Oxidation of benzene to phenol by nitrous oxide over Me-ZSM-5-zeolites with a low concentration of active sites. Role of single active sites

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The ZSM-5 zeolites with Si/Al ratio 50 and 80 (ZSM-5-50 и ZSM-5-80) modified by Ca-, Sr-, Cr-, Mn- и Sb-ions were synthesized and investigated in oxidation of benzene to phenol. It was shown that more active and selective in direct oxidation of benzene by nitrous oxide are catalysts containing about 0.1–0.2% of Sb. It formally corresponds to substitution of 1/12 and 1/6 ions of H-ions by Sb-ions in ratio 1 : 1 of zeolite. Yield of phenol equal to 61.2% was obtained at 450°C and contact time 1 sec. with selectivity to phenol 96% in the presence of (ZSM-5-50 + 1/12 Sb) sample. It is about twice as much than an average value of yield reported in literature for other Me-ZSM-5 catalysts. Also, (ZSM-5-50 + 1/6 Sb) sample revealed much higher stability than other catalysts based on ZSM-5 zeolites. A model of nitrous oxide activation over single active sites (located very distant from each other) of the catalyst is suggested. The suggested model of single site adsorption and catalysis allows explain more higher efficiency of nitrous oxide as oxidant than that of molecular oxygen in reaction of direct oxidation of benzene to phenol, especially over catalysts with a low concentration (less than 0.1%) of |Me-ions.

全文:

受限制的访问

作者简介

V. Korchak

Semenov Federal Research Center for Chemical Physics

编辑信件的主要联系方式.
Email: korchak@chph.ras.ru
俄罗斯联邦, Moscow

A. Kuli-zade

Lomonosov Moscow State University

Email: korchak@chph.ras.ru
俄罗斯联邦, Moscow

O. Silchenkova

Semenov Federal Research Center for Chemical Physics

Email: korchak@chph.ras.ru
俄罗斯联邦, Moscow

O. Udalova

Semenov Federal Research Center for Chemical Physics

Email: korchak@chph.ras.ru
俄罗斯联邦, Moscow

参考

  1. Yu. A. Bruk, Kumol’nii sposob poluchenia fenola I acetona. L.: Khimia (1983).
  2. V. M. Zakoshanskii, Ros. Khim. Zh. LII, 53 (2008).
  3. M. Iwamoto, J. Hirata, K. Matsukami, S. Kagawa, J. Phys. Chem. 87, 903 (1983). https://doi.org/10.1021/j100229a001
  4. E. Suzuki, K. Nakashiro, Y. Ono, Chem. Lett. 17, 953 (1988). https://doi.org/10.1246/cl.1988.953
  5. G. I. Panov, V. I. Sobolev, A. S. Kharitonov, J. Molec. Catal. 61, 85 (1990). https://doi.org/10.1016/0304-5102(90)85197-P
  6. V. I. Sobolev, G. I. Panov, A. S. Kharitonov, et al., J. Catal. 139, 435 (1993). https://doi.org/10.1006/jcat.1993.1038
  7. A. S. Kharitonov, G. I. Panov, V. I. Sobolev, et al., Appl. Catal. A 82, 31 (1992). https://doi.org/10.1016/0926-860X(92)80003-U
  8. G.I. Panov, G.A. Sheveleva, A.S. Kharitonov, V.N. Romannikov, L.A. Vostrikova, Appl. Catal. A 82, 31 (1992). https://doi:org/10.1016/0926-860X(92)80003-U
  9. A. S. Kharitonov, V. I. Sobolev, G. I. Panov, Russ. Chem. Rev. 61, 1130 (1992).
  10. O. V. Udalova, M. Ya. Bykhovskii, M. D. Shibanova, et al., Nauka i Tekhnologia Uglevodorodov № 6, 60 (2001).
  11. O. V. Udalova, A. A. Firsova, M.D.Shibanova, et al., Nauka i Tekhnologia Uglevodorodov № 1, 23 (2002).
  12. V. N. Korchak, O. V. Udalova, M. D. Shibanova, et al., Sposob okislenia benzola v fenol, Patent R.F. № 2184722 (2001) // B.I. 2002. № 19.
  13. A.Y. Kucherov, A.A. Slinkin, Russ. Chem. Rev. 61, 925 (1992).
  14. A. A. Ivanov, V. S. Chernyavsky, M. I. Gross, et al., Appl. Catal. A 249, 327 (2003).
  15. V. S. Chernyavsky, I. V. Pirutko, A. K. Uriarte, et al., J. Catal. 245, 466 (2007).
  16. I. V. Pirutko, V. S. Chernyavsky, E. V. Starokon, et al., Appl. Catal. B: Env. 91, 174 (2009).
  17. L. Kustov, A. Tarasov, V. Bogdan, A. Tyrlov, Fulmer J. Catal. Today 61, 123 (2000). https://doi.org/10.1016/S0920-5861(00)00354-0
  18. A. L. Tarasov, L. M. Kustov, A. A. Tyrlov, et al., Proc. 4 th World Congress on Oxidation Catalysis. Potsdam, Germany P. 151 (2001).
  19. L. M. Kustov, A. L. Tarasov, A. M. Kuli-zade, A. A. Tyrlov, Proc. 4 th World Congress on Oxidation Catalysis. Potsdam, Germany P. 153 (2001).
  20. L. M. Kustov, A. L. Tarasov, A. L. Kustov, Russ. J. Phys. Chem. A 95, 9 1798 (2021). https://doi.org/10.1134/S0036024421090119
  21. Cui Ouvang, Yingxia Li, Jianwei LI, Catalysts 9, 44 (2019). https://doi.org/10.3390/catal9010044
  22. С. M. Fu, V. N. Korchak, Hall W.Keith, J. Catal. 68, 166 (1981). https://doi.org/10.1016/0021-9517(81)90049-X
  23. E. R. S.Winter, J. Catal. 34, 431 (1974). https://doi.org/10.1016/0021-9517(74)90056-6
  24. B. G. Reuben, J. W. Linnett, Trans. Faraday Soc. 55, 1543 (1959).
  25. B. R. Wood, J. A. Reiner, A. T. Bell, et al., J. Catal. 2004. 224, 148 (2004). https://doi.org/10.1016/j.jcat.2004.02.025
  26. A. L. Yakovlev, G. M. Zhidomirov, R. A.van Santen, Catal. Lett. 75, 45 (2001).
  27. D. A. Bulushev, L. Kiwi-Minsker, A. Renken, J. Catal. 2004. 222, 389 (2004). https://doi.org/10.1016/j.jcat.2003.11.012
  28. V. P. Zhdanov, Surface Rev. Lett. 16, 757 (2009). https://doi.org/10.1142/S0218625X09013116
  29. J. A. Ryder, A. K. Chakroborty, A. T. Bell, J. Phys. Chem. B 106, 7059 (2002). https://doi.org/10.1021/jp014705e
  30. J. A. Ryder, A. K. Chakroborty, A. T. Bell, J. Catal. 220, 84 (2003). https://doi.org/10.1016/S0021-9517(03)00275-6
  31. N. V. Dokhlikova, S. A. Ozerin, S. V. Doronin, et al., Russ. J. Phys. Chem. B 16, 461 (2022). https://doi.org/10.1134/S1990793122030137
  32. N. V. Dokhlikova, A. K. Gatin, S. Y.Sarvadi, et al., Russ. J. Phys. Chem B 16, 772 (2022). https://doi.org/10.1134/S1990793122040042
  33. M. V. Grishin, A. K. Gatin, S. Y. Sarvadi, et al., Russ. J. Phys. Chem. B 14, 697 (2020). https://doi.org/10.1134/S1990793120040065
  34. N. V. Dokhlikova, A. K. Gatin, S. Y. Sarvadi, et al., Russ. J. Phys. Chem. B 15, 732 (2021). https://doi.org/10.1134/S1990793121040023

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2024