Mathematical model of achieving dispersion conditions when heating a gel-like fuel particle in a heated air environment

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

A mathematical model of nucleation center formation during heating of a particle of gel fuel (oil-filled cryogel based on an organic polymer thickener) in a high-temperature air environment has been developed. The model describes a group of interrelated physicochemical processes in the condensed phase and gaseous medium (inert heating, melting, separation of liquid components, their evaporation) under conditions of radiant-convective heating with source temperature variation in the range of 673–1073 K. Comparison of numerical simulation results with experimental data obtained under identical conditions has made it possible to establish the applicability of the developed mathematical model and numerical solution algorithm for predicting the achievement of dispersion conditions for a drop of gel fuel melt.

About the authors

K. K. Paushkina

National Research Tomsk Polytechnic University

Email: kkp1@tpu.ru
Tomsk, Russia

N. P. Nadymova

National Research Tomsk Polytechnic University

Email: kkp1@tpu.ru
Tomsk, Russia

D. O. Glushkov

National Research Tomsk Polytechnic University

Author for correspondence.
Email: kkp1@tpu.ru
Tomsk, Russia

References

  1. Smirnov N.N. // Acta Astronaut. 2022. V. 194. P. 353. https://doi.org/10.1016/j.actaastro.2022.02.028
  2. Smirnov N.N. // Ibid. 2023. V. 204. № 9. P. 679. https://doi.org/10.1016/j.actaastro.2022.10.028
  3. Brito N.L., Dee J.C., Seminari S. // Congress Proc. IAC CyberSpace. 2020. Article 57292.
  4. Zyuzin I.N., Gudkova I.Yu., Lempert D.B. // Khim. Fizika. 2025. V. 44. № 2. P. 54. https://doi.org/10.31857/S0207401X25020056
  5. Zyuzin I.N., Gudkova I.Yu., Lempert D.B. // Khim. Fizika. 2025. V. 44. № 4. P. 54. https://doi.org/10.31857/S0207401X25040062
  6. Lempert D.B., Ignatieva E.L., Stepanov A.I., Dashko D.V., Kazakov A.I., Nabatova A.V., Shilov G.V., Lagodzinskaya G.V., Korchagin D.V., Aldoshin S.M. // Russ. J. Phys. Chem. B. 2024. V. 18. № 1. P. 172. https://doi.org/10.1134/S1990793124010135
  7. Ciezki H.K., Hürttlen J., Naumann K.W., Negri M., Ramsel J. et al. // Proc. 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Cleveland, OH, USA. 2014. https://doi.org/10.2514/6.2014-3794
  8. Natan B., Rahimi S. // Intern. J. Energetic Mater. Chem. Propul. 2002. V. 5. № 1–6. P. 172. https://doi.org/10.1615/IntJEnergeticMaterialsChem Prop.v5.i1-6.200
  9. Feng S., He B., He H., Su L., Hou Z. et al. // Fuel. 2013. V. 111. P. 367. https://doi.org/10.1016/J.FUEL.2013.03.071
  10. Mishra D.P., Patyal A., Padhwal M. // Ibid. 2011. V. 90. № 5. P. 1805. https://doi.org/10.1016/j.fuel.2010.12.021
  11. Glushkov D.O., Paushkina K.K., Pleshko A.O., Vysokomorny V.S. // Ibid. 2022. V. 313. Article 123024. https://doi.org/10.1016/j.fuel.2021.123024
  12. Padwal M.B., Natan B., Mishra D.P. // Prog. Energy Combust. Sci. 2021. V. 83. Article 100885. https://doi.org/10.1016/j.pecs.2020.100885
  13. Glushkov D.O., Paushkina K.K., Pleshko A.O. // Russ. J. Phys. Chem. B. 2023. V. 17. № 1. P. 96. https://doi.org/10.1134/S1990793123010219
  14. Nachmoni G., Natan B. // Combust. Sci. Technol. 2000. V. 156. № 1–6. P. 139. https://doi.org/10.1080/00102200008947300
  15. Arnold R., Anderson W. // Proc. 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Orlando, Florida, USA. 2010. https://doi.org/10.2514/6.2010-421
  16. Glushkov D.O., Paushkina K.K., Pleshko A.O., Yanovsky V.A. // Acta Astronaut. 2023. V. 202. P. 637. https://doi.org/10.1016/j.actaastro.2022.11.027
  17. Glushkov D.O., Kuznetsov G.V., Nigay A.G., Yashutina O.S. // J. Energy Inst. 2019. V. 92. № 6. P. 1944. https://doi.org/10.1016/j.joei.2018.10.017
  18. Kunin A., Natan B., Greenberg J.B. // J. Propul. Power. 2010. V. 26. № 4. P. 765. https://doi.org/10.2514/1.41705
  19. He B., Nie W., He H. // Energy Fuels. 2012. V. 26. № 11. Article 6627. https://doi.org/10.1021/ef300990d
  20. Shumova V.V., Polyakov D.N., Vasilyak L.M.. // Russ. J. Phys. Chem. B. 2023. V. 17. № 4. P. 986. https://doi.org/10.1134/S1990793123040280
  21. Solomon Y., Natan B., Cohen Y. // Combust. and Flame. 2009. V. 156. № 1. P. 261. https://doi.org/10.1016/j.combustflame.2008.08.008
  22. Vershinina K.Y., Glushkov D.O., Nigay A.G., Yanovsky V.A., Yashutina O.S. // Ind. Eng. Chem. Res. 2019. V. 58. № 16. Article 6830. https://doi.org/10.1021/acs.iecr.9b00580
  23. Glushkov D.O., Nigay A.G., Yanovsky V.A., Yashutina O.S. // Energy Fuels. 2019. V. 33. № 11. Article 11812. https://doi.org/10.1021/acs.energyfuels.9b02300
  24. Sazhin S.S., Bar-Kohany T., Nissar Z., Antonov D., Strizhak P.A. et al. // Intern. J. Heat Mass Transf. 2020. V. 161. Article 120238. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120238
  25. Glushkov D.O., Nigay A.G., Yashutina O.S. // Ibid. 2018. V. 127, Part C. P. 1203. https://doi.org/10.1016/j.ijheatmasstransfer.2018.08.103
  26. Glushkov D.O., Kosintsev A.G., Kuznetsov G.V., Vysokomorny V.S. // Fuel. 2021. V. 291. Article 120172. https://doi.org/10.1016/j.fuel.2021.120172
  27. Vargaftik N.B., Vinogradov Y.K., Yargin V.S. Handbook of thermophysical properties of liquids and gases. Third Ed. New York: Begell House, 1996.
  28. Baird Z.S., Uusi-Kyyny P., Järvik O., Oja V., Alopaeus V. // Ind. Eng. Chem. Res. 2018. V. 57. № 14. Article 5128. https://doi.org/10.1021/acs.iecr.7b05018
  29. Zhuravlev A.A., Khvostov A.A., Ivanov A.V., Zhuravlev E.A. // Current Directions of Scientific Research XXI century: Theory and Practice (Voronezh). 2017. V. 5. No. 8-1 (34-1). P. 163.
  30. Abramzon B., Sazhin S. // Fuel. 2006. V. 85. № 1. P. 32. https://doi.org/10.1016/j.fuel.2005.02.027
  31. Bashta T.M. Hydraulic drives of aircraft. Moscow: Mashinostroenie, 1967.
  32. Khorolskyi O.V., Rudenko O.P. // Ukr. J. Phys. 2015. V. 60. № 9. P. 880. https://doi.org/10.15407/ujpe60.09.0880
  33. Owens J.C. // Appl. Opt. 1967. V. 6. № 1. P. 51. https://doi.org/10.1364/AO.6.000051
  34. Lindsay A.L., Bromley L.A. // Ind. Eng. Chem. 1950. V. 42. № 8. P. 1508. https://doi.org/10.1021/ie50488a017
  35. Glushkov D.O., Kosintsev A.G., Kuznetsov G.V., Vysokomorny V.S. // Acta Astronaut. 2021. V. 178. P. 272. https://doi.org/10.1016/J.ACTAASTRO.2020.09.004
  36. Davletshina T.A., Cheremisinoff N.P. Fire and Explosion Hazards Handbook of Industrial Chemicals. Westwood, New Jersey: Noyes Publ., 1998. Ch.3. https://doi.org/10.1016/B978-0-8155-1429-9.50008-5
  37. Tripathi A., Vinu R. // Lubricants (Switzerland). 2015. V. 3. № 1. P. 54. https://doi.org/10.3390/lubricants3010054
  38. Betelin V.B., Smirnov N.N., Nikitin V.F., Dushin V.R., Kushnirenko A.G. et al. // Acta Astronaut. 2012. V. 70. P. 23. https://doi.org/10.1016/j.actaastro.2011.06.021
  39. Celik I.B., Ghia U., Roache P.J., Freitas C.J., Coleman H. et al. // J. Fluids Eng. 2008. V. 130. № 7. Article 0780011. https://doi.org/10.1115/1.2960953
  40. Fugmann H., Schnabel L., Frohnapfel B. // Numer. Heat Transf., Part A: Appl. 2019. V. 75. № 1. P. 1. https://doi.org/10.1080/10407782.2018.1562741
  41. Glushkov D.O., Paushkina K.K., Shabardin D.P., Strizhak P.A., Gutareva N.Y. // J. Environ. Manage. 2019. V. 231. P. 896. https://doi.org/10.1016/j.jenvman.2018.10.067
  42. Antonov D.V., Kuznetsov G.V., Misyura S.Y., Strizhak P.A. // Exp. Therm. Fluid Sci. 2019. V. 109. P. 109862. https://doi.org/10.1016/j.expthermflusci.2019.109862
  43. Faik A.M.D., Zhang Y. // Fuel. 2018. V. 221. P. 89. https://doi.org/10.1016/j.fuel.2018.02.054

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences