Elastic conductivity of germanene nanoribbons with acceptor defects
- Autores: Lebedeva O.S.1, Lebedev N.G.1, Chibrikov A.S.1, Shamina E.N.2
-
Afiliações:
- Volgograd State University
- Volgograd State Medical University
- Edição: Volume 43, Nº 5 (2024)
- Páginas: 100-114
- Seção: ХИМИЧЕСКАЯ ФИЗИКА НАНОМАТЕРИАЛОВ
- URL: https://cijournal.ru/0207-401X/article/view/674953
- DOI: https://doi.org/10.31857/S0207401X24050122
- ID: 674953
Citar
Resumo
This work is devoted to the theoretical researchers of the germanene nanoribbons piezoresistivity of various structural modifications (arm-chair and zig-zag) with the acceptor structural defects. Gallium atoms were chosen as impurities. A phenomenological expression for the band structure of nanoribbons deformed by tension and compression is proposed. The dependences of the longitudinal component of the elastic conductivity tensor on the relative deformation of tension and compression, the concentration of impurities and the width of the nanoribbon are analyzed.
Palavras-chave
Sobre autores
O. Lebedeva
Volgograd State University
Autor responsável pela correspondência
Email: lebedeva_os@volsu.ru
Rússia, Volgograd
N. Lebedev
Volgograd State University
Email: lebedeva_os@volsu.ru
Rússia, Volgograd
A. Chibrikov
Volgograd State University
Email: lebedeva_os@volsu.ru
Rússia, Volgograd
E. Shamina
Volgograd State Medical University
Email: lebedeva_os@volsu.ru
Rússia, Volgograd
Bibliografia
- Antonova I.V. // Phys. Usp. 2022. V. 192. № 6. P. 609. https://doi.org/10.3367/UFNr.2021.05.038984
- Morozov S.V., Novoselov K.S., Geim A.K. // Phys. Usp. 2008. V. 51. P. 744. https://doi.org/10.3367/UFNr.0178.200807i.0776
- Lozovik Yu.E., Merkulova S.P., Sokolik A.A. // Phys. Usp. V. 51. P. 727. https://doi.org/10.3367/UFNr.0178.200807h.0757
- Chernozatonskii L.A., Sorokin P.B., Artukh A.A. // Russ. Chem. Rev. 2014. V. 83. P. 251. https://doi.org/10.1070/RC2014v083n03ABEH004367
- Lemme M.C. // Solid State Phenomena. 2009. V. 156. P. 499. https://doi.org/10.4028/www.scientific.net/SSP.156-158.499
- Lebe`gue S., Bjoerkman T., Klintenberg M. et al. // Phys. Rev. X. 2013. V. 3. 031002. https://doi.org/10.1103/PhysRevX.3.031002
- Acun A., Zhang L., Bampoulis P., et al. // J. Phys.: Condensed Matter. 2015. V. 27. № 443002. https://doi.org/10.1088/0953-8984/27/44/443002
- Behzad S. // J. Electron Spectroscopy and Related Phenomena. 2018. V. 229. P. 13. https://doi.org/10.1016/j.elspec.2018.09.003
- Ould M.L., Hachimi A.G., Boujnah M., Benyoussef A., Kenz A. // Optik. 2018. V. 158. P. 693. https://doi.org/10.1016/j.ijleo.2017.12.089
- Kaloni T.P., Schwingenschlögl U. // Chem. Phys. Lett. 2013. V. 583. P. 137. https://doi.org/10.1016/j.cplett.2013.08.001
- Mortazavi B., Rahaman O., Makaremi M., et al. // Physica E: Low-dimensional Systems and Nanostructures. 2017. V. 87. P. 228. https://doi.org/10.1016/j.physe.2016.10.047
- Kazemlou V. Phirouznia A. // Superlattices Microstruct. 2019. V. 128. P. 23. https://doi.org/10.1016/j.spmi.2019.01.003
- Voznyakovsky A.A., Wozniakovsky A.P., Kidalov S.V., Zavarinsky V.I. // Russ. J. Phys. Chem. B. 2021. V. 15. № 3. P. 377. https://doi.org/10.31857/S0207401X21060169
- Neskoromnaya E.A., Babkin A.V., Zakharchenko E.A., Morozov Yu.G., Kabachkov E.N., Shulga Yu.M. // Russ. J. Phys. Chem. B. 2023. V. 17. № 4. P. 818. https://doi.org/10.31857/S0207401X23070130
- Rybkin A.G., Tarasov A.V., Gogina A.A., Eryzhenkov A.V., Rybkina A.A. // JETP Lett. 2023. V. 117. Is. 8. P. 626. https://doi.org/10.31857/S1234567823080116
- Galashev A.E. // Russ. J. Phys. Chem. B. 2023. V. 17. № 1. P. 113. https://doi.org/10.31857/S0207401X2302005X
- Lebedeva O.S., Lebedev N.G., Lyapkosova I.A. // St. Petersburg State Polytechnical University J. Physics and Mathematics. 2019. V. 12. P. 38. https://doi.org/10.18721/JPM.12404
- Lebedeva O.S., Lebedev N.G., Lyapkosova I.A. // Scientific and technical bulletin of SPbSPU. Physical and mathematical sciences. 2021. V. 14. P. 8. https://doi.org/10.18721/JPM.14101
- Physics of graphene / Eds. Aoki H., Dresselhaus M.S. Cham: Springer, 2014. (NanoScience and Technology).
- Bir G.L., Pikus G.E. Symmetry and strain-induced effects in semiconductors. New York: John Wiley & Sons, Inc., 1974.
- Lebedeva O.S., Lebedev N.G. // St. Petersburg State Polytechnical University J. Physics and Mathematics. 2014. V. 1. P. 26.
- Lebedeva O.S., Lebedev N.G. // St. Petersburg State Polytechnical University Journal. 2014. V. 2. P. 149.
- Lebedeva O.S., Lebedev N.G. // Russian Journal of Physical Chemistry B: Focus on Physics. 2014. V. 8. № 5. P. 745. https://doi.org/10.7868/S0207401X14100070
- Lebedeva O.S., Lebedev N.G., Lyapkosova I.A. // Mathematical Physics and Computer Simulation. 2018. V. 21. P. 53.
- Lebedeva O.S., Lebedev N.G., Lyapkosova I.A. // J. Phys.: Condensed Matter. 2020. V. 32. 145301. https://doi.org/10.1088/1361-648X/ab5f45
- Lebedeva O.S., Lebedev N.G., Lyapkosova I.A. // Russ. J. Phys. Chem. A. 2020. V. 94. P. 1232. https://doi.org/10.31857/S004445372008018X
- Merinov V.B., Domnin V.A. // Russ. J. Phys. Chem. B. 2023. V. 17. № 1. P. 215. https://doi.org/10.31857/S0207401X23020127
- Izyumov Ju.A., Chashhin N.I., Alekseev D.S. Correlated Systems. Method of Generating Functional [in Russian]. Moscow: Regulyarnaya i Khaoticheskaya Dinamika, 2006.
- Pak A.V., Lebedev N.G. // Russ. J. Phys. Chem. A. 2013. V. 87. № 6. P. 979. https://doi.org/10.1134/S0036024413060204
- Stepanov N.F. Quantum mechanics and quantum chemistry [in Russian]. Moscow: Mir, Moscow State University Publishing, 2001.
- Kvasnikov I.A. Thermodynamics and statistical physics, in 4 vols., V. 4: Quantum Statistics [in Russian]. Moscow: KomKniga Publ., 2005.
- Alankina A.V., Lebedeva O.S., Lebedev N.G. // Materials Science, Shaping Technologies and Equipment 2023 (ICMSSTE 2023). Materials of the international scientific and practical conference. Simferopol, 2023. P. 209.
Arquivos suplementares
