A multiparametric system to determine the composition of spent fuel by analyzing its radiation

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

A multiparametric recording system of radiation was created at the Khlopin Radium Institute to determine the composition of spent nuclear fuel to introduce it into fuel processing production cycles, in particular, to analyze the composition of liquids in hydrometallurgical conversion. The main task was to create a universal device (hardware and software complex) that can be adapted to determine the concentration of radioactive isotopes in various technological cycles by replacing detectors and/or reconfiguring software.

Full Text

Restricted Access

About the authors

K. V. Ershov

V.G. Khlopin Radium Institute; B.P. Konstantinov Petersburg Nuclear Physics Institute, National Research Centre «Kurchatov Institute»

Author for correspondence.
Email: ershov.k@khlopin.ru
Russian Federation, Saint-Petersburg, 194021; Gatchina, 188300

N. E. Mishina

B.P. Konstantinov Petersburg Nuclear Physics Institute, National Research Centre «Kurchatov Institute»

Email: ershov.k@khlopin.ru
Russian Federation, Gatchina, 188300

D. V. Timonin

B.P. Konstantinov Petersburg Nuclear Physics Institute, National Research Centre «Kurchatov Institute»

Email: ershov.k@khlopin.ru
Russian Federation, Gatchina, 188300

References

  1. Колобашкин В.М., Рубцов П.М., Ружанский П.А., Сидоренко В.Д. Радиационные характеристики облученного ядерного топлива: справочник. М.: Энергоатомиздат, 1983.
  2. Верховская Е.А., Ершов К.В., Мишина Н.Е. и др. // Изв. РАН. Сер. физ. 2022. Т. 86. № 9. С. 1343; Verkhovskaya E.A., Ershov K.V., Mishina N.E. et al. // Bull. Russ. Acad. Sci. Phys. 2022. V. 86. No. 9. P. 1111.
  3. Алексеев И.Е., Белов С.Е., Ершов К.В. и др. // Изв. РАН. Сер. физ. 2022. Т. 86. № 8. С. 1172; Alekseev I.E., Belov S.E., Ershov K.V. et al. // Bull. Russ. Acad. Sci. Phys. 2022. V. 86. No. 8. P. 971.
  4. Hequn Lia, Zhiqiang Xu, Weidong Wang et al. // Miner. Eng. 2019. V. 131. P. 14.
  5. Афонин А.А., Бурмистров Ю.М., Викентьев И.В. и др. // Изв. РАН. Сер. физ. 2021. Т. 85. № 10. С. 1374; Afonin A.A., Burmistrov Y.M., Vikentyev I.V. et al. // Bull. Russ. Acad. Sci. Phys. 2021. V. 85. No. 10. P. 1059.
  6. Фролов В.В. Ядерно-физические методы контроля делящихся веществ. М.: Атомиздат, 1989.
  7. Reilly D., Ensslin N., Smith H. Jr. Passive nondestructive assay of nuclear materials. Washington, 1991.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Block diagram of a multi-parameter installation created according to the technical specifications of the V. G. Khlopin Radium Institute.

Download (109KB)
3. Fig. 2. Dependence of the integral count of the detector on the ratio of the concentration of the measured solution to the initial one for plutonium samples. The specific activity of the initial solution is 60 kBq/g.

Download (39KB)
4. Fig. 3. Interface of the program for working with MPSR data.

Download (1MB)
5. Fig. 4. Dependence of the number of coincidences for different ranges of pulse amplitudes (energies) in channel 1 (X-ray radiation) and 2 (electrons): ♦ – dependence curve for the range of electron pulse amplitudes (channel 220–300); ● – dependence curve for the range of electron pulse amplitudes (channel 0–100). Discrimination window for X-ray pulses 100 channels.

Download (44KB)
6. Fig. 5. Summary results of the experiment on measuring the concentration of ¹³⁷Cs in a nitric acid solution: ♦ – coincidences; ▲ – conversion electrons; ■ – X-ray radiation; ● – control measurements of aliquots on a γ-spectrometer with an HPGe detector. X-axis – experiment number, Y-axis – relative units.

Download (60KB)

Copyright (c) 2024 Russian Academy of Sciences