Temperature of microparticles in cryogenic gas-discharge plasma
- Authors: Shumova V.V.1,2, Polyakov D.N.1, Vasilyak L.M.1
-
Affiliations:
- Joint Institute for High Temperatures of the Russian Academy of Sciences
- Semenov Institute of Chemical Physics, Russian Academy of Sciences
- Issue: Vol 44, No 4 (2025)
- Pages: 106-114
- Section: ФИЗИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЯ ХИМИЧЕСКИХ РЕАКЦИЙ
- URL: https://cijournal.ru/0207-401X/article/view/682732
- DOI: https://doi.org/10.31857/S0207401X25040127
- ID: 682732
Cite item
Abstract
A numerical analysis of microparticle heating in clouds, formed by microparticles, that were observed in a neon glow discharge plasma at cryogenic temperature has been carried out. The relationship between the temperature of the microparticle surface and the parameters of the cloud is demonstrated. It has been revealed that the collective effect of the cloud on the plasma results in a reduction in the heating of microparticles within the cloud, when compared to the heating of a test microparticle in a discharge with an identical value of discharge current and gas pressure. The temperature of a microparticle is observed to be contingent upon its position within the cloud. The evidence indicates that the temperature of the microparticles at the cloud periphery can exceed that at the cloud center. It was found that in denser clouds, the temperature profile of microparticles is levelled out.
Full Text

About the authors
V. V. Shumova
Joint Institute for High Temperatures of the Russian Academy of Sciences; Semenov Institute of Chemical Physics, Russian Academy of Sciences
Author for correspondence.
Email: shumova@ihed.ras.ru
Russian Federation, Moscow; Moscow
D. N. Polyakov
Joint Institute for High Temperatures of the Russian Academy of Sciences
Email: shumova@ihed.ras.ru
Russian Federation, Moscow
L. M. Vasilyak
Joint Institute for High Temperatures of the Russian Academy of Sciences
Email: shumova@ihed.ras.ru
Russian Federation, Moscow
References
- R. Merlino Adv. Phys.: X. 2021. V. 6. P. 1873859. https://doi.org/10.1080/23746149.2021.1873859
- Y. Chengxun, L. Zhijian, V.L. Bychkov et al. Russ. J. Phys. Chem. B 2022. V. 16(5). P. 955. https://doi.org/10.1134/S1990793122050189
- M.G. Golubkov, A.V. Suvorova, A.V. Dmitriev, G.V. Golubkov. Russ. J. Phys. Chem. B 2020. V. 14. P. 873. https://doi.org/10.1134/S1990793120050206
- D.N. Polyakov, V.V. Shumova, L.M. Vasilyak. Russ. J. Phys. Chem. B 2023. V. 17 (5). P. 1241. https://doi.org/10.1134/S1990793123050263
- A.V. Kostrov. Plasma Phys. Rep. 2020. V. 46. P. 443. https://doi.org/10.1134/S1063780X20040066
- D. Siingh, R.P. Singh, A.K. Singh et al. Space Sci. Rev. 2012. V. 169. P. 73. https://doi.org/10.1007/s11214-012-9906-0
- N.V. Ardelyan, V.L. Bychkov, K.V. Kosmachevskii, G.V. Golubkov, M.G. Golubkov. Russ. J. Phys. Chem. B. 2018. V. 12. № 4. P. 749. https://doi.org/10.1134/S1990793118040036
- G.V. Golubkov, V.L. Bychkov, N.V. Ardelyan et al. Russ. J. Phys. Chem. B. 2019. V. 13. № 4. P. 661. https://doi.org/10.1134/S1990793119040043
- V.V. Surkov, M. Hayakawa. Surv. Geophys. 2020. V. 41. P. 1101. https://doi.org/10.1007/s10712-020-09597-2
- K.Ya. Troshin, A.N. Streletskii, I.V. Kolbanev et al. Russ. J. Phys. Chem. B 2016. V. 10. P. 435. https://doi.org/10.1134/S199079311603009X
- P.A. Vlasov, V.N. Smirnov, A.M. Tereza et al. Russ. J. Phys. Chem. B 2016. V. 10. P. 912. https://doi.org/10.1134/S1990793116060282
- D.A. Tropin, A.V. Fedorov, O.G. Penyazkov, V.V. Leshchevich. Combustion, Explosion, and Shock Waves 2014. V. 50(6). P. 632. https://doi.org/10.1134/S0010508214060021
- G.V. Golubkov, V.L. Bychkov, V.O. Gotovtsev, S.O. Adamson et al. Russ. J. Phys. Chem. B 2020. V. 14. P. 351. https://doi.org/10.1134/S1990793120020219
- M.Y. Pustylnik, A.A. Pikalev, A.V. Zobnin et al. Contribut. Plasma Phys. 2021. V. 61 (10). P. e202100126. https://doi.org/10.1002/ctpp.202100126
- D.N. Polyakov, V.V. Shumova, L.M. Vasilyak. Plasma Sources Sci. Technol. 2019. V. 28. P. 065017. https://doi.org/10.1088/1361-6595/ab21850963-0252/
- D.N. Polyakov, V.V. Shumova, L.M. Vasilyak. J. Appl. Phys. 2020. V. 128. P. 053301. https://doi.org/10.1063/5.0014944
- D.N. Polyakov, V.V. Shumova, L.M. Vasilyak. Plasma Sources Sci. Technol. 2022. V. 31. № 7. P. 074001. https://doi.org/10.1088/1361-6595/ac7c36
- D.N. Polyakov, V.V. Shumova, L.M. Vasilyak. Russ. J. Phys. Chem. B. 2024. V. 18 (4). P. 1128. https://doi.org/10.1134/S1990793124700635
- D.N. Polyakov, V.V. Shumova, L.M. Vasilyak. Surf. Eng. Appl. Electrochem. 2015. V. 51. № 2. P. 143–151. https://doi.org/10.3103/S106837551502012X
- N. Balakrishnan. J. Chem. Phys. 2016. V. 145. P. 150901. https://doi.org/10.1063/1.4964096
- R.V. Krems. Phys. Chem. Chem. Phys. 2008. V. 10. P. 4079. https://doi.org/10.1039/B802322K
- P.F. Weck, N. Balakrishnan. Int. Rev. Phys. Chem. 2006. V. 25. № 3. P. 283. http://dx.doi.org/10.1080/01442350600791894
- S. Stauss, H. Muneoka, K. Terashima. Plasma Sources Sci. Technol. 2018. V. 27. P. 023003. https://doi.org/10.1088/1361-6595/aaaa870963-0252/
- Y. Huttel (ed.). Gas-phase synthesis of nanoparticles. John Wiley & Sons, 2017. https://onlinelibrary.wiley.com/doi/book/10.1002/9783527698417
- D.N. Polyakov, V.V. Shumova, L.M. Vasilyak. Phys. Lett. A 2021. V. 389. P. 127082. https://doi.org/10.1016/j.physleta.2020.127082
- K. Takahashi. Int. J. Microgravity Sci. Appl. 2024. V. 41. № 4. P. 410402. https://doi.org/10.15011/jasma.41.410402
- T.S. Ramazanov, Z.A. Moldabekov, M.M. Muratov. Phys. Plasmas 2017. V. 24. № 5. P. 050701. https://doi.org/10.1063/1.4982606
- S.A. Khrapak, G.E. Morfill. Phys. Plasmas 2006. V. 13. № 10. P. 104506. https://doi.org/10.1063/1.2359282
- D.N. Polyakov, V.V. Shumova, L.M. Vasilyak. Russ. J. Phys. Chem. B 2021. V. 15 (4). P. 691. https://doi.org/10.1134/S1990793121040242
- D.N. Polyakov, V.V. Shumova, L.M. Vasilyak. J. Phys. D: Appl. Phys. 2017. V. 50. P. 405202. https://doi.org/10.1088/1361-6463/aa8292
- D.N. Polyakov, V.V. Shumova, L.M. Vasilyak. J. Phys.: Conf. Ser. 2018. V. 1058. P. 012049. https://doi.org/10.1088/1742-6596/1058/1/012049
- L.C. Pitchford. J. Phys. D: Appl. Phys. 2013. V. 46. P. 330301. https://nl.lxcat.net https://iopscience.iop.org/article/10.1088/0022-3727/46/33/330301
- A.V. Phelps, J.P. Molnar. Phys. Rev. 1953. V. 89. P. 1202. https://doi.org/10.1103/PhysRev.89.1202
- A. Bogaerts, R. Gijbels. Spectrochim. Acta B. 1997. V. 52. P. 553. https://doi.org/10.1016/S0584-8547(96)01658-8
- L.G. D’yachkov, A.G. Khrapak, S.A. Khrapak, G.E. Morfill. Phys. Plasmas. 2007. V. 14. № 4. P. 042102. https://doi.org/10.1063/1.2713719
- G.J.M. Hagelaar, L.C. Pitchford. Plasma Sources Sci. Technol. 2005. V. 14. P. 722. https://doi.org/10.1088/0963-0252/14/4/011
- A.V. Eletskii, L.A. Palkina, B.M Smirnov. Transport Phenomena in a Weakly Ionized Plasma (Atomizdat, Moscow, 1975) [in Russian].
- S.C. Brown. Basic Data Plasma Phys. – N.Y.: American Institute of Physics, 1974. https://link.springer.com/book/9781563962738
- V.V. Shumova, D.N. Polyakov, L.M. Vasilyak. Russ. J. Phys. Chem. B. 2022. V. 16. P. 912. https://doi.org/10.1134/S1990793122050232
- D.N. Polyakov, V.V. Shumova, L.M. Vasilyak. Plasma Phys. Rep. 2019. V.45. № 4. P. 414. https://doi.org/10.1134/S1063780X19040068
- V.V. Shumova, Polyakov D.N., Vasilyak L.M., Russ. J. Phys. Chem. B. 2020. V. 14 (6). P. 959. https://doi.org/10.1134/S1990793120060275
- Polyakov D.N., V.V. Shumova, L.M. Vasilyak. Plasma Phys. Rep. 2017. V. 43. № 3. P. 397. https://doi.org/10.1134/S1063780X17030096
- D.N. Polyakov, V.V. Shumova, L.M. Vasilyak. Surf. Eng. Appl. Electrochem. 2013. V. 49. № 2. P. 114. https://doi.org/10.3103/S1068375513020105
- A.S. Kostenko, V.N. Ochkin, S.N. Tskhai. Tech. Phys. Lett. 2016. V. 42. P. 743. https://doi.org/10.1134/S106378501607021X
- A.D. Usachev, A.V. Zobnin, A.V. Shonenkov et al. J. Phys.: Conf. Series. 2018. V. 946. P. 012143. http://dx.doi.org/10.1088/1742-6596/946/1/012143
- A. Pikalev, V. Kobylin, A. Semenov. IEEE Trans. Plasma Sci. 2018. V. 46. № 4. P. 698. https://doi.org/10.1109/TPS.2017.2763742
- D.N. Polyakov, V.V. Shumova, L.M. Vasilyak. IEEE Trans. Plasma Sci. 2014. V. 42. № 10. P. 2684. https://doi.org/10.1109/TPS.2014.2311584
- V.V. Shumova, D.N. Polyakov, L.M. Vasilyak. Plasma Sources Sci. Technol. 2014. V. 23. №. 6. P. 065008. https://doi.org/10.1088/0963-0252/23/6/065008
- D.N. Polyakov, V.V. Shumova, L.M. Vasilyak. Plasma Sources Sci. Technol. 2017. V. 26. № 8. P. 08LT01. https://doi.org/10.1088/1361-6595/aa8060
- V.V. Shumova, D.N. Polyakov, L.M. Vasilyak. Russ. J. Phys. Chem. B 2023. V. 17 (4). P. 986. https://doi.org/10.1134/S1990793123040280
- G.L. Agafonov, A.M. Tereza. Russ. J. Phys. Chem. B 2015. V. 9. P. 92. https://doi.org/10.1134/S1990793115010145
- A.M. Tereza, G.L. Agafonov, E.K. Anderzhanov et al. Russ. J. Phys. Chem. B 2022. V. 16. P. 686–692. https://doi.org/10.1134/S1990793122040297
- A.M. Tereza, G.L. Agafonov, E.K. Anderzhanov et al. Russ. J. Phys. Chem. B 2023. V. 17. P. 425–432. https://doi.org/10.1134/S1990793123020173
Supplementary files
