Dependence of the TNT equivalent of an underwater explosion on the content of aluminum hydride in the energy material
- Autores: Makhov M.N.1
-
Afiliações:
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
- Edição: Volume 43, Nº 1 (2024)
- Páginas: 79-83
- Seção: Combustion, explosion and shock waves
- URL: https://cijournal.ru/0207-401X/article/view/675001
- DOI: https://doi.org/10.31857/S0207401X24010093
- EDN: https://elibrary.ru/mfxngy
- ID: 675001
Citar
Resumo
The results obtained show that the addition of aluminum (Al) and aluminum hydride (AlH3) to the explosive significantly increases the heat of explosion and the TNT equivalent (TE) of an underwater explosion. The compositions with AlH3 are inferior to the Al-containing counterparts in the heat of explosion. However, the formulations with AlH3 have the advantage in terms of the number of moles of gaseous products. Replacing Al with AlH3 weakly affects the TE in terms of the energy of gas bubble, while the TE in terms of the energy of shock wave is higher for the mixtures with AlH3. The latter is especially noticeable in the case of the explosive with a positive oxygen balance. However, the compositions with AlH3 are inferior to the Al-containing mixtures in the volumetric TE.
Palavras-chave
Texto integral

Sobre autores
M. Makhov
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
Autor responsável pela correspondência
Email: mmn13makhov@yandex.ru
Rússia, Moscow
Bibliografia
- N. Chernyy, B. A. Naumov, M. V. Berezin, A. I. Levshenkov, and V. P. Sinditskiy, Uspekhi v khimii i khimicheskoy tekhnologii (Mosk.) — Adnvances in Chemistry and Chemical Technology 22(4), 45 (2008).
- Ya. M. Paushkin, in Liquid and Solid Chemical Rocket Fuels, Ed. by A. I. Fokin (Nauka, Moscow, 1978) [in Russian].
- V. Weiser, N. Eisenreich, A. Koleczko, and E. Roth, Propellants, Explosives, Pyrotech. 32(3), 213 (2007). https://doi.org/10.1002/prep.200700022
- Lempert, G. N. Nechiporenko, A. V. Shastin, et al., Khim. Fiz. 22(4), 64 (2003)
- Seleznev, A. A., D. A. Kreknin, V. N. Lashkov, et al., Khim. Fiz. 17(1), 76 (1998).
- S. G. Andreev, A. V. Babkin, F. A. Baum, et al., Physics of Explosion, Ed. by L. P. Orlenko (Fizmatlit, Moscow, 2002), Vol. 1 [in Russian].
- M. N. Makhov, Gorenie Vzryv 14(1), 83 (2021). https://doi.org/10.30826/СЕ21140111
- G. Bjarnholt, Propellants, Explosives, Pyrotech. 5, 67 (1980). https://doi.org/10.1002/prep.19800050213
- M. N. Makhov, Gorenie Vzryv 15(4), 105 (2022). https://doi.org/10.30826/СЕ22150411
- A. V. Dubovik, Russ. J. Phys. Chem. B 15(4), 696 (2021). https://doi.org/10.1134/S1990793121040151
- A. V. Dubovik, Russ. J. Phys. Chem. B 16(2), 260 (2022). https://doi.org/10.1134/S1990793122020051
- A. V. Dubovik, Russ. J. Phys. Chem. B 17(2), 369 (2023). https://doi.org/10.1134/S1990793123020057
- G. M. Nazin, B. L. Korsunskiy, A. I. Kazakov, A. V. Nabatova, and N. G. Samoylenko, J. Phys. Chem. B 17(2), 406 (2023). https://doi.org/10.1134/S1990793123020124
- Energy condensed systems, 3rd ed. Ed. by B. P. Zhukov (Yanus-K, Moscow, 2000) [in Russian].
- M. N. Makhov, in Proceedings of the 33rd International Annual Conference of ICT (Fraunhofer Inst. Chem. Technol., Pfinztal, 2002), p. 73.
- M. N. Makhov, in Proceedings of the 36th International Annual Conference of ICT and 32nd International Pyrotechnics Seminar (Fraunhofer Inst. Chem. Technol., Pfinztal, 2005), p. 122.
- M. N. Makhov, Russ. J. Phys. Chem. B 14(5), 821 (2020). https://doi.org/10.1134/S1990793120050085
Arquivos suplementares
