Plasma formation on the surface of condensed matter under the effect of powerful X-ray pulse

Cover Page

Cite item

Full Text

Abstract

In a number of experiments, the surfaces of condensed matter, for example, the electrodes of pulsed power facilities, are exposed to powerful pulsed X-ray radiation with an energy flux density of ~1 TW/cm2. The source of this radiation can be, for example, Z-pinches formed by current compression of multi-wire liners. Under the effect of this radiation, evaporation and plasma formation processes can occur on the surface of the electrodes. This paper provides a theoretical examination of these processes. In the case where the plasma layer thickness is small compared to the characteristic dimensions of the electrodes, plasma formation can be described by one-dimensional equations of magnetohydrodynamics taking radiation transfer into account. One-dimensional calculations performed for the experimental conditions at the Angara-5-1 facility (energy flux density coming from the pinch, ~0.2 TW/cm2, radiation exposure time ~15 ns, electrode material Fe), have shown that the characteristic plasma temperature in this case is ~40 eV, density ~3 mg/cm3, and its expansion speed is ~60 km/s. It is interesting that the magnetic fields in these experiments, which are relatively small (~0.8 MG) and are incapable to lead to plasma formation, restrain the expansion of the plasma with their pressure and affect its characteristic values and expansion speed. The speed obtained in the calculation is somewhat less than that measured experimentally using an X-ray electron- optical converter (~90 km/s), that may be due to not one dimensional turbulent plasma expansion or due to experimental errors.

Full Text

Restricted Access

About the authors

S. F. Garanin

Russian Federal Nuclear Center—All-Russian Research Institute of Experimental Physics

Author for correspondence.
Email: SFGaranin@vniief.ru
Russian Federation, Sarov, Nizhny Novgorod oblast, 60719

E. M. Kravets

Russian Federal Nuclear Center—All-Russian Research Institute of Experimental Physics

Email: EMKravets@vniief.ru
Russian Federation, Sarov, Nizhny Novgorod oblast, 60719

G. G. Ivanova

Russian Federal Nuclear Center—All-Russian Research Institute of Experimental Physics

Email: SFGaranin@vniief.ru
Russian Federation, Sarov, Nizhny Novgorod oblast, 60719

References

  1. Айвазов И.К., Вихарев В.Д., Волков Г.С., Никандров Л.Б., Смирнов В.П., Царфин В.Я. // Физика плазмы. 1988. Т. 14. № 2. С. 197.
  2. Spielman R.B., Deeney C., Chandler G.A., Douglas M.R., Fehl D.L., Matzen M.K., McDaniel D.H., Nash T.J., Porter J.L., Sanford T.W.L., Seamen J.F., Stygar W.A., Struve K.W., Breeze S.P., McGurn J.S., Torres J.A., Zagar D.M., Gilliland T.L., Jobe D.O., McKenney J.L., Mock R.C., Vargas M., Wagoner T. // Phys. Plasmas. 1998. V. 5. № 5. P. 2105.
  3. Александров В.В., Браницкий А.В., Волков Г.С., Грабовский Е.В., Зурин М.В., Недосеев С.Л., Олейник Г.М., Самохин А.А., Сасоров П.В., Смирнов В.П., Федулов М.В., Фролов И.Н. // Физика плазмы. 2001. Т. 27. № 1. С. 99.
  4. Lebedev S.V., Beg F.N., Bland S.N., Chittenden J.P., Dangor A.E., Haines M.G., Kwek K.H., Pikuz S.A., Shelkovenko T.A. // Phys. Plasmas. 2001. V. 8. № 8. P. 3734.
  5. Alexandrov V.V., Frolov I.N., Fedulov M.V., Grabovsky E.V., Mitrofanov K.N., Nedoseev S.L., Oleinik G.M., Porofeev I.Yu., Samokhin A.A., Sasorov P.V., Smirnov V.P., Volkov G.S., Zurin M.V., Zukakishvili G.G. // IEEE Trans. on Plasma Sci. 2002. V. 30. № 2. P. 559.
  6. Cuneo M.E., Waisman E.M., Lebedev S.V., Chittenden J.P., Stygar W.A., Chandler G.A., Vesey R.A., Yu E.P., Nash T.J., Bliss D.E., Sarkisov G.S., Wagoner T.C., Bennett G.R., Sinars D.B., Porter J.L., Simpson W.W., Ruggles L.E., Wenger D.F., Garasi C.J., Oliver B.V., Aragon R.A., Fowler W.E., Hettrick M.C., Idzorek G.C., Johnson D., Keller K., Lazier S.E., McGurn J.S., Mehlhorn T.A., Moore T., Nielsen D.S., Pyle J., Speas S., Struve K.W., Torres J.A. // Phys. Rev. E. 2005. V. 71. № 4. P. 046406.
  7. Yu E.P., Oliver B.V., Sinars D.B., Mehlhorn T.A., Cuneo M.E., Sasorov P.V., Haines M.G., Lebedev S.V. // Phys. Plasmas. 2007. V. 14. № 2. P. 022705.
  8. Repin P.B., Rep’ev A.G., Orlov A.P., Repin B.G., Pokrovskiy V.S. // IEEE Trans. Plasma Sci. 2018. V. 46. № 10. P. 3463.
  9. Завьялов Н.В., Гордеев В.С., Гришин А.В., Репин П.Б., Репьев А.Г., Орлов А.П., Репин Б.Г., Мозговой А.Л., Глушков С.Л., Пучагин С.Ю., Страбыкин К.В. Проблемы физики высоких плотностей энергии // Труды Международной конференции “XVIII Харитоновские тематические научные чтения”. Саров, 2016. РФЯЦ–ВНИИЭФ, 2017. С. 115.
  10. Garanin S.F., Ivanova G.G., Karmishin D.V., Sofronov V.N. // J. Appl. Mech. Tech. Phys. 2005. V. 46. № 2. P. 153.
  11. Awe T.J., Bauer B.S., Fuelling S., Siemon R.E. // Phys. Rev. Lett. 2010. V. 104. No. 3. P. 035001.
  12. Garanin S.F., Kuznetsov S.D., Atchison W.L., Reinovsky R.E., Awe T.J., Bauer B.S., Fuelling S., Lindemuth I.R., Siemon R.E. // IEEE Trans. Plasma Sci. 2010. V. 38. № 8. P. 1815.
  13. Александров В.В., Грабовский Е.В., Лаухин Я.Н., Митрофанов К.Н., Олейник Г.М., Предкова Е.И., Решетняк О.Б., Ткаченко С.И. // Физика плазмы. 2022. Т. 48. № 2. С. 121.
  14. Гаврилов Н.Ф., Иванова Г.Г., Селин В.И., Софронов В.Н. // ВАНТ. Сер.: Методики и программы. 1982. № 3(4). С. 11.
  15. Зельдович Я.Б., Райзер Ю.П. Физика ударных волн и высокотемпературных гидродинамических явлений. М.: Наука, 1966.
  16. Bujko A.M., Garanin S.F., Demidov V.A., Kostjukov V.N., Kuzjaev A.I., Kulagin A.A., Mamyshev V.I., Mokhov V.N., Petrukhin A.A., Piskarev P.N., Protasov M.S., Chernyshev V.K., Shvetsov V.A., Yakubov V.B. // Megagauss Fields and Pulsed Power Systems / Ed. by V.M. Titov and G.A. Shvetsov. New York: Nova Science Publishers, 1990. P. 743.
  17. Гаранин С.Ф., Кравец Е.М. // ЖЭТФ. 2012. Т. 142. № 5. С. 1052.
  18. Гаранин С.Ф. Физические процессы в системах МАГО-MTF. Саров: РФЯЦ–ВНИИЭФ, 2012.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Graphs of functions (1) and (2).

Download (21KB)
3. Fig. 2. Total spectral absorption coefficients of photons in plasma, calculated by formula (18) using (1) and (2), as well as the weighting factor (3).

Download (19KB)
4. Fig. 3. Layout of electrodes in experiments with implosion of a wire assembly on the Angara-5-1 facility: 1, 2 – cathode and anode electrodes under study, respectively, 3 – emitting pinch, 4 – direction of recording of radiation emanating from the pinch.

Download (19KB)
5. Fig. 4. Time dependences of the total discharge current (I) and MRI power (P) on time. Arrows indicate the moments of time at which X-ray photographs of the electrodes in the experiment were taken.

Download (12KB)
6. Fig. 5. Density ρ and temperature T obtained in the calculation at times of 26 ns (solid lines) and 40 ns (dashed lines) in the problem with a radiation flux from the pinch and without a magnetic field.

Download (13KB)
7. Fig. 6. Time dependence of the coordinate x1 and the coordinate of the plasma boundary xR (calculated taking into account the magnetic field).

Download (11KB)
8. Fig. 7. Forward J+ and backward J– radiation fluxes and their ratio at times of 26 ns (solid lines) and 40 ns (dashed lines) in the problem with radiation flux from the pinch and without a magnetic field.

Download (14KB)
9. Fig. 8. Density ρ, temperature T and magnetic field B obtained in the calculation at times of 26 ns (solid lines) and 40 ns (dashed lines) in the problem with the radiation flux from the pinch.

Download (15KB)
10. Fig. 9. Dependence of temperature on coordinate in calculations without a magnetic field (dashed lines) and with a magnetic field (solid lines).

Download (12KB)
11. Fig. 10. Forward J+ and backward J– radiation fluxes and their ratio at times of 26 ns (solid lines) and 40 ns (dashed lines) in the problem with radiation flux from a pinch and taking into account the magnetic field.

Download (14KB)
12. Fig. 11. The values ​​of J0–(t), J0+(t) and α(t), obtained in the calculation with the SXR flux coming from the pinch, and J(t), calculated using formulas (29), (30).

Download (13KB)
13. Fig. 12. Density ρ and temperature T obtained in the calculation at times of 26 ns (solid lines) and 40 ns (dashed lines) in the problem taking into account the radiation scattered on the walls and without a magnetic field.

Download (13KB)
14. Fig. 13. Density ρ, temperature T and magnetic field B obtained in the calculation at times of 26 ns (solid lines) and 40 ns (dashed lines) in the problem taking into account the radiation scattered by the walls.

Download (15KB)
15. Fig. 14. Density ρ, temperature T and magnetic field B obtained at a time of 40 ns in the problem taking into account the radiation scattered by the walls in calculations with grids of N = 1000 (solid lines) and N = 500 cells (dashed lines).

Download (13KB)
16. Fig. 15. Dependence of the coordinate of the substance boundary xR on time in the problem taking into account the radiation scattered on the walls.

Download (10KB)
17. Fig. 16. Forward J+ and backward J– radiation fluxes and their ratio at times of 26 ns (solid lines) and 40 ns (dashed lines) in a problem taking into account radiation scattered on the walls and the magnetic field.

Download (14KB)

Copyright (c) 2024 Russian Academy of Sciences