Two-dimensional model of combustion of methane-air mixture in a slit burner

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A two-dimensional model of combustion of a premixed methane-air mixture inside a plane-parallel channel of a slit burner consisting of a set of parallel metal plates made of heat-resistant material is proposed. The task is described by a system of equations representing the laws of conservation of energy in the gas and solid phase, mass and elemental composition of the gas phase, taking into account the course of a complex chemical reaction, heat exchange between the gas and the surface of the plates, radiation from heated plates, thermal conductivity in the plates, molecular and convective heat and mass transfer in the gas. Calculations using the proposed model provide a completely adequate idea of the combustion process in the channel of a slot burner. Quantitative agreement with the experiment was obtained for the maximum value of the specific combustion power, which can exceed 500 W/cm2. In calculations using the proposed model, it is shown that the specific combustion power in the burner device under consideration may exceed 500 W/cm2. As the gas flow velocity (specific combustion power) increases, the chemical reaction zone moves along the channel axis towards the exit. In this case, the flame front with a peak on the axis of symmetry of the channel stretches more strongly along the plate. In a stoichiometric mixture, the flame front shifts closer to the channel entrance, and the concentration of carbon monoxide in the combustion products at the channel exit is significantly higher than in a lean mixture. As the velocity of the gas mixture at the channel entrance increases, the concentration of CO at the channel outlet of the channel grows, although it remains small. The obtained results qualitatively correspond to the experimental results of the study of slit combustion.

Full Text

Restricted Access

About the authors

A. A. Belyaev

Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences

Author for correspondence.
Email: belyaevIHF@yandex.ru
Russian Federation, Moscow

A. V. Arutyunov

Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences; Shenzhen MSU-BIT University

Email: belyaevIHF@yandex.ru
Russian Federation, Moscow; Shenzhen, China

N. Ya. Vasilik

Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences

Email: belyaevIHF@yandex.ru
Russian Federation, Moscow

A. A Zakharov

Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences

Email: belyaevIHF@yandex.ru
Russian Federation, Moscow

V. S. Arutyunov

Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences; Federal Research Center for Problems of Chemical Physics and Medical Chemistry, Russian Academy of Sciences; Gubkin Russian State University of Oil and Gas

Email: belyaevIHF@yandex.ru
Russian Federation, Moscow; Chernogolovka; Moscow

References

  1. V.M. Shmelev. Combust. Sci. Technol. 2014. V. 186. № 7. P. 943. https://doi.org/10.1080/00102202.2014.890601
  2. O.N. Bryukhanov, E.V. Kreinin, B.S. Mastryukov. Radiant gas heating. Leningrad: Nedra, 1989 [in Russian]. ISBN:5-247-00516-3.
  3. M.A. Mujeebu, M.Z. Abdullah, A.A. Mohamad. Energy. 2011. V. 36. № 8. P. 5132. https://doi.org/10.1016/j.energy.2011.06.014
  4. N.Ya. Vasilik, V.M. Shmelev. Combustion and Explosion (Gorenie I Vzryv (Moskva)), 2019. V. 12. № 1. P. 37. https://doi.org/10.30826/CE19120105
  5. N. Vasilik, V. Shmelev. Proc. of the Eighth Intl. Conf. on Advances in Civil, Structural and Environmental Engineering – ACSEE 2019, P. 16. ISBN: 978-1-63248-166-5 https://doi.org/10.15224/978-1-63248-166-5-03
  6. C.L. Hackert, J.L. Ellzey, O.A. Ezekoye. Combust. Flame. 1999. V.116. №.1-2. P.177.
  7. F.S. Palesskii, S.S. Minaev, R.V. Fursenko, V.K. Baev, A.I. Kirdyashkin, V.M. Orlovskii. Combustion, Explosion, and Shock Waves. 2012. V. 48. № 1. P. 17.
  8. V.M. Shmelev. Russ. J. Phys. Chem. B. 2020. V. 14. № 6. P. 964. https://doi.org/10.1134/S1990793120060263
  9. A.A. Belyaev, V.M. Shmelev, N.Ya. Vasilik, A.A. Zakharov, V.S. Arutyunov. Combustion and Explosion (Gorenie I Vzryv (Moskva)). 2020. V. 13. № 2. P.10. https://doi.org/10.30826/CE20130202
  10. F.A. Williams. Combustion Theory. Addison-Wesley Publishing Co., 1965.
  11. Burcat. Ideal gas thermodynamic data in polinomial form for combustion and air pollution use. Laboratory for Chemical Kinetics, Institute of Chemistry, ELTE Eotvos Lorand University. Budapest (Hungary). http://garfield.chem.elte.hu/Burcat/burcat.html
  12. D.A. Frank-Kamenetskiy. Diffusion and heat transfer in chemical kinetics. Moscow: Nauka, 1987 [in Russian].
  13. R. Reid, J. Prausnitz, T. Sherwood. The properties of gases and liquids. London: McGrow Hill, 3rd ed., 1977.
  14. V.Ya. Basevich, A.A. Belyaev, V.S. Posvyanskii, S.M. Frolov. Russ. J. Phys. Chem. B. 2013. V. 7. № 2. P. 161. https://doi.org/10.1134/S1990793113020103
  15. V.N. Mikhalkin, S.I. Sumskoi, A.M. Tereza, K.Y. Troshin, B.A. Khasainov, S.M. Frolov. Russ. J. Phys. Chem. B. 2022. V. 16. № 4. P. 629. https://doi.org/10.1134/S1990793122040261
  16. A.S. Palankoeva, A.A. Belyaev, V.S. Arutyunov. Russ. J. Phys. Chem. B. 2022. V. 16. № 3. P. 399. https://doi.org/10.1134/S1990793122030204
  17. S.D. Arsentev, L.A. Tavadyan, M.G. Bryukov, A.S. Palankoeva, A.A. Belyaev, V.S. Arutyunov. Russ. J. Phys. Chem. B. 2022. V. 16. № 6. P. 1019. https://doi.org/10.1134/S1990793122060021
  18. G. Schlichting. Boundary layer-theory. McGrow Hill, 1979.
  19. N.Ya. Vasilik, V.M. Shmelev. Combustion and Explosion (Gorenie I Vzryv (Moskva)). 2020. V. 13. № 2. P. 19. https://doi.org/10.30826/CE20130203
  20. N. Vasilik. Proc. of the 2nd Intern. E-Conference on Advances in Engineering, Technology and Management – ICETM 2020. ISBN: 978-1-63248-189-4. https://doi.org/10.15224/978-1-63248-189-4-07
  21. N.Ya. Vasilik, A.A. Zakharov. Combustion and Explosion (Gorenie I Vzryv (Moskva)). 2020. V. 13. № 4. P. 29. https://doi.org/10.30826/CE20130404
  22. N.Ya. Vasilik, S.V. Finyakov. Combustion and Explosion (Gorenie I Vzryv (Moskva)). 2021. V. 14. № 3. P. 27. https://doi.org/10.30826/CE21140304
  23. Ya.B. Zel’dovich, G.I. Barenblatt, V.B. Librovich, G.M. Makhviladze. The mathematical theory of combustion and explosions. Moscow: Nauka, 1980 [in Russian].
  24. A.A. Belyaev, B.S. Ermolaev. Russ. J. Phys. Chem. B. 2023. V. 17. № 4. P. 915. https://doi.org/10.1134/S199079312304022X

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Conventional diagram of the computational domain

Download (75KB)
3. Fig. 2. Curves of the distribution of the plate surface temperature along the x-axis (1), the distribution of the gas temperature parallel to the channel axis at different distances  (in cm) from the plate surface: 2 – 0.085, 3 – 0.17, 4 – 0.28 (along the axis of symmetry), and the flux of heat losses due to radiation from the plate surface (on a logarithmic scale) (5); u0 = 150 cm/s.

Download (103KB)
4. Fig. 3. Transverse distribution of gas temperature at different distances x (in cm) from the channel entrance: 1 – 7.5, 2 – 9.41, 3 – 12.0 at u0 = 150 cm/s.

Download (79KB)
5. Fig. 4. Distribution of gas flow temperature along the channel symmetry axis ( = b) for different values ​​of u0 (in cm/s): 20 (1), 50 (2), 150 (3), 250 (4), 350 (5).

Download (100KB)
6. Fig. 5. Dependence of the distance from the channel entrance to the flame front on the transverse coordinate for different values ​​of u0 (in cm/s): 20 (1), 50 (2), 150 (3), 250 (4), 350 (5).

Download (79KB)
7. Fig. 6. Distribution of concentrations of reactants and products (mole fractions) and temperature along the channel length along the symmetry axis in the chemical reaction zone: CH4 (1), O2 (2), CO (3), temperature (4) at ϕ = 0.67 (solid line) and ϕ = 1 (dash-dotted line); u0 = 50 cm/s.

Download (103KB)

Copyright (c) 2025 Russian Academy of Sciences