Contribution of the peripheral system to auditory signal processing in modeling the precedence effect

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The precedence effect, or the law of the first wave, is important for localization of sound sources in a reverberant environment. Sound propagates in multiple directions and is subsequently reflected from different surfaces. As a result, the listener is faced with sound waves from the sound source and also with its reflections. However, despite this “acoustic chaos”, the listener can localize the sound source fairly accurately. This review is regarded to “peripheral” models of the precedence effect. The effect is explained by peripheral auditory processing without the central inhibition. This article reviews the precedence effect and its properties; describes the localization of the sound source and the structure of the peripheral part of the human auditory system; describes the general points of all peripheral models; discusses similarities and differences between models; and proposes further development paths.

Full Text

Restricted Access

About the authors

M. Yu. Agaeva

Pavlov Institute of Physiology, Russian Academy of Sciences

Author for correspondence.
Email: AgaevaMY@infran.ru
Russian Federation, St. Petersburg, 199034

References

  1. Альтман Я.А. Пространственный слух. Санкт-Петербург. Институт физиологии им. И.П. Павлова РАН. 2011311 с.
  2. Бибиков Н.Г. Некоторые принципы обработки сигналов слуховой системы // УЗФФ. 2014. C. 145349–1.
  3. Шупляков В.С. Физиология периферического отдела слуховой системы // Слуховая система, Ленинград, Наука, 1990. С. 156–166.
  4. Ashmore J.F. A fast motile response in guinea – pig outer hair cells: the cellular basis of the cochlear amplifier // J. Physiol. 1987. V. 388. P. 323–347. https://doi.org/10.1113/jphysiol.1987.sp016617.
  5. Von Békésy G. The variations of phase along the basilar membrane with sinusoidal vibrations // Acoust. Soc. Am., 1947. V. 19. P. 452–460. https://doi.org/10.1121/1.1916502
  6. Blauert J. Spatial hearing: The psychophysics of human sound localization // Harvard MA. The MIT Press. 1997. p. 343. https://doi.org/10.7551/mitpress/6391.001.0001
  7. Blauert J., Cobben W. Some considerations of binaural cross correlation analysis // Acoustica. 1978. V. 39. P. 96–104.
  8. Braasch J., Blauert J. The precedence effect for noise bursts of different bandwidths. II. Comparison of model algorithms //Acoust. Sci. Technol. 2003. V. 24. № 5. P. 293–303. https://doi.org/10.1250/ast.24.293
  9. Brown A.D., Stecker G.C., Tollin D.J. The Precedence effect in sound localization // JARO. 2015. № 16. P. 1–28 https://doi.org/ 10.1007/s10162-014-0496-2
  10. Carney L.H. A model for the responses of low-frequency auditory nerve fibers in cat // J. Acoust. Soc. Am. 1993. V. 93. № 1. P. 401–417. https://doi.org/10.1121/1.405620
  11. Clifton R.K., Morrongiello B.A., Dowd J.M. A developmental look at an auditory illusion: The precedence effect // Dev. Psychobiol. 1984. V. 17. № 5. P. 519–536. https://doi.org/10.1002/dev.420170509
  12. Colburn H.S. Theory of binaural interaction based on auditory-nerve data. II. Detection of tones in noise // J. Acoust. Soc. Am. 1977. V. 61. P. 525–533. https://doi.org/10.1121/1.381294
  13. Cremer L Die Wissenschaftlichen Grundlagen der Raumakustik. Bd.1 Hertzel S. Hertzel Verlag, Stuttgart 1948. цитировано по Blauert J. Spatial hearing: The psychophysics of human sound localization. Harvard MA. The MIT Press. 1997. p 343. https://doi.org/10.7551/mitpress/6391.001.0001
  14. Dizon R.M., Colburn H.S. The influence of spectral, temporal, and interaural stimulus variations on the precedence effect // J Acoust Soc Am. 2006. V. 119. P. 2947–2964. https://doi.org/10.1121/1.2189451
  15. Fletcher H. Auditory patterns. // Rev. Mod. Phys. 1940. V. 12. P. 47–65. https://doi.org/10.1103/RevModPhys.12.47
  16. Freyman R.L., Morse-Fortier C., Griffin A.M., Zurek P.M. Can monaural temporal masking explain the ongoing precedence effect? // J. Acoust. Soc. Am. 2018. V. 143. P. EL133–EL139. https://doi.org/10.1121/1.5024687
  17. Gaskell H. The precedence effect // Hearing Res. 1983. V. 12. № 3. P. 277–303. https://doi.org/10.1016/0378-5955(83)90002-3
  18. Goldberg J.M., Brown P.B. Response of binaural neurons of dog superior olivary complex to dichotic tone stimuli: Some physiological mechanism of sound localization // J. Neurophysiol. 1969. V. 32. P. 613–636. https://doi.org/10.1152/jn.1969.32.4.613
  19. Haas H. The influence of a single echo on the audibility of speech. // J Audiol Eng Soc. 1949. V. 20. P. 146–159. https://doi.org/10.1103/RevModPhys.12.47
  20. Haas H. On the influence of a single echo on the intelligibility of speech. Acustica. 1951. V. 1. P. 48.
  21. Hafter E.R. Quantitative evaluation of a lateralization model of masking-level differences // J. Acoust. Soc. Am. 1971. V. 50. P. 1116–1122. https://doi.org/10.1121/1.1912743
  22. Hancock K.E., Delgutte B. A physiologically based model of interaural time difference discrimination // J. Neurosci. 2004. V. 24. P. 7110–7117. https://doi.org/10.1523/JNEUROSCI.0762-04.2004
  23. Harris D.M., Dallas P. Forward masking of auditory nerve fiber responses // J. Neurophystol. 1979. V. 42. P. 1083. https://doi.org/10.1152/jn.1979.42.4.1083-1107
  24. Harris G.G., Flanagan J.L., Watson B.J. Binaural interaction of click with a click pair // J. Acoust. Soc. Am. 1963. V. 35. P. 672–678. https://doi.org/10.1121/1.1918583
  25. Hartung K., Trahiotis C. Peripheral auditory processing and investigations of the ‘precedence effect’ which utilize successive transient stimuli // J Acoust Soc Am. 2001. V. 110. P. 1505–1513 https://doi.org/10.1121/1.1390339
  26. Henning G.B. Lateralization of low-frequency transients // Hear. Res. 1983. V. 9. P. 153–172. https://doi.org/10.1016/0378-5955(83)90025-4
  27. Jeffress L.A. A place theory of sound localization // J. Comp. Physiol. Psychol. 1948. V. 41. № 1. P. 35–39. https://doi.org/10.1037/h0061495
  28. Jeffress L.A., McFadden D. MLD’s and the phase angle, alpha // J. Acoust. Soc. Am. 1968. V. 43. P. 164. https://doi.org/10.1121/1.1910748
  29. Kiang N.Y.S., Watanabe T., Thomas E.C., Clark L.F. Discharge patterns of Single Fibers in the Cat’s Auditory Nerve. Massachusetts: MIT Press Cambridge, 1965. p. 165.
  30. Kujawa S.G., Liberman M.C. Effects of olivocochlear feedback on distortion product otoacoustic emissions in guinea pig // Assoc. Res. 0tolaryngol. 2001. V. 2. P. 268–278 https://doi.org/ 10.1007/s101620010047
  31. Kuwada S., Stanford T.R., Batra R. Interaural Phase-Sensitive Units in the Inferior Colliculus of the Unanesthetized Rabbit: Effects of Changing Frequency // J. Neurophysiol. 1987. V. 57. № 5. P. 1338–1360 https://doi.org/10.1152/jn.1987.57.5.1338
  32. Kuwada S., Yin T.C.T. Binaural interaction in low-frequency neurons in the IC of the cat. I. Effects of long interaural delays, intensity, and repetition rate on interaural delay function // J. Neurophysiol. 1983. V. 50. P. 981–999. https://doi.org/10.1152/jn.1983.50.4.981
  33. Liberman M.C., Guinan Jr. J.J., Feedback control or the auditory periphery: anti-masking effects of middle ear muscles vs. olivocochlear efferents. //J. Commun. Dison. 1998. V. 31. № 6. P. 471–483. https://doi.org/10.1016/S0021-9924(98)00019-7
  34. Lindemann W. Extension of a binaural cross-correlation model by contralateral inhibition. II. The law of the first wavefront // J. Acoust. Soc. Am. 1986. V. 80. № 6. P. 1623–1630. https://doi.org/10.1121/1.394326
  35. Litovsky R. Spatial release from masking //Acoustics Today. 2012. P. 18–25.
  36. Litovsky R. Development of the auditory system // Handbook of clinical neurology. 2015. V. 129. P. 55–72.
  37. https://doi.org/10.1016/B978-0-444-62630-1.00003-2
  38. Litovsky R.Y. Developmental changes in the precedence effect: Estimates of minimum audible angle // J. Acoust. Soc. Am. 1997. V. 102. № 3. P. 1739–1745. https://doi.org/10.1121/1.420106
  39. Litovsky R.Y., Colburn H.S., Yost W.A., Guzman S.J. The precedence effect // J. Acoust. Soc. Am. 1999. V. 106. № 4. P. 1633–1654. https://doi.org/10.1121/1.427914
  40. Litovsky R.Y., Shinn-Cunningham B.G. Investigation of the relationship among three common measures of precedence: fusion, localization dominance, and discrimination suppression // J. Acoust. Soc. Am. 2001. V. 109. P. 346–358. https://doi.org/10.1121/1.1328792
  41. Litovsky R.Y., Yin T.C.T. Physiological studies of the precedence effect in the inferior colliculus of the cat: I. Correlates of psychophysics // J. Neurophysiol. 1998. V. 80. P. 1285–1301. https://doi.org/10.1152/jn.1998.80.3.1285
  42. Meddis R. Simulation of mechanical to neural transduction in the auditory receptor // J Acoust Soc Am. 1986. V. 79. P. 702–711. https://doi.org/10.1121/1.393460
  43. Meddis R., Lopez-Proveda E.A. Auditory Periphery: From Pinna to Auditory Nerve. In R. Meddis, E. A. Lopez-Proveda, A.N. Popper, R.R. Fay (Eds). Computational Models of the Auditory System. Handbook of Auditory Research. book series (SHAR. V. 35). Boston: Springer, 2010. p. 7 https://doi.org/10.1007/978-1-4419-5934-8_2
  44. Meddis R., Hewitt M.J., Shackleton T.M. Implementation details of a computational model of the inner hair-cell auditory-nerve synapse // J. Acoust. Soc. Am. 1990. V. 87. P. 1813–1816. https://doi.org/10.1121/1.399379
  45. Middlebrooks J.C. Sound Localization In G.G. Celesia and G. Hickok (Eds). Handbook of Clinical Neurology, Vol. 129 (3rd series) The Human Auditory System, Elsevier B.V., 2015. p. 99–112. https://doi.org/10.1016/B978-0-444-62630-1.00006-8
  46. Middlebrooks J.C., Green D.M. Sound localization by human listeners // Annu. Rev. Psychol. 1991. V. 42. P. 135–159. https://doi.org/10.1146/annurev.ps.42.020191.001031
  47. Moore B.J. An Introduction to the Psychology of Hearing. Emerald Group Publishing Limited, Bingley, UK, 2013. p. 441.
  48. Moore B.C. J, Sek A. Auditory filtering and the critical bandwidth at low frequencies. In G. A. Manley, G. M. Klump, C. Koppl, H. Fastl., H. Oeckinghaus (Eds.). Advances in Hearing Research. World Scientific: Singapore, 1995. p. 425.
  49. Moser T., and Beutner D. Kinetics of exocytosis and endocytosis at the cochlear inner hair cell afferent synapse of the mouse //Proc. Natl. Acad. Sci. U.S.A. 2000. V. 97. № 2. P. 883. https://doi.org/10.1073/pnas.97.2.883-888
  50. Pastore M.T., Braasch J. The impact of peripheral mechanisms on precedence effect // J. Acoust. Soc. Am. 2019. V. 146. № 1. P. 425–444. https://doi.org/10.1121/1.5116680
  51. Pastore M. T., Braasch J. The precedence effect with increased lag level // J. Acoust. Soc. Am. 2015. V. 138. № 4. P. 2079–2089. https://doi.org/10.1121/1.4929940
  52. Patterson R.D., Allerhand M.H., Giguere C. Time-domain modeling of peripheral auditory processing: A modular architecture and a software platform // J. Acoust. Soc. Am. 1995. V. 98. P. 1890–1894. https://doi.org/10.1121/1.414456
  53. Patuzzi R., Robertson D. Tuning in the mammalian cochlea // Physiol Rev. 1988. V. 68. № 4. P. 1009–1092 https://doi.org/10.1152/physrev.1988.68.4.1009.
  54. Pickles J.O. Auditory pathways: anatomy and physiology. G. Celesia, G. Hickok (Eds). The Human Auditory System. Handbook of Clinical Neurology Vol 129 (3rd series). Elsevier BV. 2015. p. 3–25. https://doi.org/10.1016/B978-0-444-62630-1.00001-9
  55. Raman I.M., Zhang S., Trussell L.O. Pathway-specific variants of AMPA receptors and their contribution to neuronal signaling // J. Neurosci. 1994. V. 14. № 8. P. 4998–5010. https://doi.org/10.1523/JNEUROSCI.14-08-04998.1994
  56. Risoud M., Hanson J.N., Gauvrit F. et al. Sound source localization // European Annals of Otorhinolaryngol Head Neck Dis. 2018. V. 135. № 4. P. 259–264. https://doi.org/10.1016/j.anorl.2018.04.009
  57. Rhode W.S., Smith P.H. Characteristics of tone-pip response patterns in relationship to spontaneous rate in cat auditory nerve fibers // Hear. Res. 1985. V. 18. № 2. P. 159–168. https://doi.org/10.1016/0378-5955(85)90008-5
  58. Sellick P.M., Patuzzi R., Johnstone B.M. Measurement of basilar membrane motion in the guinea pig using the Mössbauer technique // Acoust. Soc. Am. 1982. V. 72. № 1. P. 131–141. https://doi.org/10.1121/1.387996
  59. Shinn-Cunningham B.G., Zurek P.M., Durlach N.I., Clifton R.K. Cross-frequency interactions in the precedence effect // J. Acoust. Soc. Am. 1995. V. 98. № 1. P. 164–171. https://doi.org/10.1121/1.413752
  60. Slaney M. An efficient implementation of the Patterson- Holdsworth auditory filter bank // Apple Computer Technical Report 1993. P. 1–42.
  61. Stecker G.C., Brown A. Temporal weighting of binaural cues revealed by detection of dynamic interaural differences in high-rate Gabor click trains // J. Acoust. Soc. Am. 2010. V. 127. № 5. P. 3092–3102. https://doi.org/10.1121/1.3377088
  62. Stecker G.C., Bernstein L.R., Brown A.D. Binaural hearing with temporally complex signals. In R.Y. Litovsky, M. J. Goupell, R.R. Fay, A.N. Popper (Eds) Binaural Hearing. New York: Springer, 2021. V. 73, p. 145–180. https://doi.org/10.1007/978-3-030-57100-9_6
  63. Stecker G.C., Moore T.M. Reverberation enhances onset dominance in sound localization // J. Acoust. Soc. Am. 2018. V. 143. № 2. P. 786–793. doi: 10.1121/1.5023221
  64. Stern R.M., Trahiotis C. Models of binaural interaction. In B.C.J. Moore (Eds). Handbook of perception and cognition, Ed 2, Hearing. San Diego: Academic, 1995. p 347.
  65. Stern R.M., Zeiberg A.S., Trahiotis C. Lateralization of complex binaural stimuli: A weighted-image model // J. Acoust. Soc. Am. 1988. V. 84. № 1. P. 156–165. https://doi.org/10.1121/1.396982
  66. Tollin D.J. Computational model of the lateralization of clicks and their echoes In S. Greenberg, M. Slaney, M. Berkeley (Eds). Proceedings of the NATO Advanced Study Institute on Computational Hearing. 1998, p. 77–82.
  67. Tollin D.J, Henning G.B. Some aspects of the lateralization of echoed sound in man. I. The role of the stimulus spectrum // J. Acoust. Soc. Am. 1999. V. 105. № 2. P. 838–849. https://doi.org/10.1121/1.426273
  68. Tollin D.J., Henning G.B. Some aspects of the lateralization of echoed sound in man. I. The classical interaural-delay based precedence effect // J. Acoust. Soc. Am. 1998. V. 104. № 5. P. 3030–3038. https://doi.org/10.1121/1.423884
  69. Tollin D.J., Henning G.B. Anomalous lateralization in the precedence effect with novel two-echo stimuli // J. Acoust. Soc. Am. 1996. V. 100. P. 2593. https://doi.org/10.1121/1.417579
  70. Trahiotis C., Hartung K. Peripheral auditory processing, the precedence effect and responses of single units in the inferior colliculus // Hearing Research. 2002. V. 168. P. 55–59. https://doi.org/10.1016/S0378-5955(02)00357-X
  71. Wallach H., Newman E.B., Rosenzweig R. The precedence effect in sound localization // Am J Psychiatr. 1949. V. 62. № 3. P. 315–336. https://doi.org/10.2307/1418275
  72. Westerman L.A., Smith R.L. A diffusion model of the transient response of the cochlear inner hair cell synapse// J. Acoust. Soc. Am. 1988. V. 83. P. 2266–2276. https://doi.org/10.1121/1.396357
  73. Westerman L.A., Smith R.L. Rapid and Short Term Adaptation in Auditory-Nerve Responses // Hear. Res. 1984. V. 15. № 3. P. 249–260. https://doi.org/10.1016/0378-5955(84)90032-7
  74. Xia J., Brughera A., Colburn H.S. Physiological and psychophysical modeling of the precedence effect // J. Assoc. Res. Otolaryngol. 2010. V. 11. P. 495–513. https://doi.org/ 10.1007/s10162-010-0212-9
  75. Xia J., Shinn-Cunningham B. Isolating mechanisms that influence measures of the precedence effect: Theoretical predictions and behavioral tests // J Acoust Soc Am. 2011. V. 130. № 2. P. 866–882. https://doi.org/10.1121/1.3605549
  76. Yin T.C.T. Physiological correlates of the precedence effect and summing localization in the inferior colliculus of the cat // J. Neurosci. 1994. V. 14. P. 5170–5186. https://doi.org/ 10.1523/JNEUROSCI.14-09-05170.1994
  77. Yin T.C.T., Chan J.C.K. Interaural time sensitivity in medial superior olive of cat // J. Neurophysiol. 1990. V. 64. № 2. P. 465. https://doi.org/10.1152/jn.1990.64.2.465
  78. Yin T.C.T., Chan J.C.K., Carney L.H. Effects of interaural time delays of noise stimuli on low-frequency cells in the cat’s inferior colliculus. III. Evidence for cross-correlation // J. Neurophysiol. 1987. V. 58. P. 562–583. https://doi.org/10.1152/jn.1987.58.3.562
  79. Yost W.A. Auditory Perception In V.S. Ramachandran (Eds). Encyclopedia of the Human Brain. V. 1. Academic Press, 2002. p. 303. https://doi.org/10.1016/B0-12-227210-2/00047-9
  80. Yost W.A., Soderquist D.R. The precedence effect: Revisited /// J. Acoust. Soc. Am. 1984. V. 76. № 5. P. 1377–1383. https://doi.org/10.1121/1.391454
  81. Zhang X., Carney L.H. Analysis of models for the synapse between the inner hair cell and the auditory nerve // J. Acoust. Soc. Am. 2005. V. 118. P. 1540–1553. https://doi.org/10.1121/1.1993148
  82. Zilany M.S.A., Bruce I.C., Carney L.H. Updated parameters and expanded simulation options for a model of the auditory periphery // J. Acoust. Soc. Am. 2014. V. 135. № 1. P. 283–286. https://doi.org/10.1121/1.4837815
  83. Zilany M.S., Bruce I.C. Modeling auditory-nerve responses for high sound pressure levels in the normal and impaired auditory periphery J. Acoust. Soc. Am. 2006. V. 120. № 3. P. 1446–1466. https://doi.org/10.1121/1.2225512
  84. Zilany M.S., Bruce I.C., Nelson P.C., Carney L.H. A phenomenological model of the synapse between the inner hair cell and auditory nerve: Long-term adaptation with power-law dynamics //J. Acoust. Soc. Am. 2009. V. 126. № 5. P. 2390–2412. https://doi.org/10.1121/1.3238250
  85. Zurek P.M. The precedence effect. In W.A. Yost, G. Gourevitch (Eds) Directional hearing. Springer-Verlag: New York, 1987. p. 85–105. https://doi.org/10.1007/978-1-4612-4738-8_4
  86. Zurek P.M. The precedence effect and its possible role in the avoidance of interaural ambiguities // J. Acoust. Soc. Am. 1980. V. 67. P. 953–964. https://doi.org/10.1121/1.383974
  87. Zwicker E. Subdivision of the audible frequency range into critical bands (Frequenzgruppen) // Acoust. Soc. Am., 1961. V. 33. P. 248. https://doi.org/10.1121/1.1908630

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Instantaneous displacement of the basilar membrane (BM). The gray and black lines show the displacement of BM at two consecutive moments in time, obtained on the basis of the cochlea model. The dotted line shows the envelope constructed from the peaks of the signal amplitude (according to [5]).

Download (139KB)
3. Fig. 2. Stimulus configurations used in the models. A — the signals consisted of clicks. Type I — single reference signals. Each signal consisted of two clicks, dichotically applied to the right and left ears. On the left is a signal whose perceived position is on the left (diagram above the clicks), since the click to the left ear arrives earlier than to the right by the value of ΔT. On the right — clicks to the right and left ears arrive simultaneously, and the perceived position is along the midline of the head. Types II and III — paired signals modeling EP. Type II — a configuration where the information about ΔT is contained either in the direct signal or in the echo signal. Type III — both the direct and the echo signal contain information about ΔT. B — the signals consisted of noise parcels. Type I — single reference signal. Type III — modeling EP. The direct signal is shown in black, the echo signal is in gray. The delay was introduced from the beginning of the direct signal to the beginning of the echo signal. ΔT1 is the interaural delay of the direct signal, ΔT2 is the interaural delay of the echo signal (according to [ 25, 49, 65, 74]).

Download (168KB)
4. Fig. 3. Schematic representation of the main blocks and modules in the EP models

Download (559KB)
5. Fig. 4. Output signals of a gammatone filter with a central frequency (CF) of 500 Hz in the left column, 676 Hz in the right column, depending on time. The signals were pairs of clicks, shown in the diagram of Fig. 2A, type II, on the right, fed to the left (black) and right ears (gray). The upper part of the figure shows the output data of the left and right filters. The second and third rows of each column show the instantaneous values ​​of ΔT and ΔI, measured after filtering. The arrows show the actual differences in the echo signal (according to [25]). See the text for explanations.

Download (190KB)

Copyright (c) 2025 Russian Academy of Sciences