Mathematical model of achieving dispersion conditions when heating a gel-like fuel particle in a heated air environment
- 作者: Paushkina K.K.1, Nadymova N.P.1, Glushkov D.O.1
-
隶属关系:
- National Research Tomsk Polytechnic University
- 期: 卷 44, 编号 9 (2025)
- 页面: 35-54
- 栏目: Элементарные физико-химические процессы
- URL: https://cijournal.ru/0207-401X/article/view/690774
- DOI: https://doi.org/10.31857/S0207401X25090031
- ID: 690774
如何引用文章
详细
A mathematical model of nucleation center formation during heating of a particle of gel fuel (oil-filled cryogel based on an organic polymer thickener) in a high-temperature air environment has been developed. The model describes a group of interrelated physicochemical processes in the condensed phase and gaseous medium (inert heating, melting, separation of liquid components, their evaporation) under conditions of radiant-convective heating with source temperature variation in the range of 673–1073 K. Comparison of numerical simulation results with experimental data obtained under identical conditions has made it possible to establish the applicability of the developed mathematical model and numerical solution algorithm for predicting the achievement of dispersion conditions for a drop of gel fuel melt.
作者简介
K. Paushkina
National Research Tomsk Polytechnic University
Email: kkp1@tpu.ru
Tomsk, Russia
N. Nadymova
National Research Tomsk Polytechnic University
Email: kkp1@tpu.ru
Tomsk, Russia
D. Glushkov
National Research Tomsk Polytechnic University
编辑信件的主要联系方式.
Email: kkp1@tpu.ru
Tomsk, Russia
参考
- Smirnov N.N. // Acta Astronaut. 2022. V. 194. P. 353. https://doi.org/10.1016/j.actaastro.2022.02.028
- Smirnov N.N. // Ibid. 2023. V. 204. № 9. P. 679. https://doi.org/10.1016/j.actaastro.2022.10.028
- Brito N.L., Dee J.C., Seminari S. // Congress Proc. IAC CyberSpace. 2020. Article 57292.
- Zyuzin I.N., Gudkova I.Yu., Lempert D.B. // Khim. Fizika. 2025. V. 44. № 2. P. 54. https://doi.org/10.31857/S0207401X25020056
- Zyuzin I.N., Gudkova I.Yu., Lempert D.B. // Khim. Fizika. 2025. V. 44. № 4. P. 54. https://doi.org/10.31857/S0207401X25040062
- Lempert D.B., Ignatieva E.L., Stepanov A.I., Dashko D.V., Kazakov A.I., Nabatova A.V., Shilov G.V., Lagodzinskaya G.V., Korchagin D.V., Aldoshin S.M. // Russ. J. Phys. Chem. B. 2024. V. 18. № 1. P. 172. https://doi.org/10.1134/S1990793124010135
- Ciezki H.K., Hürttlen J., Naumann K.W., Negri M., Ramsel J. et al. // Proc. 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Cleveland, OH, USA. 2014. https://doi.org/10.2514/6.2014-3794
- Natan B., Rahimi S. // Intern. J. Energetic Mater. Chem. Propul. 2002. V. 5. № 1–6. P. 172. https://doi.org/10.1615/IntJEnergeticMaterialsChem Prop.v5.i1-6.200
- Feng S., He B., He H., Su L., Hou Z. et al. // Fuel. 2013. V. 111. P. 367. https://doi.org/10.1016/J.FUEL.2013.03.071
- Mishra D.P., Patyal A., Padhwal M. // Ibid. 2011. V. 90. № 5. P. 1805. https://doi.org/10.1016/j.fuel.2010.12.021
- Glushkov D.O., Paushkina K.K., Pleshko A.O., Vysokomorny V.S. // Ibid. 2022. V. 313. Article 123024. https://doi.org/10.1016/j.fuel.2021.123024
- Padwal M.B., Natan B., Mishra D.P. // Prog. Energy Combust. Sci. 2021. V. 83. Article 100885. https://doi.org/10.1016/j.pecs.2020.100885
- Glushkov D.O., Paushkina K.K., Pleshko A.O. // Russ. J. Phys. Chem. B. 2023. V. 17. № 1. P. 96. https://doi.org/10.1134/S1990793123010219
- Nachmoni G., Natan B. // Combust. Sci. Technol. 2000. V. 156. № 1–6. P. 139. https://doi.org/10.1080/00102200008947300
- Arnold R., Anderson W. // Proc. 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Orlando, Florida, USA. 2010. https://doi.org/10.2514/6.2010-421
- Glushkov D.O., Paushkina K.K., Pleshko A.O., Yanovsky V.A. // Acta Astronaut. 2023. V. 202. P. 637. https://doi.org/10.1016/j.actaastro.2022.11.027
- Glushkov D.O., Kuznetsov G.V., Nigay A.G., Yashutina O.S. // J. Energy Inst. 2019. V. 92. № 6. P. 1944. https://doi.org/10.1016/j.joei.2018.10.017
- Kunin A., Natan B., Greenberg J.B. // J. Propul. Power. 2010. V. 26. № 4. P. 765. https://doi.org/10.2514/1.41705
- He B., Nie W., He H. // Energy Fuels. 2012. V. 26. № 11. Article 6627. https://doi.org/10.1021/ef300990d
- Shumova V.V., Polyakov D.N., Vasilyak L.M.. // Russ. J. Phys. Chem. B. 2023. V. 17. № 4. P. 986. https://doi.org/10.1134/S1990793123040280
- Solomon Y., Natan B., Cohen Y. // Combust. and Flame. 2009. V. 156. № 1. P. 261. https://doi.org/10.1016/j.combustflame.2008.08.008
- Vershinina K.Y., Glushkov D.O., Nigay A.G., Yanovsky V.A., Yashutina O.S. // Ind. Eng. Chem. Res. 2019. V. 58. № 16. Article 6830. https://doi.org/10.1021/acs.iecr.9b00580
- Glushkov D.O., Nigay A.G., Yanovsky V.A., Yashutina O.S. // Energy Fuels. 2019. V. 33. № 11. Article 11812. https://doi.org/10.1021/acs.energyfuels.9b02300
- Sazhin S.S., Bar-Kohany T., Nissar Z., Antonov D., Strizhak P.A. et al. // Intern. J. Heat Mass Transf. 2020. V. 161. Article 120238. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120238
- Glushkov D.O., Nigay A.G., Yashutina O.S. // Ibid. 2018. V. 127, Part C. P. 1203. https://doi.org/10.1016/j.ijheatmasstransfer.2018.08.103
- Glushkov D.O., Kosintsev A.G., Kuznetsov G.V., Vysokomorny V.S. // Fuel. 2021. V. 291. Article 120172. https://doi.org/10.1016/j.fuel.2021.120172
- Vargaftik N.B., Vinogradov Y.K., Yargin V.S. Handbook of thermophysical properties of liquids and gases. Third Ed. New York: Begell House, 1996.
- Baird Z.S., Uusi-Kyyny P., Järvik O., Oja V., Alopaeus V. // Ind. Eng. Chem. Res. 2018. V. 57. № 14. Article 5128. https://doi.org/10.1021/acs.iecr.7b05018
- Zhuravlev A.A., Khvostov A.A., Ivanov A.V., Zhuravlev E.A. // Current Directions of Scientific Research XXI century: Theory and Practice (Voronezh). 2017. V. 5. No. 8-1 (34-1). P. 163.
- Abramzon B., Sazhin S. // Fuel. 2006. V. 85. № 1. P. 32. https://doi.org/10.1016/j.fuel.2005.02.027
- Bashta T.M. Hydraulic drives of aircraft. Moscow: Mashinostroenie, 1967.
- Khorolskyi O.V., Rudenko O.P. // Ukr. J. Phys. 2015. V. 60. № 9. P. 880. https://doi.org/10.15407/ujpe60.09.0880
- Owens J.C. // Appl. Opt. 1967. V. 6. № 1. P. 51. https://doi.org/10.1364/AO.6.000051
- Lindsay A.L., Bromley L.A. // Ind. Eng. Chem. 1950. V. 42. № 8. P. 1508. https://doi.org/10.1021/ie50488a017
- Glushkov D.O., Kosintsev A.G., Kuznetsov G.V., Vysokomorny V.S. // Acta Astronaut. 2021. V. 178. P. 272. https://doi.org/10.1016/J.ACTAASTRO.2020.09.004
- Davletshina T.A., Cheremisinoff N.P. Fire and Explosion Hazards Handbook of Industrial Chemicals. Westwood, New Jersey: Noyes Publ., 1998. Ch.3. https://doi.org/10.1016/B978-0-8155-1429-9.50008-5
- Tripathi A., Vinu R. // Lubricants (Switzerland). 2015. V. 3. № 1. P. 54. https://doi.org/10.3390/lubricants3010054
- Betelin V.B., Smirnov N.N., Nikitin V.F., Dushin V.R., Kushnirenko A.G. et al. // Acta Astronaut. 2012. V. 70. P. 23. https://doi.org/10.1016/j.actaastro.2011.06.021
- Celik I.B., Ghia U., Roache P.J., Freitas C.J., Coleman H. et al. // J. Fluids Eng. 2008. V. 130. № 7. Article 0780011. https://doi.org/10.1115/1.2960953
- Fugmann H., Schnabel L., Frohnapfel B. // Numer. Heat Transf., Part A: Appl. 2019. V. 75. № 1. P. 1. https://doi.org/10.1080/10407782.2018.1562741
- Glushkov D.O., Paushkina K.K., Shabardin D.P., Strizhak P.A., Gutareva N.Y. // J. Environ. Manage. 2019. V. 231. P. 896. https://doi.org/10.1016/j.jenvman.2018.10.067
- Antonov D.V., Kuznetsov G.V., Misyura S.Y., Strizhak P.A. // Exp. Therm. Fluid Sci. 2019. V. 109. P. 109862. https://doi.org/10.1016/j.expthermflusci.2019.109862
- Faik A.M.D., Zhang Y. // Fuel. 2018. V. 221. P. 89. https://doi.org/10.1016/j.fuel.2018.02.054
补充文件
