Photonics of bilirubin – biologically important molecule (Review)
- Авторлар: Tatikolov A.S.1, Panova I.G.2
-
Мекемелер:
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences
- International Scientific and Practical Center of Tissue Proliferation
- Шығарылым: Том 43, № 11 (2024)
- Беттер: 3-9
- Бөлім: СТРОЕНИЕ ХИМИЧЕСКИХ СОЕДИНЕНИЙ, КВАНТОВАЯ ХИМИЯ, СПЕКТРОСКОПИЯ
- URL: https://cijournal.ru/0207-401X/article/view/680972
- DOI: https://doi.org/10.31857/S0207401X24110011
- ID: 680972
Дәйексөз келтіру
Аннотация
Bilirubin, a bile pigment having photochemical activity, plays an important role in the body. Photonics (photophysics and photochemistry) of bilirubin has attracted scientific and practical interest of researchers up to the present day. This is because its molecule is capable of ultrafast photoisomerization processes, and also contains two interacting dipyrromethenone chromophores. Furthermore, the photochemical reactions of bilirubin are used in the widespread phototherapy of neonatal jaundice (neonatal hyperbilirubinemia), carried out to reduce the level of bilirubin in the body. This review briefly considers photonics of bilirubin, as well as its main photochemical reactions in phototherapy of neonatal hyperbilirubinemia.
Толық мәтін

Авторлар туралы
A. Tatikolov
Emanuel Institute of Biochemical Physics, Russian Academy of Sciences
Хат алмасуға жауапты Автор.
Email: tatikolov@mail.ru
Ресей, Moscow
I. Panova
International Scientific and Practical Center of Tissue Proliferation
Email: tatikolov@mail.ru
Ресей, Moscow
Әдебиет тізімі
- S.Y. Kim and S.C. Park, Front. Pharmacol. 3, 45 (2012). https://doi.org/10.3389/fphar.2012.00045
- E. Sticova and M. Jirsa, World J. Gastroenterol. 19, 6398 (2013). https://doi.org/10.3748/wjg.v19.i38.6398
- S. Itoh, H. Okada, K. Koyano, S. Nakamura, Y. Konishi, T. Iwase, and T. Kusaka, Front. Pediatr. 10, 1002408 (2023). https://doi.org/10.3389/fped.2022.1002408
- D.A. Lightner and A.F. McDonagh, Acc. Chem. Res. 17, 417 (1984). https://doi.org/10.1021/ar00108a002
- C.P. Soto Conti, Arch. Argent. Pediatr. 119, No. 1, e18 (2021). http://dx.doi.org/10.5546/aap.2021.eng.e18
- J.F. Creeden, D.M. Gordon, D.E. Stec, and T.D. Hinds Ir, Am. J. Physiol. Endocrinol. Metab. 320, E191 (2021). https://doi.org/10.1152/ajpendo.00405.2020
- A.A. Lamola, Effects of environment on photophysical processes of bilirubin. In: Optical Properties and Structure of Terrapyrroles. Edited by G. Blauer and H. Sund. Walter de Gruyter, Berlin, 1985, p. 311–326.
- D.A. Lightner, J.K. Gawronski, and W.M.D. Wijekoon, J. Am. Chem. Soc. 109, No. 21, 6354 (1987). https://doi.org/10.1021/ja00255a020
- A.F. McDonagh and D.A. Lightner, Pediatrics 75, 443 (1985). https://doi.org/10.1542/peds.75.3.443
- A.F. McDonagh and D.A. Lightner, Semin. Liver Dis. 8, 272 (1988). https://doi.org/10.1055/s-2008-1040549
- J.E. Ennever, Pediatr. Clin. North Am. 33, 603 (1986). https://doi.org/10.1016/S0031-3955(16)36045-X
- D.A. Lightner, M. Reisinger, and G.L. Landen, J. Biol. Chem. 261, No. 13, 6034 (1986). https://doi.org/10.1016/S0021-9258(17)38489-2
- M. Taniguchi and J.S. Lindsey, J. Photochem. Photobiol. C 55, 100585 (2023). https://doi.org/10.1016/j.jphotochemrev.2023.100585
- A.A. Lamola and J. Flores, J. Am. Chem. Soc. 104, No. 9, 2530 (1982). https://doi.org/10.1021/ja00373a033
- B. Zietz and T. Gillbro, J. Phys. Chem. B 111, 11997 (2007). https://doi.org/10.1021/jp073421c
- A.S. Vetchinkin, S.Ya. Umanskii, Yu.A. Chaikina, and A.I. Shushin, Russ. J. Phys. Chem. B 16, No. 5, 945 (2022). https://doi.org/10.1134/S1990793122050104
- D.R. Anfimov, I.S. Golyak, O.A. Nebritova, and I.L. Fufurin, Russ. J. Phys. Chem. B 16, No. 5, 834 (2022). https://doi.org/10.1134/s1990793122050165
- V. Gorokhov, P. Knox, B. Korvatovskiy, N.Kh. Seifullina, S.N. Goryachev, N.P. Grishanova, V.Z. Paschenko, and A. B. Rubin, Russ. J. Phys. Chem. B 17, No. 3, 571 (2023). https://doi.org/10.1134/S199079312303020X
- D.A. Cherepanov, G.E. Milanovsky, V.A. Nadtochenko, and A.Yu. Semenov, Russ. J. Phys. Chem. B 17, No. 3, 594 (2023). https://doi.org/10.1134/S1990793123030193
- C. Carreira-Blanco, P. Singer, R. Diller, and J.L.P. Lustres, Phys. Chem. Chem. Phys. 18, 7148 (2016). https://doi.org/10.1039/c5cp06971h
- H.P. Upadhyaya, J. Phys. Chem. A 122, No. 46, 9084 (2018). https://doi.org/10.1021/acs.jpca.8b09392
- R. Pu, Z. Wang, R. Zhu, J. Jiang, T.-C. Weng, Y. Huang, and W. Liu, J. Phys. Chem. Lett. 14, 809 (2023). https://doi.org/10.1021/acs.jpclett.2c03535
- E.J. Land, Photochem. Photobiol. 24, 475 (1976). https://doi.org/10.1111/j.1751-1097.1976.tb06857.x
- V.Yu. Plavskii, A.I. Tretyakova, L.G. Plavskaya, A.V. Mikulich, A.S. Stashevskii, A.S. Grabchikov, I.A. Khodasevich, and V.A. Orlovich, Molecular, membrane and cellular basis of the functioning of biosystems: Int. Scientific Conf. Tenth Congress of the Belarusian Public Association of Photobiologists and Biophysicists, June 19–21, 2012, Minsk, Belarus: Books of Art. in 2 books. Book 2. Editorial board: I.D. Volotovskii, S.N. Cherenkevich, et al. Minsk: Publishing house Center of BSU, 2012. P. 71, ISBN 978-985-553-356-7.
- R.W. Sloper and T.G. Truscott, Photoсhem. Photobiol. 35, 743 (1982). https://doi.org/10.1111/j.1751-1097.1982.tb02640.x
- K.L. Tan, Clin. Perinatol. 18, No. 3, 423 (1991). https://doi.org/10.1016/S0095-5108(18)30506-2
- F. Ebbesen, H.J. Vreman, and T.W.R. Hansen, Int. J. Mol. Sci. 24, 461 (2023). https://doi.org/10.3390/ijms24010461
- T.M. Slusher, H.J. Vreman, A.M. Brearley, Y.E. Vaucher, R.J. Wong, D.K. Stevenson, O.T. Adeleke, I.P. Ojo, G. Edowhorhu, T.C. Lund, and D.A. Gbadero, Lancet Glob. Health 6, e1122 (2018). http://dx.doi.org/10.1016/S2214-109X(18)30373-5
- S. Onishi, S. Itoh, and K. Isobe, Biochem. J. 236, 23 (1986). https://doi.org/10.1042/bj2360023
- S. Itoh, S. Onishi, K. Isobe, M. Manabe, and T. Yamakawa, Biol. Neonate 51, 10 (1987). https://doi.org/10.1159/000242625
- S. Itoh, H. Okada, T. Kuboi, and T. Kusaka, Pediatr. Intern. 59, 959 (2017). https://doi.org/10.1111/ped.13332
- Y. Uchida, Y. Morimoto, T. Uchiike, T. Kamamoto, T. Hayashi, I. Arai, T. Nishikubo, and Y. Takahashi, Early Human Dev. 91, 381 (2015). http://dx.doi.org/10.1016/j.earlhumdev.2015.04.010
- F. Ebbesen, P. Madsen, S. Støvring, H. Hundborg, and G. Agati, Acta Pædiatr. 96, 837 (2007). https://doi.org/10.1111/j.1651-2227.2007.00261.x
- F. Ebbesen, P.K. Vandborg, and M.L. Donneborg, Seminars in Perinatol. 45, 151358 (2021). https://doi.org/10.1016/j.semperi.2020.151358
- F. Ebbesen, M. Rodrigo-Domingo, A.M. Moeller, H.J. Vreman, and M.L. Donneborg, Pediatr. Res. 89, 598 (2021). https://doi.org/10.1038/s41390-020-0911-9
- F. Ebbesen, P.H. Madsen, P.K. Vandborg, L.H. Jakobsen, T. Trydal, and H.J. Vreman, Pediatr. Res. 80, 511 (2016). https://doi.org/10.1038/pr.2016.115
- A.A. Lamola, Clin. Perinatol. 43, No. 2, 259 (2016). http://dx.doi.org/10.1016/j.clp.2016.01.004
- V.K. Bhutani, Pediatrics. 128, e1046 (2011). www.pediatrics.org/cgi/doi/10.1542/peds.2011-1494
Қосымша файлдар
