The Effect of Nickel Content and Mechanical Activation on Combustion in the 5Ti + 3Si + хNi System

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Intermetallic alloys were synthesized in the 5Ti + 3Si + xNi system by the method of self-propagating high-temperature synthesis (SHS) and mechanosynthesis. The influence of nickel content on the morphology, size and yield of composite particles after mechanical activation (MA) of mixtures was studied. The dependences of the maximum temperatures and combustion rates, phase composition, morphology and elongation of synthesis products on the nickel content for the initial and MA mixtures are studied. Under the conditions of the experiments conducted in this work, combustion process was able to realize and at the same time the samples burned completely at a nickel content of 10 to 60 wt.% in the 5Ti + 3Si + xNi system. After MA, the samples from the 5Ti + 3Si mixture burned to the end, and during the activation of the 5Ti + 3Si + 40% Ni mixture, mechanochemical synthesis occurred. With increasing nickel content combustion temperature decreases, and combustion velocity behaves nonmonotonically, increases the size of composite particles and decreases the yield of the mixture after MA. MA practically did not affect the maximum combustion temperatures of mixtures of 5Ti + 3Si + xNi. A multiple (from 0.7 to 2.9 cm/s) increase in the burning rate of samples from MA mixtures with an increase in the Ni content from 20 to 30 wt. % was recorded. An increase in the nickel content leads to an increase in the content of triple phases and the amount of melt in the synthesis products of mixtures of 5Ti + 3Si + xNi. Shrinkage of product samples increases with increasing nickel content in the initial mixtures. After MA, the shrinkage of the product samples is replaced by their growth. Explanations of the observed dependencies are proposed.

全文:

受限制的访问

作者简介

N. Kochetov

Merzhanov Institute of Structural Macrokinetics and Material Science, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: kolyan_kochetov@mail.ru
俄罗斯联邦, Chernogolovka

I. Kovalev

Merzhanov Institute of Structural Macrokinetics and Material Science, Russian Academy of Sciences

Email: kolyan_kochetov@mail.ru
俄罗斯联邦, Chernogolovka

参考

  1. Tikhonov A.S., Gerasimov A.P., Prokhorova I.I. // Application of shape memory effect in modern mechanical engineering. Moscow: Mashinostroenie, 1981. P. 80.
  2. Gunter V.E., Kotenko V.V., Mirgazizov M.Z. et al. // Shape memory Alloys in medicine. Tomsk: Publishing house Tomsk. Univ. 1986, P. 208.
  3. Gyunter V.E., Itin V.I., Monasevich L.A. et al. // Effects of shape memory and their application in medicine. Novosibirsk: Nauka, 1992.
  4. Sytschev A.E., Vadchenko S.G., Shchukin A.S. et al. // Russ. J. Phys. Chem. B. 2022. V. 16(1). P. 167; https://doi.org/10.1134/S1990793122010158
  5. Vadchenko S.G., Alymov M.I. // Russ. J. Phys. Chem. B. 2022. V. 16.(2). P. 236; https://doi.org/10.1134/S1990793122020130
  6. Itin V.I., Monasevich T.V., Bratchikov A.D. // Combust. Explos. Shock Waves. 1997. V. 33(5). P. 553; https://doi.org/10.1007/BF02672741
  7. Itin V.I., Naiborodenko Y.S. // High-temperature synthesis of intermetallic compounds. Tomsk: Publishing house Tomsk. Univ., 1989, P. 214.
  8. Kochetov N.A., Seplyarskii B.S. // Combust. Explos. Shock Waves. 2020. V. 56(3). P. 308; https://doi.org/10.1134/S0010508220030077
  9. Korchagin M.A., Grigor’eva T.F., Bokhonov B.B. et al. // Combust. Explos. Shock Waves. 2003. V. 39(1). P. 43; https://doi.org/10.1023/A:10221972187492
  10. Korchagin M.A., Grigor’eva T.F., Bokhonov B.B. et al. // Combust. Explos. Shock Waves. 2003. V. 39(1). P. 51; https://doi.org/10.1023/A:1022197218749
  11. Kochetov N.A., Seplyarskii B.S., Shchukin A.S. // Combust. Explos. Shock Waves. 2019. V. 55(3). P. 300; https://doi.org/10.1134/S0010508219030080
  12. Kasraee К., Yousefpoura M., Tayebifard S.A. // Mater. Chem. Phys. 2019. V. 222. P. 286; https://doi.org/10.1016/j.matchemphys.2018.10.024
  13. Kochetov N.A., Seplyarskii B.S. // Russ. J. Phys. Chem. A. 2018. V. 92(1). P. 47; https://doi.org/10.1134/S1990793118050172
  14. Kochetov N.A., Studenikin I.A. // Russ. J. Phys. Chem. B. 2018. V. 12(1). P. 77; https://doi.org/10.1134/S1990793118010086
  15. Jiao Y., Huang L., Wang S. et al. // J. Alloy. Comp. 2017. V. 704. P. 269; https://doi.org/10.1016/j.jallcom.2017.02.044
  16. Wang H.Y., Zha M., Lu S.J. et al. // Solid State Sci. 2010. V. 12 P. 1347; https://doi.org/10.1016/j.solidstatesciences.2010.05.006
  17. Yeh C., Hwang P., Chen Y. // J. Alloy. Comp. 2017. V. 714. P. 567; https://doi.org/10.1016/j.jallcom.2017.04.283
  18. Wang H.Y., Lu S.J., Xiao W. et al. // J. Am. Ceram. Soc. 2013. V. 96. P. 950. https://doi.org/10.1111/jace.12079
  19. Kasraee K., Tayebifard A., Salahi E. // Adv. Powder Technol. 2014. V. 25. P. 885; https://doi.org/10.1016/j.apt.2014.01.008
  20. Zha M., Wang H.Y., Li S.T., et al. // Mater. Chem. Phys. 2009. V. 114. P. 709. https://doi.org/10.1016/j.matchemphys.2008.10.024
  21. Beattie H.J., Ver Snyder F.L., Jr. // Nature. 1956. V. 178. P. 20.
  22. Beattie H.J., Hagel W.C., Jr. // Trans. Met. Soc. AIME. 1957. V. 209. P. 911.
  23. Gladyshevskii E.I. // Sov. Powder Metall. Met. Ceram. 1962. V. 1. P. 262.
  24. Bardos D.I., Gupta K.P., Beck P.A. // Trans. Met. Soc. AIME. 1961. V. 221. P. 1087.
  25. Steinmets J., Albrecht J.-M., Malaman B. // C.R. Hebd. Seances Acad. Sci., Ser. C, Sci. Chem. 1974. V. 279C. P. 1119.
  26. Jeitschko W., Jordan A.G., Beck P.A. // Trans. Met. Soc. AIME. 1969. V. 245. P. 335.
  27. Shoemaker C.B., Shoemaker D.P. // Acta Crystallogr. 1965. V. 18. P. 900.
  28. Kochetov N.A. // Russ. J. Phys. Chem. B. 2022. V. 16(4). P. 621; https://doi.org/10.1134/S1990793122040078
  29. Kochetov N.A., Sytschev A.E. // Mater. Chem. Phys. 2021. V. 257. P. 123727; https://doi.org/10.1016/j.matchemphys.2020.123727
  30. Weitzer F., Naka M., Krendelsberger N. et al. // Z. Anorg. Allg. Chem. 2010. V. 636. № 6. P. 982; https://doi.org/10.1002/zaac.201000017
  31. Seplyarskii B.S. // Dokl. Phys. Chem. 2004. V. 396(4–6). P. 130.
  32. Seplyarskii B.S., Kochetkov R.A., Lisina T.G. et al. // Combustion and Flame. 2022. V. 236. 111811; https://doi.org/10.1016/j.combustflame.2021.111811
  33. Vadchenko S.G. // Intern. J. Self-Propag. High-Temp. Synth. 2016. V. 25. № 4. P. 210; https://doi.org/10.3103/S1061386216040105
  34. Vadchenko. S.G. // Ibid. 2015. V. 24. № 2. P. 90; https://doi.org/10.3103/S1061386215020107
  35. Kamynina O.K., Rogachev A.S., Sytschev A.E. et al. // Int. J. Self-Propag. High-Temp. Synth. 2004. V. 13(3). P. 193.
  36. Kamynina O.K., Rogachev A.S., Umarov L.M. et al. // Combust. Explos. Shock Waves. 2003. V. 39(5). P. 548; https://doi.org/10.1023/A:1026161818701

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Results of X-ray phase analysis: a - activated mixtures 5Ti + 3Si + xNi (x = 0, 10, 30 wt%); b - mechanosynthesis products of the mixture 5Ti + 3Si + + + 40%Ni. Numbers denote phase reflections: 1 - Ti, 2 - Si, 3 - TiH1.5, 4 - Ni, 5 - Ni3Ti3O, 6 - TiNiSi, 7 - Ti5Si3.

下载 (139KB)
3. Fig. 2. Photographs of particles of the initial 5Ti + 3Si mixture (a); particles of the activated 5Ti + 3Si mixture (b); composite particles formed during the MA process of the 5Ti + 3Si + 10%Ni mixture (c), particles of mechanosynthesis products of the 5Ti + 3Si + 40%Ni mixture (d).

下载 (583KB)
4. Fig. 3. Dependence of average particle size (a), yield of activated mixture 5Ti + 3Si + xNi (b) on nickel content.

下载 (76KB)
5. Fig. 4. Experimentally measured dependences of maximum temperature (a), combustion rate (b) on nickel percentage in the initial (, dashed-dotted line) and activated (■, solid line) mixtures of 5Ti + 3Si + xNi.

下载 (95KB)
6. Fig. 5. Results of X-ray phase analysis of synthesis products of initial (a) and activated (b) mixtures 5Ti + 3Si + + + xNi with different nickel content. Numbers indicate phase reflections: 1 - Ti5Si3, 2 - TiNiSi , 3 -Ti2Ni3Si, 4 - Ni, 5 - Si, 6 - Ti, 7 - Ni16Ti6Si7, 8 - Ni3Ti3O.

下载 (312KB)
7. Fig. 6. Photograph of samples of combustion products of initial (a) and activated (b) mixtures 5Ti + 3Si + xNi with different nickel content: 1 - 0, 2 - 10, 3 - 20, 4 - 30, 5 - 40, 6 - 50, 7 - 60, 8 - 70 wt. %.

下载 (295KB)
8. Fig. 7. Dependence of relative elongation of samples of synthesis products of initial mixture 5Ti + 3Si + + + xNi (○, dashed-dotted line), MA-mixture 5Ti + +3Si + xNi (■, solid line) on nickel content.

下载 (60KB)

版权所有 © Russian Academy of Sciences, 2024