Antibiofilm and Probiofilm Effects of Nanomaterials on Microorganisms
- Авторлар: Maksimova Y.G.1,2, Zorina A.S.1
- 
							Мекемелер: 
							- Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences
- Perm State University
 
- Шығарылым: Том 60, № 1 (2024)
- Беттер: 3-19
- Бөлім: Articles
- URL: https://cijournal.ru/0555-1099/article/view/674570
- DOI: https://doi.org/10.31857/S0555109924010015
- EDN: https://elibrary.ru/HDFNBN
- ID: 674570
Дәйексөз келтіру
Аннотация
The review summarizes and analyzes information regarding the effect of nanoparticles (NPs) of metals, metal oxides and carbon on the biofilm formation and mature biofilms of microorganisms. The viability of individual microbial cells, including direct disruption of cell surface structures and oxidative stress associated with the formation of reactive oxygen species (ROS), as well as the effect on the production of the exopolymer matrix and the quorum sensing system are considered as the mechanisms of NPs action on biofilms. The effects of silver NPs, gold NPs, some metal oxides, and carbon nanomaterials on microbial biofilms have been described in more detail. The effects of metal and carbon NPs on microbial biofilms are compared. Both antibiofilm and probiofilm effects of NPs are noted, depending on their nature, and the prospect of their use as antimicrobial agents and carriers for the production of microbial biofilms of biotechnological significance are considered.
Толық мәтін
 
												
	                        Авторлар туралы
Yu. Maksimova
Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences; Perm State University
							Хат алмасуға жауапты Автор.
							Email: yul_max@mail.ru
				                					                																			                												                	Ресей, 							Perm, 614081; Perm, 614990						
A. Zorina
Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences
														Email: yul_max@mail.ru
				                					                																			                												                	Ресей, 							Perm, 614081						
Әдебиет тізімі
- Singh J., Dutta T., Kim K.-H., Rawat M., Samddar P., Kumar P. // J. Nanobiotechnol. 2018. V. 16. P. 84. https://doi.org/10.1186/s12951-018-0408-4
- Whitesides G. // Small. 2005. V. 1. № 2. P. 172–179. https://doi.org/10.1002/smll.200400130
- Johnston H. J., Hutchison G. R., Christensen F. M., Peters S., Hankin S., Aschberger K., Stone V. // Nanotoxicology. 2010. V. 4. № 2. P. 207–246. https://doi.org/10.3109/17435390903569639
- Shvedova A. A., Pietroiusti A., Fadeel B., Kagan V. E. // Toxicol. Appl. Pharmacol. 2012. V. 261. № 2. P. 121–133. https://doi.org/10.1016/j.taap.2012.03.023
- Devi L. S., Joshi S. R. // Mycobiology. 2012. V. 40. № 1. P. 27–34. https://doi.org/10.5941/MYCO.2012.40.1.027
- Burygin G. L. // Nanoscale Res. Let. 2009. V. 4. P. 794–801. https://doi.org/10.1007/s11671-009-9316-8
- Grace N. A., Pandian K. // Colloids Surf. A Physicochem. Eng. Asp. 2007. V. 297. № 1–3. P. 63–70. https://doi.org/10.1016/j.colsurfa.2006.10.024
- Saha B., Bhattacharya J., Mukherjee A., Ghosh A., Santra C., Dasgupta A. K., Karmakar P. // Nanoscale Res. Lett. 2007. V. 2. № 12. P. 614–622. https://doi.org/10.1007/s11671-007-9104-2
- Rai A., Prabhune A., Perry C. C. // J. Mater. Chem. 2010. V. 20. № 32. P. 6789–6798. https://doi.org/10.1039/C0JM00817F
- Shahverdi A. R., Fakhimi A., Shahverdi H. R., Minaian S. // Nanomed.: Nanotechnol. Biol. Med. 2007. V. 3. № 2. P. 168–171. https://doi.org/10.1016/j.nano.2007.02.001
- Zheng K., Setyawati M. I., Lim, T.P., Leong D. T., Xie J. // ACS Nano. 2016. V. 10. № 8. P. 7934–7942. https://doi.org/10.1021/acsnano.6b03862
- Chopra I. // J. Antimicrob. Chemother. 2007. V. 59. № 4. P. 587–590. https://doi.org/10.1093/jac/dkm006
- Wang S. G., Chen Y. C., Chen Y. C. // Nanomedicine (Lond). 2018. V. 13. № 12. P. 1405–1416. https://doi.org/10.2217/nnm-2017-0380
- Fuller M., Whiley H., Köper I. //SN Appl. Sci. 2020. V. 2. 1022. https://doi.org/10.1007/s42452-020-2835-8
- Wang J., Zhang J., Liu K., He J., Zhang Y., Chen S., Ma G., Cui Y., Wang L., Gao D. // Int. J. Pharm. 2020. V. 580. 119231. https://doi.org/10.1016/j.ijpharm.2020.119231
- Fan Y., Pauer A. C., Gonzales A. A., Fenniri H. // Int. J. Nanomed. 2019. V. 14. P. 7281–7289. https://doi.org/10.2147/IJN.S209756
- Chavan C., Kamble S., Murthy A. V.R., Kale S. N. // Nanotechnology. 2020. V. 31. № 21. 215604. https://doi.org/10.1088/1361–6528/ab72b4
- Rocca D. M., Silvero M. J., Aiassa V., Becerra M. C. // Photodiagnosis. Photod. Ther. 2020. V. 31. 101811. https://doi.org/10.1016/j.pdpdt.2020.101811
- Flemming H.-C., Wingender J. // Nature Reviews Microbiology. 2010. V. 8. P. 623–633. https://doi.org/10.1038/nrmicro2415
- Abdallah M., Benoliel C., Drider D., Dhulster P., Chihib N. E. // Arch. Microbiol. 2014. V. 196. № 7. P. 453–472. https://doi.org/10.1007/s00203-014-0983-1
- Wingender J., Flemming H. C. // Int. J. Hyg. Environ. Health. 2011. V. 214. № 6. P. 417–423. https://doi.org/10.1016/j.ijheh.2011.05.009
- Al-Wrafy F.A., Al-Gheethi A.A., Ponnusamy S. K., Noman E. A., Fattah S. A. Chemosphere. 2022. 288. 132603. https://doi.org/10.1016/j.chemosphere.2021.132603
- Ozdal M., Gurkok S. // ADMET & DMPK. 2022. V. 10. № 2. P. 115–129. https://doi.org/10.5599/admet.1172
- Teixeira-Santos R., Gomes M., Gomes L. C., Mergulhão F. J. // iScience. 2020. V. 24. № 1. 102001. https://doi.org/10.1016/j.isci.2020.102001
- Kumari A., Rajeev R., Benny L., Sudhakar Y. N., Varghese A., Hegde G. // Adv. Colloid Interface Sci. 2021. V. 297. 102542. https://doi.org/10.1016/j.cis.2021.102542
- Zhao Q., Wang S., Lv Z., Zupanic A., Guo S., Zhao Q., Jiang L., Yu Y. // Biotechnol. Adv. 2022. V. 59. 107982. https://doi.org/10.1016/j.biotechadv.2022.107982
- Maksimova Yu.G., Nikulin S. M., Osovetskii B. M., Demakov V. A. // Appl. Biochem. Microbiol. 2017. V. 53. № 5. P. 506–512. https://doi.org/10.1134/S0003683817050118
- Pondman K., Le Gac S., Kishore U. // Immunobiology. 2022. V. 228. № 2. 152317. https://doi.org/10.1016/j.imbio.2022.152317
- Musee N., Thwala M., Nota N. // J. Environ. Monit. 2011. V. 13. № 5. P. 1164–1183. https://doi.org/10.1039/C1EM10023H
- Kulshrestha S., Qayyum S., Khan A. U. // Microb. Pathog. 2017. V. 103. P. 167–177. https://doi.org/10.1016/j.micpath.2016.12.022
- Yu Q., Li J., Zhang Y., Wang Y., Liu L., Li M. // Sci. Rep. 2016. V. 6. P. 26667. https://doi.org/10.1038/srep26667
- Thill A., Zeyons O., Spalla O., Chauvat F., Rose J., Ayffan M., Flank A. M. // Environ. Sci. Technol. 2006. V. 40. № 19. P. 6151–6156. https://doi.org/10.1021/es060999b
- Jones N., Ray B., Ranjit K. T., Manna A. C. // FEMS Microbiol. Lett. 2008. V. 279. № 1. P. 71–76. https://doi.org/10.1111/j.1574-6968.2007.01012.x
- Kang S., Pinault M., Pfefferle L. D., Elimelech M. // Langmuir. 2007. V. 23. № 17. P. 8670–8673. https://doi.org/10.1021/la701067r
- Kang S., Herzberg M., Rodrigues D. F., Elimelech M. // Langmuir. 2008. V. 24. № 13. P. 6409–6413. https://doi.org/10.1021/la800951v
- Tao Y., Zhou F., Wang K., Yang D., Sacher E. // Molecules. 2022. V. 27. № 20. 6951. https://doi.org/10.3390/molecules27206951
- Maness P-C., Smolinski S., Blake D. M., Huang Z., Wolfrum E. J., Jacoby W. A. // Appl. Environ. Microbiol. 1999. V. 65. № 9. P. 4094–4098. https://doi.org/10.1128/aem.65.9.4094-4098.1999
- Chawengkijwanich C., Hayata Y. // Int. J. Food Microbiol. 2008. V. 123. № 3. P. 288–292. https://doi.org/10.1016/j.ijfoodmicro.2007.12.017
- Kim B., Kim D., Cho D., Cho S. // Chemosphere. 2003. V. 52. № 1. P. 277–281. https://doi.org/10.1016/S0045-6535(03)00051-1
- Chorianopoulos N. G., Tsoukleris D. S., Panagou E. Z., Falaras P., Nychas G-J.E. // Food Microbiol. 2011. V. 28. № 1. P. 164–170. https://doi.org/10.1016/j.fm.2010.07.025
- Pramanik A., Laha D., Bhattacharya D., Pramanik P., Karmakar P. // Colloids Surf. 2012. V. 96. P. 50–55. https://doi.org/10.1016/j.colsurfb.2012.03.021
- Chamundeeswari M., Sobhana S. S.L., Jacob J. P., Kumar M. G., Devi M. P., Sastry T. P., Mandal A. B. // Biotechnol. Appl. Biochem. 2010. V. 55. № 1. P. 29–35. https://doi.org/10.1042/ba20090198
- Koper O., Klabunde J., Marchin G., Klabunde K. J., Stoimenov P., Bohra L. // Curr. Microbiol. 2002. V. 44. № 1. P. 49–55. https://doi.org/10.1007/s00284-001-0073-x
- Hetrick E. M., Shin J. H., Paul H. S., Schoenfisch M. H. // Biomaterials. 2009. V. 30. № 14. P. 2782-2789. https://doi.org/10.1016/j.biomaterials.2009.01.052
- Wadhwani P., Heidenreich N., Podeyn B., Bürck J., Ulrich A. S. // Biomater. Sci. 2017. V. 5. № 4. P. 817–827. https://doi.org/10.1039/C7BM00069C
- Lee B., Park J., Ryu M., Kim S., Joo M., Yeom J. H., Kim S., Park Y., Lee K., Bae J. // Sci. Rep. 2017. V. 7. 13572. https://doi.org/10.1038/s41598-017-14127-z
- Wang S., Yan C., Zhang X., Shi D., Chi L., Luo G., Deng J. // Biomater. Sci. 2018. V. 6. № 10. P. 2757–2772. https://doi.org/10.1039/c8bm00807h
- Palmieri G., Tatè R., Gogliettino M., Balestrieri M., Rea I., Terracciano M., Proroga Y. T., Capuano F., Anastasio A., De Stefano L. // Bioconjug. Chem. 2018. V. 29. № 11. P. 3877–3885. https://doi.org/10.1021/acs.bioconjchem.8b00706
- Li W., Geng X., Liu D., Li Z. // Int. J. Nanomed. 2019. V. 14. P. 8047–8058. https://doi.org/10.2147/IJN.S212750
- Vinoj G., Pati R., Sonawane A., Vaseeharan B. // Antimicrob. Agents Chemother. 2014. V. 59. № 2. P. 763–771. https://doi.org/10.1128/aac.03047-14
- Peng H., Borg R. E., Dow L. P., Pruitt B. L., Chen I. A. // Proc. Natl. Acad. Sci. USA. 2020. V. 117. № 4. P. 1951–1961. https://doi.org/10.1073/pnas.1913234117
- Chifiriuc C., Grumezescu V., Grumezescu A., Saviuc C., Lazăr V., Andronescu E. // Nanoscale Res. Lett. 2012. V. 7. № 1. P. 209. https://doi.org/10.1186/1556-276x-7-209
- Morones J. R., Elechiguerra J. L., Camacho A., Holt K., Kouri J. B., Yacaman M. J. // Nanotechnology. 2005. V. 16. № 10. P. 2346–2353. https://doi.org/10.1088/0957-4484/16/10/059
- Pal S., Tak Y. K., Song J. M. // Appl. Environ. Microbiol. 2007. V. 73. № 6. P. 1712–1720. https://doi.org/10.1128/AEM.02218-06
- Cho K. H., Park J. E., Osaka T., Park S. G. // Electrochim. Acta. 2005. V. 51. № 5. P. 956–960. https://doi.org/10.1016/j.electacta.2005.04.071
- Baker C., Pradhan A., Pakstis L., Pochan D. J., Shah S. I. // J. Nanosci. Nanotechnol. 2005. V. 5. № 2. P. 244–249. https://doi.org/10.1166/jnn.2005.034
- Martínez-Castañón G.A., Niño-Martínez N., Martínez-Gutierrez F., Martínez-Mendoza J.R., Ruiz F. // J. Nanoparticle Res. 2008. V. 10. № 8. P. 1343–1348. https://doi.org/10.1007/s11051-008-9428-6
- Huang L. // J Inorg Biochem. 2005. V. 99. № 5. P. 986–993. https://doi.org/10.1016/j.jinorgbio.2004.12.022
- Lellouche J., Friedman A., Lellouche J.-P., Gedanken A., Banin E. // Nanomed.: Nanotechnol. Biol. Med. 2012. V. 8. № 5. P. 702–711. doi.org/10.1016/j.nano.2011.09.002
- Ortiz-Benítez E.A., Velázquez-Guadarrama N., Durán Figueroa N. V., Quezada H., De Jesús Olivares-Trejo J. // Metallomics. 2019. V. 11. № 7. P. 1265–1276. https://doi.org/10.1039/c9mt00084d
- Zheng K., Setyawati M. I., Leong D. T., Xie J. // ACS Nano. 2017. V. 11. № 7. P. 6904–6910. https://doi.org/10.1021/acsnano.7b02035
- Xing X., Ma W., Zhao X., Wang J., Yao L., Jiang X., Wu Z. // Langmuir. 2018. V. 34. № 42. P. 12583–12589. https://doi.org/10.1021/acs.langmuir.8b01700
- Zhou Y., Kong Y., Kundu S., Cirillo J. D., Liang H. // J. Nanobiotechnol. 2012. V. 10. P. 19. https://doi.org/10.1186/1477-3155-10-19
- Mubarak Ali D., Thajuddin N., Jeganathan K., Gunasekaran M. // Colloids Surf. B Biointerfaces. 2011. V. 85. № 2. P. 360–365. https://doi.org/10.1016/j.colsurfb.2011.03.009
- Badwaik V. D., Vangala L. M., Pender D. S., Willis C. B., Aguilar Z. P., Gonzalez M. S., Paripelly R., Dakshinamurthy R. // Nanoscale Res. Lett. 2012. V. 7. № 1. P. 623. https://doi.org/10.1186/1556-276X-7-623
- Bankier C., Matharu R. K., Cheong Y. K., Ren G. G., Cloutman-Green E., Ciric L. // Sci. Rep. 2019. V. 9. P. 16074. https://doi.org/10.1038/s41598-019-52473-2
- Shaikh S., Nazam N., Rizvi S. M.D., Ahmad K., Baig M. H., Lee E. J., Choi I. // Int. J. Mol. Sci. 2019. V. 20. № 10. P. 2468. https://doi.org/10.3390/ijms20102468
- Linklater D. P., Baulin V. A., Le Guével X., Fleury J., Hanssen E., Nguyen T. H.P., Juodkazis S., Bryant G., Crawford R. J., Stoodley P., Ivanova E. P. // Adv. Mater. 2020. V. 32. № 52. P. 2005679. https://doi.org/10.1002/adma.202005679
- Campoccia D., Montanaro L., Arciola C. R. // Biomaterials. 2013. V. 34. № 34. P. 8533–8554. https://doi.org/10.1016/j.biomaterials.2013.07.089
- Дерябин Д. Г., Васильченко А. С., Алешина Е. С., Тлягулова А. С., Никиян А. Н. // Российские нанотехнологии. 2010. Т. 5. № 11–12. С. 103–108.
- Maksimova Y., Zorina A., Nesterova L. // Microorganisms. 2023. V. 11. P. 1221. https://doi.org/10.3390/microorganisms11051221
- Applerot G., Lrllouche J., Perkas N., Nitzan Y., Gedanken A., Banin E. // RSC Adv. 2012. V. 2. № 6. P. 2314–2321. https://doi.org/10.1039/C2RA00602B
- Martín S. M., Barros R., Domi B., Rumbo C., Poddighe M., Aparicio S., Suarez-Diez M., Tamayo-Ramos J.A. // Nanomaterials. 2021. V. 11. № 9. P. 2272. https://doi.org/10.3390/nano11092272
- Vecitis C. D., Zodrow K. R., Kang S., Elimelech M. // ACS Nano. 2010. V. 4. № 9. P. 5471–5479. https://doi.org/10.1021/nn101558x
- Jackson P., Jacobsen N. R., Baun A., Birkedal R., Kühnel D., Jensen K. A., Vogel U., Wallin H. // Chem. Cent. J. 2013. V. 7. P. 154. https://doi.org/10.1186/1752-153X-7-154
- Kang S., Mauter M. S., Elimelech M. // Environ. Sci. Technol. 2008. V. 42. № 19. P. 7528–7534. https://doi.org/10.1021/es8010173
- Chen C.-Y., Jafvert C. T. // Carbon. 2011. V. 49. № 15. P. 5099–5106. https://doi.org/10.1016/j.carbon.2011.07.029
- Mohammad G., Mishra V. K., Pandey H. P. // Digest J Nanomater Biostruct. 2008. V. 3. № 4. P. 159–162.
- Fenoglio I., Tomatis M., Lison D., Muller J., Fonseca A., Nagy J. B., Fubini B. // Free Radic. Biol. Med. 2006. V. 40. № 7. P. 1227–1233. https://doi.org/10.1016/j.freeradbiomed.2005.11.010
- Hall-Stoodley L., Costerton J. W., Stoodley P. // Nat. Rev. Microbiol. 2004. V. 2. № 2. P. 95–108. https://doi.org/10.1038/nrmicro821
- Bjarnsholt T. // APMIS. 2013. V. 121. № 136. P. 1–58. https://doi.org/10.1111/apm.12099
- Flemming H.-C., Neu T. R., Wozniak D. J. // J. Bacteriol. 2007. V. 189. № 22. P. 7945–7947. https://doi.org/10.1128/JB.00858-07
- Rodrigues D. F., Elimelech M. // Environ. Sci. Technol. 2010. V. 44. № 12. P. 4583–4589. https://doi.org/10.1021/es1005785
- Lundqvist M., Stigler J., Elia G., Lynch I., Cedervall T., Dawson K. A. // Proc. Natl. Acad. Sci. USA. 2008. V. 105. № 38. P. 14265–14270. https://doi.org/10.1073/pnas.0805135105
- Takenaka S., Pitts B., Trivedi H. M., Stewart P. S. // Appl. Environ. Microbiol. 2009. V. 75. № 6. 1750. https://doi.org/10.1128/AEM.02279-08
- Stewart P. S. // J. Bacteriol. Res. 2003. V. 185. № 5. P. 1485. https://doi.org/10.1128/JB.185.5.1485-1491.2003
- Peulen T. O., Wilkinson K. J. // Environ. Sci. Technol. 2011. V. 45. № 8. P. 3367. https://doi.org/10.1021/es103450g
- Guiot E., Georges P., Brun A., Fontaine-Aupart M., Bellon-Fontaine M.-N., Briandet R. // Photochem. Photobiol. 2002. V. 75. № 6. P. 570–578. https://doi.org/10.1562/0031-8655(2002)075<0570: hodimb>2.0.co;2
- Sanabria H., Kubota Y., Waxham M. N. // Biophys. J. 2007. V. 92. № 1. P. 313–322. https://doi.org/10.1529/biophysj.106.090498
- Habimana O., Steenkeste K., Fontaine-Aupart M. P., Bellon-Fontaine M.N., Kulakauskas S., Briandet R. // Appl. Environ. Microbiol. 2011. V. 77. № 1. P. 367–368. https://doi.org/10.1128/AEM.02163-10
- Neihaya H. Z., Zaman H. H. // Microb. Pathog. 2018. V. 116. P. 200–208. https://doi.org/10.1016/j.micpath.2018.01.024
- Neu T. R., Manz B., Volke F., Dynes J. J., Hitchcock A. P., Lawrence J. R. // FEMS Microbiol. Ecol. 2010. V. 72. № 1. P. 1–21. https://doi.org/10.1111/j.1574-6941.2010.00837.x
- Schmitt J., Flemming H.-C. // Water Sci. Technol. 1999. V. 39. № 7. P. 77–82. https://doi.org/10.1016/S0273-1223(99)00153-5
- Ramalingam V., Rajaram R., PremKumar C., Santhanam P., Vinothkumar S., Kaleshkumar Dhi K. // J. Basic Microbiol. 2013. V. 53. V. 54. № 9. P. 928–936. https://doi.org/10.1002/jobm.201300514
- Stan M. S., Cinteza O. L., Petrescu L., Mernea M. A., Calborean O., Mihailescu D. F., Sima C., Dinischiotu A. // Sci. Rep. 2018. V. 8. № 1. P. 5289. https://d oi.org/10.1038/s41598-018-23621-x
- Vandana, Das S. // Carbohydr Polym. 2022. V. 291. P. 119536. https://doi.org/10.1016/j.carbpol.2022.119536.
- Fazeli-Nasab B., Sayyed R. Z., Mojahed L. S., Rahmani A. F., Ghafari M., Antoniusf S., Sukamto. // Biocatal. Agric. Biotechnol. 2022. V. 42. P. 102337. https://doi.org/10.1016/j.bcab.2022.102337
- Ghosh S., Saha I., Dey A., Lahiri D., Nag M., Sarkar T., Pati S., Rebezov M., Shariati M. A., Thiruvengadam M., Ray R. R. // S. Afr. J. Bot. 2021. V. 151. P. 92–106. https://doi.org/10.1016/j.sajb.2021.11.039.
- Fernández-Gómez P., López M., Prieto M., González-Raurich M., Alvarez-Ordóñez A. // Food Res. Int. 2020. V. 136. P. 109508. https://doi.org/10.1016/j.foodres.2020.109508.
- Chen M., Cai Y., Li G., Zhao H., An T. // Appl. Catal. B. 2022. V. 307. P. 121200. https://doi.org/10.1016/j.apcatb.2022.121200.
- Ali S. G., Ansari M. A., Alzohairy M. A., Alomary M. N., AlYahya S., Jalal M., Khan H. M., Asiri S. M. M., Ahmad W., Mahdi A. A., El-Sherbeeny A. M., El-Meligy M. // Antibiotics. 2020. V. 9. № 3. P. 100. https://doi.org/10.3390/antibiotics9030100
- Habimana O., Zanoni M., Vitale S., O’Neill T., Scholz D., Xu B., Casey E. // J. Colloid Interface Sci. 2018. V. 526. P. 419–428. https://doi.org/10.1016/j.jcis.2018.05.014
- Zanoni M., Habimana O., Amadio J., Casey E. // Biotechnol. Bioeng. 2016. V. 113. № 3. P. 501–512. https://doi.org/10.1002/bit.25835
- Rutherford S. T., Bassler B. L. // Cold Spring Harb. Perspect. Med. 2012. V. 2. № 11. a012427. https://doi.org/10.1101/cshperspect.a012427
- Papenfort K., Bassler B. L. // Nat. Rev. Microbiol. 2016. V. 14. № 9. P. 576–588. https://doi.org/10.1038/nrmicro.2016.89
- Kim H.-S., Lee S.-H., Byun Y., Park H.-D. // Sci. Rep. 2015. V. 5. № 1. P. 8656. https://doi.org/10.1038/srep08656
- Jayaraman A., Wood T. H. // Annu. Rev. Biomed Eng. 2008. V. 10. P. 145–167. https://doi.org/10.1146/annurev.bioeng.10.061807.160536
- Fuqua C., Greenberg E. P. // Nat. Rev. Mol. Cell. Biol. 2002. V. 3. P. 685–695. https://doi.org/10.1038/nrm907
- Nadell C. D., Xavier J. B., Levin S. A., Foster K. R. // Plos Biol. 2008. V. 6. № 14. P. 171–179. https://doi.org/10.1371/journal.pbio.0060014
- Whiteley M., Diggle S. P., Greenberg E. P. // Nature. 2017. V. 555. № 7694. P. 313–320. https://doi.org/10.1038/nature25977
- Raffa R. B., Lannuzo J. R., Levine D. R., Saeid K. K., Schwartz R. C., Sucic N. T., Terleckyj O. D., Young J. M. // J. Pharmacol. Exp. Ther. 2005. V. 312. № 2. P. 417–423. https://doi.org/10.1124/jpet.104.075150
- Skandamis P. N., Nychas G.J // Appl. Environ. Microbiol. 2012. V. 78. № 16. P. 5473–5482. https://doi.org/10.1128/AEM.00468-12
- Kim T. H., Lee I., Yeon K.-M., Kim J. // J. Membr. Sci. 2018. V. 554. P. 357–365. https://doi.org/10.1016/j.memsci.2018.03.020
- Qais F. A., Shafiq A., Ahmad I., Husain F. M., Khan R. A., Hassan I. // Microb. Pathog. 2020. V. 144. P. 104172. https://doi.org/10.1016/j.micpath.2020.104172
- Ali S. G., Ansari M. A., Khan H. M., Jalal M., Mahdi A. A., Cameotra S. S. // J. Gen. Microbiol. 2016. V. 57. № 3. P. 193–203. https://doi.org/10.1002/jobm.201600175
- Singh B. R., Singh B. N., Singh A., Khan W., Naqvi A. H., Singh H. B. // Sci. Rep. 2015. V. 5. № 1. P. 13719. https://doi.org/10.1038/srep13719
- Al-Shabib N. A., Husain F. M., Ahmed F., Khan R. A., Ahmad I., Alsharaeh E., Khan M. S., Hussain A., Rehman M. T., Yusuf M., Hassan I., Khan J. M., Ashraf G. M., Alsalme A., Al-Ajmi M. F., Tarasov V. V., Aliev G. // Sci. Rep. 2016. V. 6. № 1. P. 36761. https://doi.org/10.1038/srep36761
- Naik K., Kowshik M. // J. Appl. Microbiol. 2014. V. 117. № 4. P. 972–983. https://doi.org/10.1111/jam.12589
- Miller K. P., Wang L., Chen Y.-P., Pellechia P. J., Benicewicz B. C., Decho A. W. // Front. Microbiol. 2015. V. 6. https://doi.org/10.3389/fmicb.2015.00189
- Пищик В. Н., Воробьев Н. И., Проворов Н. А., Хомяков Ю. В. // Микробиология. 2016. Т. 85. № 3. С. 231–247. https://doi.org/10.7868/S0026365616030113
- Shkodenko L., Kassirov I., Koshel E. // Microorganisms. 2020. V. 8. P. 1545. https://doi.org/10.3390/microorganisms8101545
- Lara H. H., Ayala-Nuñez N.V., Ixtepan-Turrent L., Rodriguez-Padilla C. // World J. Microbiol. Biotechnol. 2010. V. 26. P. 615–621. https://doi.org/10.1007/s11274-009-0211-3
- Salata O. // J. Nanobiotechnology. 2004. V. 2. P. 3. https://doi.org/10.1186/1477-3155-2-3
- Crabtree J. H., Burchette R. J., Siddiqi R. A., Huen I. T., Hadnott L. L., Fishman A. // Perit. Dial Int. 2003. V. 23. № 4. P. 368–374. https://doi.org/10.1177/089686080302300410
- Khare M. D., Bukhari S. S., Swann A., Spiers P., McLaren I., Myers J. // J. Infect. 2007. V. 54. № 2. P. 146–150. https://doi.org/10.1016/j.jinf.2006.03.002
- Jain P., Pradeep T. // Biotechnol. Bioeng. 2005. V. 90. № 1. P. 59–63. https://doi.org/10.1002/bit.20368
- Хина А. Г., Крутяков Ю. А. // Прикл. биохимия микробиология. 2021. Т. 57. № 6. С. 523–535.
- Крутяков Ю. А., Хина А. Г. // Прикл. биохимия микробиология. 2022. T. 58. № 5. С. 419–433.
- Petica A., Gavriliu S., Lungu M., Buruntea N., Panzaru C. // Mater. Sci. Eng. 2008. V. 152. № 1–3. P. 22–27. https://doi.org/10.1016/j.mseb.2008.06.021
- Kong H., Jang J. // Langmuir. 2008. V. 24. № 5. P. 2051–2056. https://doi.org/10.1021/la703085e
- Gupta A., Silver S. // Nat. Biotechnol. 1998. V. 16. № 10. P. 888–890. https://doi.org/10.1038/nbt1098–888
- Matsumura Y., Yoshikata K., Kunisaki S., Tsuchido T. // Appl. Environ. Microbiol. 2003. V. 69. № 7. P. 4278–4281. https://doi.org/10.1128/AEM.69.7.4278-4281.2003
- Rai M. K., Deshmukh S. D., Ingle A. P., Gade A. K. // J. Appl. Microbiol. 2012. V. 112. № 5. P. 841–852. https://doi.org/10.1111/j.1365-2672.2012.05253.x
- Markowska K., Grudniak A., Wolska K. // Acta Biochim. Pol. 2013. V. 60. № 4. P. 523–530. https://doi.org/10.18388/abp.2013_2016
- Monteiro D., Silva S., Negri M., Gorup L., Camargo R., Oliveira R., Barbosa D., Henriques M. // J. Appl. Microbiol. 2013. V. 114. № 4. P. 1175–1183. https://doi.org/10.1111/jam.12102
- Lok C. N., Ho C. M., Chen R., He Q. Y., Yu W. Y., Sun H., Tam P. K., Chiu J. F., Che C. M. // J. Proteome Res. 2006. V. 5. № 4. P. 916–924. https://doi.org/10.1021/pr0504079
- Smetana A. B., Klabunde K. J., Marchin G. R., Sorensen C. M. // Langmuir. 2018. V. 24. № 14. P. 7457–7464. https://doi.org/10.1021/la800091y
- Sondi I., Salopek-Sondi B. // J Colloid Interface Sci. 2004. V. 275. № 1. P. 177–182. https://doi.org/10.1016/j.jcis.2004.02.012
- Gogoi S. K., Gopinath P., Paul A., Ramesh A., Ghosh S. S., Chattopadhyay A. // Langmuir 2006. V. 22. № 22. P. 9322–9328. https://doi.org/10.1021/la060661v
- Li W. R., Xie X. B., Shi Q. S., Zeng H. Y., Ou-Yang Y.S., Chen Y. B. // Appl. Microbiol. Biotechnol. 2010. V. 85. P. 1115–1122. https://doi.org/10.1007/s00253-009-2159-5
- Wu D., Fan W., Kishen A., Gutmann J. L., Fan B. // J. Endod. 2014. V. 40. № 2. P. 285–290. https://doi.org/10.1016/j.joen.2013.08.022
- Сухина М. А., Шелыгин Ю. А., Пиядина А. Ю., Фельдман Н. Б., Ананян М. А., Луценко С. В., Фролов С. А. // Колопроктология. 2019. Т. 18. № 3. С. 56–70. https://doi.org/10.33878/2073-7556-2019-18-3-56-70
- Schmidt H., Thom M., Madzgalla M., Gerbersdorf S. U., Metreveli G., Manz W. // J. Aquat. Pollut. Toxicol. 2017. V. 1. № 2. P. 9.
- Grün A. Y., Meier J., Metreveli G., Schaumann G. E., Manz W. // Environ. Sci. Pollut. Res. 2016. V. 23. № 23. P. 24277–24288. https://doi.org/10.1007/s11356-016-7691-0
- Sheng Z., Liu Y. // Water Res. V. 45. № 18. P. 6039–6050. https://doi.org/10.1016/j.watres.2011.08.065
- Cui Y., Zhao Y., Tian Y., Zhang W., Lü X., Jiang X. // Biomaterials. 2012. V. 33. № 7. P. 2327–2333. https:// doi.org/10.1016/j.biomaterials.2011.11.057
- Piktel E., Suprewicz L., Depciuch J., Chmielewska S., Sklodowski K., Daniluk T., Krol G., Kolat-Brodecka P., Bijak P., Pajor-Swierzy A., Fiedoruk K., Parlinska-Wojtan M., Bucki R. // Sci. Rep. 2021. V. 11. P. 12546. https://doi.org/10.1038/s41598-021-91847-3
- Huang Z., Zheng X., Yan D., Yin G., Liao X., Kang Y., Yao Y., Huang D., Hao B. // Langmuir. 2008. V. 24. № 8. P. 4140–4144. https://doi.org/10.1021/la7035949
- Hou J., Miao L., Wang C., Wang P., Ao Y., Qian J., Dai S. // J. Hazard. Mater. 2014. V. 276. P. 164–170. https://doi.org/10.1016/j.jhazmat.2014.04.048
- Applerot G., Lellouche J., Lipovsky A., Nitzan Y., Lubart R., Gedanken A., Banin E. // Small. 2012. V. 8. № 21. P. 3326–3337. https://doi.org/10.1002/smll.201200772
- Megarajan S., Subramaniyan S. B., Prakash S. A., Kamlekar R., Anbazhagan V. // Microb. Pathog. 2019. V. 127. P. 341–346. https://doi.org/10.1016/j.micpath.2018.12.025
- Cabral-Romero C., Hernandez-Delgadillo R., Velasco-Arias D., Diaz D., Niño-Arevalo K., Garza-Enriquez M., De la Garza-Ramos M. // Int. J. Nanomedicine. 2012. V. 7. P. 2109–2113. https://doi.org/10.2147/ijn.s29854
- Kim J. Y., Park H.-J., Lee C., Nelson K. L., Sedlak D. L., Yoon J. // Appl. Environ. Microbiol. 2010. V. 76. № 22. P. 7668–7670. https://doi.org/10.1128/aem.01009-10
- Huang L., Li D.-Q., Lin Y.-J., Wei M., Evans D. G., Duan X. // J. Inorg. Biochem. 2005. V. 153. № 5. P. 986–993. https://doi.org/10.1016/j.jinorgbio.2004.12.022
- Maruthupandy M., Rajivgandhi G. N., Quero F., Li W.-J. // J. Environ. Chem. Eng. 2020. V. 8. № 6. P. 104533. https://doi.org/10.1016/j.jece.2020.104533
- Boshagh F., Rostami K., Moazami N. // Int. J. Hydrog. Energy. 2019. V. 44. № 28. P. 14395–14405. https://doi.org/10.1016/j.ijhydene.2018.11.199
- Halkare P., Punjabi N., Wangchuk J., Nair A., Kondabagil K., Mukherji S. // Sens. Actuators B Chem. 2018. V. 281. P. 643–651. https://doi.org/10.1016/j.snb.2018.10.119
- Kuyukina M. S., Glebov G. G., Ivshina I. B. // Nanomaterials (Basel). 2022. V. 12. № 6. P. 951. https://doi.org/10.3390/nano12060951.
- Максимова Ю. Г. // Прикл. биохимия и микробиология. 2019. Т. 55. № 1. С. 3–16. https://doi.org/10.1134/S0555109919010100
- Guo Z., Xie C., Zhang P., Zhang J., Wang G., He X. et al. // Sci. Total Environ. 2017. V. 580. P. 1300–1308. https://doi.org/doi.org/10.1016/j.scitotenv.2016.12.093
- Malek I., Schaber C. F., Heinlein T., Schneider J. J., Gorb S. N., Schmitz R. A. // J. Mater. Chem. B. 2016. V. 4. № 31. P. 5228–5235. https://doi.org/10.1039/C6TB00942E
- Levi-Polyachenko N., Young C., MacNeill C., Braden A., Argenta L., Reid S. // Int. J. Hyperthermia. 2014. V. 30. № 7. P. 490–501. https://doi.org/10.3109/02656736.2014.966790
- Maksimova Yu. G., Bykova Ya. E., Zorina A. S., Nikulin S. M., Maksimov A. Yu. // Microbiology. 2022. V. 91. № 4. P. 454–462. https://doi.org/10.1134/S0026261722100861
- Maksimova Y. G., Bykova Y., Maksimov A. // Microorganisms. 2022. V. 10. № 8. P. 1627. https://doi.org/10.3390/microorganisms1008162
- Pantanella F., Berlutti F., Passeri D., Sordi D., Frioni A., Natalizi T. et al. // Interdiscip. Perspect. Infect. Dis. 2011. V. 2011. P. 291513. https://doi.org/10.1155/2011/291513
- Максимова Ю. Г., Быкова Я. Е. // Вестник Пермского университета. Серия Биология. 2022. № 2. С. 131–136. https://doi.org/10.17072/1994-9952-2022-2-131-136.
- Upadhyayula V. K. K., Gadhamshetty V. // Biotechnol. Adv. 2010. V. 28. № 6. P. 802–816. https://doi.org/10.1016/j.biotechadv.2010.06.006
- Liu Q., Zhang C., Bao Y., Dai G. // Appl. Surf. Sci. 2018. V. 443. P. 255–265. https://doi.org/10.1016/j.apsusc.2018.02.120
- Lange A., Grzenia A., Wierzbicki M., Strojny-Cieslak B., Kalińska A., Gołębiewski M. et al. // Animals. 2021. V. 11. № 7. P. 1884. https://doi.org/10.3390/ani11071884
- Altaf M., Zeyad M. T., Hashmi A., Manoharadas S., Hussain S. A., Ali Abuhasile M. S., Almuzainid M. A. M. // RSC Adv. 2021. V. 11. № 31. P. 19248–19257. https://doi.org/10.1039/D1RA02876F
Қосымша файлдар
 
				
			 
						 
					 
						 
						 
						

 
  
  
  Мақаланы E-mail арқылы жіберу
			Мақаланы E-mail арқылы жіберу 
 Ашық рұқсат
		                                Ашық рұқсат Рұқсат берілді
						Рұқсат берілді

