligand luzindole in mice during forced swimming requires expression of MT2 but not MT1 melatonin receptors. J Pineal Res 39(2): 170–177. https://doi.org/10.1111/j.1600-079X.2005.00233.x
  105. Thomson DM, Mitchell EJ, Openshaw RL, Pratt JA, Morris BJ (2021) Mice lacking melatonin MT2 receptors exhibit attentional deficits, anxiety and enhanced social interaction. J Psychopharmacol 35(10): 1265–1276. https://doi.org/10.1177/02698811211032439
  106. O'Neal-Moffitt G, Pilli J, Kumar SS, Olcese J (2014) Genetic deletion of MT₁/MT₂ melatonin receptors enhances murine cognitive and motor performance. Neuroscience 277: 506–521. https://doi.org/10.1016/j.neuroscience.2014.07.018
  107. Larson J, Jessen RE, Uz T, Arslan AD, Kurtuncu M, Imbesi M, Manev H (2006) Impaired hippocampal long-term potentiation in melatonin MT2 receptor-deficient mice. Neuroscience 393(1): 23–26. https://doi.org/10.1016/j.neulet.2005.09.040
  108. Paredes SD, Sánchez S, Rial RV, Rodríguez AB, Barriga C (2005) Changes in behaviour and in the circadian rhythms of melatonin and corticosterone in rats subjected to a forced-swimming test. J Appl Biomed 3(1): 47–56. https://doi.org/10.32725/jab.2005.005
  109. Goldstein DS, Kopin IJ (2008) Adrenomedullary, adrenocortical, and sympathoneural responses to stressors: A meta-analysis. Endocr Regul 42(4): 111–119.
  110. Tancheva L, Lazarova M, Saso L, Kalfin R, Stefanova M, Uzunova D, Atanasov AG (2021) Beneficial Effect of Melatonin on Motor and Memory Disturbances in 6-OHDA-Lesioned Rats. J Mol Neurosci 71(4): 702–712. https://doi.org/10.1007/s12031-020-01760-z
  111. Chuang JI, Chen SS, Lin MT (1993) Melatonin decreases brain serotonin release, arterial pressure and heart rate in rats. Pharmacology 47(2): 91–97. https://doi.org/10.1159/000139083
  112. Yu Q, Guo Q, Jin S, Gao C, Zheng P, Li DP, Wu Y (2023) Melatonin suppresses sympathetic vasomotor tone through enhancing GABAA receptor activity in the hypothalamus. Front Physiol 14: 1166246. https://doi.org/10.3389/fphys.2023.1166246
  113. Komatsubara M, Hara T, Hosoya T, Toma K, Tsukamoto-Yamauchi N, Iwata N, Inagaki K, Wada J, Otsuka F (2017) Melatonin regulates catecholamine biosynthesis by modulating bone morphogenetic protein and glucocorticoid actions. J Steroid Biochem Mol Biol 165(Pt B): 182–189. https://doi.org/10.1016/j.jsbmb.2016.06.002
  114. K-Laflamme A, Wu L, Foucart S, de Champlain J (1998) Impaired basal sympathetic tone and alpha1-adrenergic responsiveness in association with the hypotensive effect of melatonin in spontaneously hypertensive rats. Am J Hypertens 11(2): 219–229. https://doi.org/10.1016/s0895-7061(97)00401-9
  115. Brusco LI, García-Bonacho M, Esquifino AI, Cardinali DP (1998) Diurnal rhythms in norepinephrine and acetylcholine synthesis of sympathetic ganglia, heart and adrenals of aging rats: effect of melatonin. J Auton Nerv Syst 74(1): 49–61. https://doi.org/10.1016/s0165-1838(98)00134-9
  116. Yagi K, Onaka T (1999) Does the pineal gland play a role in neuroendocrine fear responses? Neuroreport 10(4): 771–774. https://doi.org/10.1097/00001756-199903170-00020
  117. Papathanassoglou ED, Giannakopoulou M, Mpouzika M, Bozas E, Karabinis A (2010) Potential effects of stress in critical illness through the role of stress neuropeptides. Nurs Crit Care 15(4): 204–216. https://doi.org/10.1111/j.1478-5153.2010.00363.x
  118. Balmus IM, Lefter R, Ciobica A, Antioch I, Ababei D, Dobrin R (2018) Preliminary Data on Some Behavioral Changes Induced by Short-Term Intraperitoneal Oxytocin Administration in Aged Rats. Psychiatr Danub 30(1): 91–98. https://doi.org/10.24869/psyd.2018.91
  119. Lu Q, Lai J, Du Y, Huang T, Prukpitikul P, Xu Y, Hu S (2019) Sexual dimorphism of oxytocin and vasopressin in social cognition and behavior. Psychol Res Behav Manag 12: 337–349. https://doi.org/10.2147/PRBM.S192951
  120. Juszczak M, Guzek JW (1988) Hypothalamic and neurohypophysial vasopressin and oxytocin in melatonin-treated pinealectomized male rats. J Pineal Res 5(6): 545–552. https://doi.org/10.1111/j.1600-079x.1988.tb00797.x
  121. Juszczak M, Krzyminska A, Bojanowska E, Roszczyk M (2018) The role of the cAMP/PKA signalling pathway in the inhibitory influence of melatonin on oxytocin and vasopressin secretion from the rat hypothalamo-neurohypophysial system. Endokrynol Pol 69(5): 560–566. https://doi.org/10.5603/EP.a2018.0051
  122. Yasin SA, Forsling ML (1998) Mechanisms of melatonin inhibition of neurohypophysial hormone release from the rat hypothalamus in vitro. Brain Res Bull 45(1): 53–59. https://doi.org/10.1016/s0361-9230(97)00289-x
  123. Motta M, Fraschini F, Martini L (1967) Endocrine effects of pineal gland and of melatonin. Proc Soc Exp Biol Med 126(2): 431–435. https://doi.org/10.3181/00379727-126-32468
  124. El Mrabet Fatima Z, Lagbouri I, Mesfioui A, El Hessni A, Ouichou A (2012) The Influence of gonadectomy on anxiolytic and antidepressant effects of melatonin in male and female Wistar rats: A possible implication of sex hormones. Neurosci Med 3(2): 162–173. https://doi.org/10.4236/nm.2012.32021
  125. Bernasconi PA, Cardoso NP, Reynoso R, Scacchi P, Cardinali DP (2013) Melatonin and diet-induced metabolic syndrome in rats: Impact on the hypophysial-testicular axis. Horm Mol Biol Clin Investig16 (2): 101–112. https://doi.org/10.1515/hmbci-2013-0005
  126. Gallegos-Reyes MA, Antaño-Martínez AR, Alcaraz-Contreras Y, Alegría-Torres JA, Robles J, Yáñez-Barrientos E, Martinez-Alfaro M (2023) Melatonin therapy reverses lead exposure-induced testicular damage in rats despite the lack of effect on serum testosterone levels. J Toxicol Sci 48(8): 481–486. https://doi.org/10.2131/jts.48.481
  127. Chuffa LG, Seiva FR, Fávaro WJ, Teixeira GR, Amorim JP, Mendes LO, Fioruci BA, Pinheiro PF, Fernandes AA, Franci JA, Delella FK, Martinez M, Martinez FE (2011) Melatonin reduces LH, 17 beta-estradiol and induces differential regulation of sex steroid receptors in reproductive tissues during rat ovulation. Reprod Biol Endocrinol 9: 108. https://doi.org/10.1186/1477-7827-9-108
  128. Basheer M, Bhat AH, Ahmad Hajam Y, Batiha GE, Ataya FS, Fouad D, Rai S (2023) Melatonin as a promising therapeutic intervention for restoring ovarian function in letrozole-induced polycystic ovary syndrome rats. Heliyon 9(11): e21237. https://doi.org/10.1016/j.heliyon.2023.e21237
  129. Bashandy SAE, Ebaid H, Al-Tamimi J, Ahmed-Farid OA, Omara EA, Alhazza IM (2021) Melatonin Alleviated Potassium Dichromate-Induced Oxidative Stress and Reprotoxicity in Male Rats. Biomed Res Int 2021: 3565360. https://doi.org/10.1155/2021/3565360
  130. McHenry J, Carrier N, Hull E, Kabbaj M (2014) Sex differences in anxiety and depression: Role of testosterone. Front Neuroendocrinol 35(1): 42–57. https://doi.org/10.1016/j.yfrne.2013.09.001
  131. Lang U, Aubert ML, Conne BS, Bradtke JC, Sizonenko PC (1983) Influence of exogenous melatonin on melatonin secretion and the neuroendocrine reproductive axis of intact male rats during sexual maturation. Endocrinology 112(5): 1578–1584. https://doi.org/10.1210/endo-112-5-1578
  132. Muratoğlu S, Akarca Dizakar OS, Keskin Aktan A, Ömeroğlu S, Akbulut KG (2019) The protective role of melatonin and curcumin in the testis of young and aged rats. Andrologia 51(3): e13203.
  133. Hochmuth L, Körner C, Ott F, Volke D, Cokan KB, Juvan P, Brosch M, Hofmann U, Hoffmann R, Rozman D, Berg T, Matz-Soja M (2021) Sex-dependent dynamics of metabolism in primary mouse hepatocytes. Arch Toxicol 95(9): 3001–3013. https://doi.org/10.1007/s00204-021-03118-9
  134. Froy O (2009) Cytochrome P450 and the biological clock in mammals. Curr Drug Metab 10(2): 104–115. https://doi.org/10.2174/138920009787522179
  135. Stacchiotti A, Favero G, Rodella LF (2020) Impact of Melatonin on Skeletal Muscle and Exercise. Cells 9(2): 288. https://doi.org/10.3390/cells9020288
  136. Pringle A, Bogdanovskaya M, Waskett P, Zacharia S, Cowen PJ, Harmer CJ (2015) Does melatonin treatment change emotional processing? Implications for understanding the antidepressant mechanism of agomelatine. J Psychopharmacol 29(10): 1129–1132. https://doi.org/10.1177/0269881115592341
  137. Arendt J, Bojkowski C, Folkard S, Franey C, Marks V, Minors D, Waterhouse J, Wever RA, Wildgruber C, Wright J (1985) Some effects of melatonin and the control of its secretion in humans. Ciba Found Symp 117: 266–283. https://doi.org/10.1002/9780470720981.ch16
  138. Pardini M, Cordano C, Benassi F, Mattei C, Sassos D, Guida S, Serrati C, Primavera A, Amore M, Cocito L, Emberti Gialloreti L (2014) Agomelatine but not melatonin improves fatigue perception: A longitudinal proof-of-concept study. Eur Neuropsychopharmacol 24(6): 939–944. https://doi.org/10.1016/j.euroneuro.2014.02.010
  139. Madsen BK, Zetner D, Møller AM, Rosenberg J (2020) Melatonin for preoperative and postoperative anxiety in adults. Cochrane Database Syst Rev12(12): CD009861. https://doi.org/10.1002/14651858.CD009861.pub3
  140. Hansen MV, Halladin NL, Rosenberg J, Gögenur I, Møller AM (2015) Melatonin for pre- and postoperative anxiety in adults. Cochrane Database Syst Rev 2015(4): CD009861. https://doi.org/10.1002/14651858.CD009861.pub2
  141. Hansen MV, Danielsen AK, Hageman I, Rosenberg J, Gögenur I (2014) The therapeutic or prophylactic effect of exogenous melatonin against depression and depressive symptoms: A systematic review and meta-analysis. Eur Neuropsychopharmacol 24(11): 1719–1728. https://doi.org/10.1016/j.euroneuro.2014.08.008
  142. Greenblatt DJ, Harmatz JS, Karim A (2007) Age and gender effects on the pharmacokinetics and pharmacodynamics of ramelteon, a hypnotic agent acting via melatonin receptors MT1 and MT2. J Clin Pharmacol 47(4): 485–496. https://doi.org/10.1177/0091270006298602
  143. Terrón MP, Delgado-Adámez J, Pariente JA, Barriga C, Paredes SD, Rodríguez AB (2013) Melatonin reduces body weight gain and increases nocturnal activity in male Wistar rats. Physiol Behav 118: 8–13. https://doi.org/10.1016/j.physbeh.2013.04.006
  144. Wolden-Hanson T, Mitton DR, McCants RL, Yellon SM, Wilkinson CW, Matsumoto AM, Rasmussen DD (2000) Daily melatonin administration to middle-aged male rats suppresses body weight, intraabdominal adiposity, and plasma leptin and insulin independent of food intake and total body fat. Endocrinology 141(2): 487–497. https://doi.org/10.1210/endo.141.2.7311
  145. Kuzmenko NV, Tsyrlin VA, Pliss MG (2023) Meta-analysis of experimental studies of diet-dependent effects of melatonin monotherapy on circulatory levels of triglycerides, cholesterol, glucose and insulin in rats. J Evol Biochem Physiol 59(1): 213–231. https://doi.org/10.1134/S0022093023010180]
  146. Kuzmenko NV, Tsyrlin VA, Pliss MG, Galagudza MM (2024) Meta-Analysis of Experimental Studies of Diet-Dependent Effects of Melatonin Monotherapy on Body Weight Gain and Eating Behavior in Rats. J Evol Biochem Physiol 60(2): 578–593. https://doi.org/10.1134/S0022093024020121

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Table S. Publications selected for meta-analysis
Download (250KB)

Copyright (c) 2025 Russian Academy of Sciences