Temperature of microparticles in cryogenic gas-discharge plasma

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A numerical analysis of microparticle heating in clouds, formed by microparticles, that were observed in a neon glow discharge plasma at cryogenic temperature has been carried out. The relationship between the temperature of the microparticle surface and the parameters of the cloud is demonstrated. It has been revealed that the collective effect of the cloud on the plasma results in a reduction in the heating of microparticles within the cloud, when compared to the heating of a test microparticle in a discharge with an identical value of discharge current and gas pressure. The temperature of a microparticle is observed to be contingent upon its position within the cloud. The evidence indicates that the temperature of the microparticles at the cloud periphery can exceed that at the cloud center. It was found that in denser clouds, the temperature profile of microparticles is levelled out.

Full Text

Restricted Access

About the authors

V. V. Shumova

Joint Institute for High Temperatures of the Russian Academy of Sciences; Semenov Institute of Chemical Physics, Russian Academy of Sciences

Author for correspondence.
Email: shumova@ihed.ras.ru
Russian Federation, Moscow; Moscow

D. N. Polyakov

Joint Institute for High Temperatures of the Russian Academy of Sciences

Email: shumova@ihed.ras.ru
Russian Federation, Moscow

L. M. Vasilyak

Joint Institute for High Temperatures of the Russian Academy of Sciences

Email: shumova@ihed.ras.ru
Russian Federation, Moscow

References

  1. R. Merlino Adv. Phys.: X. 2021. V. 6. P. 1873859. https://doi.org/10.1080/23746149.2021.1873859
  2. Y. Chengxun, L. Zhijian, V.L. Bychkov et al. Russ. J. Phys. Chem. B 2022. V. 16(5). P. 955. https://doi.org/10.1134/S1990793122050189
  3. M.G. Golubkov, A.V. Suvorova, A.V. Dmitriev, G.V. Golubkov. Russ. J. Phys. Chem. B 2020. V. 14. P. 873. https://doi.org/10.1134/S1990793120050206
  4. D.N. Polyakov, V.V. Shumova, L.M. Vasilyak. Russ. J. Phys. Chem. B 2023. V. 17 (5). P. 1241. https://doi.org/10.1134/S1990793123050263
  5. A.V. Kostrov. Plasma Phys. Rep. 2020. V. 46. P. 443. https://doi.org/10.1134/S1063780X20040066
  6. D. Siingh, R.P. Singh, A.K. Singh et al. Space Sci. Rev. 2012. V. 169. P. 73. https://doi.org/10.1007/s11214-012-9906-0
  7. N.V. Ardelyan, V.L. Bychkov, K.V. Kosmachevskii, G.V. Golubkov, M.G. Golubkov. Russ. J. Phys. Chem. B. 2018. V. 12. № 4. P. 749. https://doi.org/10.1134/S1990793118040036
  8. G.V. Golubkov, V.L. Bychkov, N.V. Ardelyan et al. Russ. J. Phys. Chem. B. 2019. V. 13. № 4. P. 661. https://doi.org/10.1134/S1990793119040043
  9. V.V. Surkov, M. Hayakawa. Surv. Geophys. 2020. V. 41. P. 1101. https://doi.org/10.1007/s10712-020-09597-2
  10. K.Ya. Troshin, A.N. Streletskii, I.V. Kolbanev et al. Russ. J. Phys. Chem. B 2016. V. 10. P. 435. https://doi.org/10.1134/S199079311603009X
  11. P.A. Vlasov, V.N. Smirnov, A.M. Tereza et al. Russ. J. Phys. Chem. B 2016. V. 10. P. 912. https://doi.org/10.1134/S1990793116060282
  12. D.A. Tropin, A.V. Fedorov, O.G. Penyazkov, V.V. Leshchevich. Combustion, Explosion, and Shock Waves 2014. V. 50(6). P. 632. https://doi.org/10.1134/S0010508214060021
  13. G.V. Golubkov, V.L. Bychkov, V.O. Gotovtsev, S.O. Adamson et al. Russ. J. Phys. Chem. B 2020. V. 14. P. 351. https://doi.org/10.1134/S1990793120020219
  14. M.Y. Pustylnik, A.A. Pikalev, A.V. Zobnin et al. Contribut. Plasma Phys. 2021. V. 61 (10). P. e202100126. https://doi.org/10.1002/ctpp.202100126
  15. D.N. Polyakov, V.V. Shumova, L.M. Vasilyak. Plasma Sources Sci. Technol. 2019. V. 28. P. 065017. https://doi.org/10.1088/1361-6595/ab21850963-0252/
  16. D.N. Polyakov, V.V. Shumova, L.M. Vasilyak. J. Appl. Phys. 2020. V. 128. P. 053301. https://doi.org/10.1063/5.0014944
  17. D.N. Polyakov, V.V. Shumova, L.M. Vasilyak. Plasma Sources Sci. Technol. 2022. V. 31. № 7. P. 074001. https://doi.org/10.1088/1361-6595/ac7c36
  18. D.N. Polyakov, V.V. Shumova, L.M. Vasilyak. Russ. J. Phys. Chem. B. 2024. V. 18 (4). P. 1128. https://doi.org/10.1134/S1990793124700635
  19. D.N. Polyakov, V.V. Shumova, L.M. Vasilyak. Surf. Eng. Appl. Electrochem. 2015. V. 51. № 2. P. 143–151. https://doi.org/10.3103/S106837551502012X
  20. N. Balakrishnan. J. Chem. Phys. 2016. V. 145. P. 150901. https://doi.org/10.1063/1.4964096
  21. R.V. Krems. Phys. Chem. Chem. Phys. 2008. V. 10. P. 4079. https://doi.org/10.1039/B802322K
  22. P.F. Weck, N. Balakrishnan. Int. Rev. Phys. Chem. 2006. V. 25. № 3. P. 283. http://dx.doi.org/10.1080/01442350600791894
  23. S. Stauss, H. Muneoka, K. Terashima. Plasma Sources Sci. Technol. 2018. V. 27. P. 023003. https://doi.org/10.1088/1361-6595/aaaa870963-0252/
  24. Y. Huttel (ed.). Gas-phase synthesis of nanoparticles. John Wiley & Sons, 2017. https://onlinelibrary.wiley.com/doi/book/10.1002/9783527698417
  25. D.N. Polyakov, V.V. Shumova, L.M. Vasilyak. Phys. Lett. A 2021. V. 389. P. 127082. https://doi.org/10.1016/j.physleta.2020.127082
  26. K. Takahashi. Int. J. Microgravity Sci. Appl. 2024. V. 41. № 4. P. 410402. https://doi.org/10.15011/jasma.41.410402
  27. T.S. Ramazanov, Z.A. Moldabekov, M.M. Muratov. Phys. Plasmas 2017. V. 24. № 5. P. 050701. https://doi.org/10.1063/1.4982606
  28. S.A. Khrapak, G.E. Morfill. Phys. Plasmas 2006. V. 13. № 10. P. 104506. https://doi.org/10.1063/1.2359282
  29. D.N. Polyakov, V.V. Shumova, L.M. Vasilyak. Russ. J. Phys. Chem. B 2021. V. 15 (4). P. 691. https://doi.org/10.1134/S1990793121040242
  30. D.N. Polyakov, V.V. Shumova, L.M. Vasilyak. J. Phys. D: Appl. Phys. 2017. V. 50. P. 405202. https://doi.org/10.1088/1361-6463/aa8292
  31. D.N. Polyakov, V.V. Shumova, L.M. Vasilyak. J. Phys.: Conf. Ser. 2018. V. 1058. P. 012049. https://doi.org/10.1088/1742-6596/1058/1/012049
  32. L.C. Pitchford. J. Phys. D: Appl. Phys. 2013. V. 46. P. 330301. https://nl.lxcat.net https://iopscience.iop.org/article/10.1088/0022-3727/46/33/330301
  33. A.V. Phelps, J.P. Molnar. Phys. Rev. 1953. V. 89. P. 1202. https://doi.org/10.1103/PhysRev.89.1202
  34. A. Bogaerts, R. Gijbels. Spectrochim. Acta B. 1997. V. 52. P. 553. https://doi.org/10.1016/S0584-8547(96)01658-8
  35. L.G. D’yachkov, A.G. Khrapak, S.A. Khrapak, G.E. Morfill. Phys. Plasmas. 2007. V. 14. № 4. P. 042102. https://doi.org/10.1063/1.2713719
  36. G.J.M. Hagelaar, L.C. Pitchford. Plasma Sources Sci. Technol. 2005. V. 14. P. 722. https://doi.org/10.1088/0963-0252/14/4/011
  37. A.V. Eletskii, L.A. Palkina, B.M Smirnov. Transport Phenomena in a Weakly Ionized Plasma (Atomizdat, Moscow, 1975) [in Russian].
  38. S.C. Brown. Basic Data Plasma Phys. – N.Y.: American Institute of Physics, 1974. https://link.springer.com/book/9781563962738
  39. V.V. Shumova, D.N. Polyakov, L.M. Vasilyak. Russ. J. Phys. Chem. B. 2022. V. 16. P. 912. https://doi.org/10.1134/S1990793122050232
  40. D.N. Polyakov, V.V. Shumova, L.M. Vasilyak. Plasma Phys. Rep. 2019. V.45. № 4. P. 414. https://doi.org/10.1134/S1063780X19040068
  41. V.V. Shumova, Polyakov D.N., Vasilyak L.M., Russ. J. Phys. Chem. B. 2020. V. 14 (6). P. 959. https://doi.org/10.1134/S1990793120060275
  42. Polyakov D.N., V.V. Shumova, L.M. Vasilyak. Plasma Phys. Rep. 2017. V. 43. № 3. P. 397. https://doi.org/10.1134/S1063780X17030096
  43. D.N. Polyakov, V.V. Shumova, L.M. Vasilyak. Surf. Eng. Appl. Electrochem. 2013. V. 49. № 2. P. 114. https://doi.org/10.3103/S1068375513020105
  44. A.S. Kostenko, V.N. Ochkin, S.N. Tskhai. Tech. Phys. Lett. 2016. V. 42. P. 743. https://doi.org/10.1134/S106378501607021X
  45. A.D. Usachev, A.V. Zobnin, A.V. Shonenkov et al. J. Phys.: Conf. Series. 2018. V. 946. P. 012143. http://dx.doi.org/10.1088/1742-6596/946/1/012143
  46. A. Pikalev, V. Kobylin, A. Semenov. IEEE Trans. Plasma Sci. 2018. V. 46. № 4. P. 698. https://doi.org/10.1109/TPS.2017.2763742
  47. D.N. Polyakov, V.V. Shumova, L.M. Vasilyak. IEEE Trans. Plasma Sci. 2014. V. 42. № 10. P. 2684. https://doi.org/10.1109/TPS.2014.2311584
  48. V.V. Shumova, D.N. Polyakov, L.M. Vasilyak. Plasma Sources Sci. Technol. 2014. V. 23. №. 6. P. 065008. https://doi.org/10.1088/0963-0252/23/6/065008
  49. D.N. Polyakov, V.V. Shumova, L.M. Vasilyak. Plasma Sources Sci. Technol. 2017. V. 26. № 8. P. 08LT01. https://doi.org/10.1088/1361-6595/aa8060
  50. V.V. Shumova, D.N. Polyakov, L.M. Vasilyak. Russ. J. Phys. Chem. B 2023. V. 17 (4). P. 986. https://doi.org/10.1134/S1990793123040280
  51. G.L. Agafonov, A.M. Tereza. Russ. J. Phys. Chem. B 2015. V. 9. P. 92. https://doi.org/10.1134/S1990793115010145
  52. A.M. Tereza, G.L. Agafonov, E.K. Anderzhanov et al. Russ. J. Phys. Chem. B 2022. V. 16. P. 686–692. https://doi.org/10.1134/S1990793122040297
  53. A.M. Tereza, G.L. Agafonov, E.K. Anderzhanov et al. Russ. J. Phys. Chem. B 2023. V. 17. P. 425–432. https://doi.org/10.1134/S1990793123020173

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Distribution of electron concentrations ne and metastable neon atoms nm along the discharge radius R at different neon pressures p and microparticle concentrations np.

Download (124KB)
3. Fig. 2. Distributions of the temperature of microparticles Tp (lines 1–4) and the difference between the temperature of microparticles and the gas temperature T (lines 5–8) along the radius of the cloud of microparticles rc at different neon pressures p and microparticle concentrations np.

Download (102KB)

Copyright (c) 2025 Russian Academy of Sciences