Shock-Wave Properties of Emulsion Matrix at Various Concentrations of Glass Microspheres

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

There has been conducted research of shock-wave properties of an emulsion explosive (EE) based on ammonium nitrate, with the concentration of hollow glass microspheres ranging from 0% to 4 wt%. Shock waves in the studied samples were created by aluminum plates, which were accelerated by explosion products to speeds of 0.6 to 5 km/s. The wave velocity profiles were measured using a VISAR laser Doppler interferometer at the boundary with the water window or when the shock wave exited the free surface. The processed experimental data provided the basis for making the Hugoniots of the investigated compounds. An assessment of the dependence of the sound velocity on pressure for an emulsion matrix has been made. At low pressures, the mixture of the emulsion matrix and the microspheres feature the formation of a two-wave configuration. It is demonstrated that the increase of microspheres concentration causes a rapid decrease of activation threshold of explosive transformation, and at 4% of microspheres the said threshold value is below 1.1 GPa.

Full Text

Restricted Access

About the authors

A. N. Zubareva

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences

Author for correspondence.
Email: zan@ficp.ac.ru
Russian Federation, Chernogolovka

V. V. Lavrov

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences; Blagonravov Mechanical Engineering Research Institute of the Russian Academy of Sciences

Email: zan@ficp.ac.ru
Russian Federation, Chernogolovka; Moscow

A. V. Utkin

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences

Email: zan@ficp.ac.ru
Russian Federation, Chernogolovka

References

  1. Budov V.V. // Glass Ceram. 1994. V. 51. № 7-8. P. 230. https://doi.org/10.1007/BF00680655
  2. Ostrik A.V., Potapenko A.I. // Composite materials constructions (CM). 2001. № 1. P. 48. [In Russian].
  3. Efremov V.P., Potapenko A.I., Fortov V.E. // Problems of Atomic Science and Technology. 2000. V. 2. № 1. P. 152. [In Russian].
  4. Zel’dovich Y.B., Raizer Y.P. Physics of shock waves and high-temperature hydrodynamic phenomena. Dover Publ., 2002.
  5. Zubareva A.N., Utkin A.V., Lavrov V.V. // Combust. Explos. Shock Waves. 2018. V. 54. № 5. P. 543. https://doi.org/10.1134/S0010508218050052
  6. Ziborov V.S., Kanel’ G.I., Rostilov T.A. // Combust. Explos. Shock Waves. 2020. V. 56. P. 237. https://doi.org/10.1134/S001050822002015X
  7. Landau L.D., Lifshitz E.M. Course of Theoretical Physics: Fluid Mechanics. V. 6. Oxford, UK: Pergamon Press, 1987.
  8. Yoshida M., Iida M., Tanaka K. et al. // Proc. 8th Sympos. Intern. on Detonation. 1985. P. 993.
  9. Lee J., Sandstrom F.W., Graig B.G., Persson P.A. // Proc. 9th Sympos. Intern. on Detonation. 1989. P. 573.
  10. Sil’verstov V.V., Plastinin A.V., Karakhanov S.M., Zykov V.V. // Combust. Explos. Shock Waves. 2008. V. 44. № 3. P. 354. https://doi.org/10.1007/s10573-008-0043-8
  11. Yunoshev A.S., Sil’vestrov V.V., Plastinin A.V. Rafeichik S.I. // Ibid. 2017. V. 53. № 2. P. 205. https://doi.org/10.1134/S0010508217020113
  12. Voskoboinikov I.M., Afanasenkov A.N., Bogomolov V.M. // Ibid. 1967 V. 3. P. 359.
  13. Woolfolk R.W., Cowperthwaite M., Shaw R. // Thermochim. Acta. 1973. V. 5. № 4. P. 409.
  14. Sil’vestrov V.V., Yunoshev A.S., Plastinin A.V. Rafeichik S.I. // Combust. Explos. Shock Waves. 2014. V. 50. № 4. P. 470. https://doi.org/10.1134/S0010508214040169
  15. Sil’vestrov V.V., Yunoshev A.S., Plastinin A.V. // Ibid. № 6. P. 716. https://doi.org/10.1134/S0010508214060136
  16. Physics of Explosion / Ed. Orlenko L.P. М.: Fizmatlit, 2002. V. 1. [In Russian].
  17. Kanel G.I., Razorenov S.V., Fortov V.E. Shock-wave phenomena and the properties of condensed matter. New York: Springer Science & Business Media, 2004.
  18. Mochalova V.M., Utkin A.V., Garanin V.A., Torunov S.I. // Combust. Explos. Shock Waves. 2009. V. 45. № 3. P. 320.
  19. Mochalova V.M., Utkin A.V., Anan’In A.V. // Ibid. 2007. V. 43. № 5. P. 575. https://doi.org/10.1007/s10573-007-0077-3
  20. Kolesnikov S.A., Utkin A.V. // Ibid. № 6. P. 710. https://doi.org/10.1007/s10573-007-0096-0
  21. Gafarov B.R., Utkin A.V., Razorenov S.V. et al. // J. Appl. Mech. Tech. Phys. 1999. V. 40. № 3. P. 501. https://doi.org/10.1007/BF02468407
  22. Zharkov V.N., Kalinin V.A. Equations of state for solids at high pressures and temperatures. New York: Consultants Bureau, 1971.
  23. Dremin A.N., Karpukhin I.A. // J. Appl. Mech. Tech. Phys. 1960. № 3. P. 184 [In Russian].
  24. Budov V.V. // Problemy Prochnosti (Strength Issues). 1991. V. 5. P. 68. [In Russian].
  25. Herrmann W. // J. Appl. Phys. 1969. V. 40. № 6. P. 2490.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Scheme of experiments: 1 - impactor, 2 - screen, 3 - sample, 4 - water window, 5 - 7- 400 µm thick Al foil or 1 mm thick PMMA plate on which 7 µm thick aluminium foil was glued, 6 - polarisation sensor.

Download (244KB)
3. Fig. 2. Velocity profiles of the emulsion matrix/water boundary. Arrows mark the moments of rarefaction wave arrival. The numerical designations correspond to the numbers of experiments in Table 1. Curves 3′ and 5′ are velocity profiles at the screen/water interface in the absence of the sample.

Download (350KB)
4. Fig. 3. Shock adiabatic (curve 1) and Lagrangian speed of sound (curve 2) of the emulsion matrix. Experimental data are taken from Refs: [14] - ▲; [15] -▼; [5] - ○, ●; this paper - □, ■.

Download (398KB)
5. Fig. 4. Velocity profiles of the EBV/water interface for the emulsion matrix mixture with 1 weight % microspheres. The numerical designations correspond to the numbers of experiments in Table 2. Curves 1′, 2′, 3′, and 5′ are velocity profiles at the screen/water interface.

Download (481KB)
6. Fig. 5. Velocity profiles of the EVW/water interface for the emulsion matrix mixture with 3 weight % microspheres. The numerical designations correspond to the numbers of experiments in Table 3. Curves 1′, 2′, 3′ are velocity profiles at the screen/water interface.

Download (460KB)
7. Fig. 6. Velocity profiles of the EVW/water interface for the emulsion matrix mixture with 4 weight % microspheres. The numerical designations correspond to the numbers of experiments in Table 4. Curves 1′ and 2′ are velocity profiles at the screen/water interface.

Download (379KB)
8. Fig. 7. Velocity profiles for emulsion matrix samples (1) and matrices of different thicknesses containing 3 wt.% microspheres: sample thicknesses of 4 mm (2) and 8 mm (3). The numerical designations correspond to the numbers of experiments in Table 5. Arrows mark the moments of the beginning of microsphere fracture.

Download (457KB)
9. Fig. 8. Velocity profiles for samples of emulsion matrix (1) and matrices of different thicknesses containing 4 wt.% of microspheres: sample thicknesses of 4 mm (4) and 8 mm (5). The numerical designations correspond to the numbers of experiments in Table 5. Arrows mark the moments of the beginning of microsphere fracture.

Download (806KB)
10. Fig. 9. Shock adiabats of emulsion matrix and EVW with different concentration of microspheres (in weight %): 0 (■), 1 (●), 3 (▼), 4 (▲). Light triangle - chempeak parameters in the case of stationary detonation at the content of 3 weight % of microspheres [5, 18]. Solid, dashed, and dotted lines are calculations.

Download (400KB)

Copyright (c) 2025 Russian Academy of Sciences