Influence of water microdroplets on hydrogen–air flame instability development in a channel
- Autores: Yakovenko I.S.1, Kiverin A.D.1
-
Afiliações:
- Joint institute for high temperatures of the Russian Academy of Sciences
- Edição: Volume 43, Nº 8 (2024)
- Páginas: 101-108
- Seção: Combustion, explosion and shock waves
- URL: https://cijournal.ru/0207-401X/article/view/681889
- DOI: https://doi.org/10.31857/S0207401X24080111
- ID: 681889
Citar
Resumo
The paper is devoted to the numerical analysis of the gaseous combustion process in a channel willed with the hydrogen-air mixture with the inflow of a fresh mixture seeded with microdroplets of water. The dynamics of microdroplets are described in the Lagrangian approximation, which makes it possible to identify the role of local interaction between the droplets and the flame front. It has been shown that the impact of droplets on the front can provoke the generation of disturbances of the flame front and intensify the development of front instability, thereby causing an integral increase in the combustion rate. Using spectral analysis of the structure of the front in the presence of microdroplets, the dynamics of the development of individual harmonics of front disturbances was analyzed and the mechanisms of evolution of the flame front under the influence of microdroplets of water were identified.
Texto integral

Sobre autores
I. Yakovenko
Joint institute for high temperatures of the Russian Academy of Sciences
Autor responsável pela correspondência
Email: yakovenko.ivan@bk.ru
Rússia, Moscow
A. Kiverin
Joint institute for high temperatures of the Russian Academy of Sciences
Email: yakovenko.ivan@bk.ru
Rússia, Moscow
Bibliografia
- G.O. Thomas, A. Jones, M.J. Edwards, Combust. Sci. Technol. 80(1-3), 47-61 (1991). https://doi.org/10.1080/00102209108951776
- G.O. Thomas, M.J. Edwards, D.H. Edwards, Combust. Sci. Technol. 71(4-6), 233-245 (1990). https://doi.org/10.1080/00102209008951634
- K. van Wingerden, B. Wilkins, J. Bakken, G. Pedersen, J. Loss. Prev. Process. Ind. 8(2), 61-70 (1995). https://doi.org/10.1016/0950-4230(95)00007-N
- L. Boeck, A. Kink , D. Oezdin, J. Hasslberger, T. Sattelmayer, Int. J. Hydrogen Energy 40(21), 6995-7004 (2015). https://doi.org/10.1016/j.ijhydene.2015.03.129
- S.S. Tsai, N.J. Liparulo Fog inerting criteria for hydrogen/air mixtures, Tech. Rep. CONF-821026e. Palo Alto, CA (USA): Electric Power Research Inst. (1982).
- S.P. Medvedev , B.E. Gel’fand, A.N. Polenov, S.V. Khomik, Combust. Explos. Shock Waves 38(4), 381-386 (2002) https://doi.org/10.1023/A:1016277028276
- M. Gieras, J. Loss. Prev. Process. Ind. 21(4), 472-477 (2008). https://doi.org/10.1016/j.jlp.2008.03.004.
- P. Zhang, Y. Zhou, X. Cao, X. Gao, M. Bi, J. Loss. Prev. Process. Ind. 29(1), 313-318 (2014). https://doi.org/10.1016/j.jlp.2014.03.014
- K. van Wingerden, B. Wilkins, J. Loss. Prev. Process. Ind. 8(2), 53-59. (1995). https://doi.org/10.1016/0950-4230(95)00002-I
- G.O. Thomas, J.R. Brenton An investigation of factors of relevance during explosion suppression by water sprays. Tech. Rep. OTH 94 463. London, UK: The University College of Wales (1996).
- A.S. Betev, A.D. Kiverin, S.P. Medvedev, I.S. Yakovenko, Russian Journal of Physical Chemistry B 14(6), 940–945 (2020). https://doi.org/10.1134/S1990793120060160
- C. Nicoli, P. Haldenwang, B. Denet, Combust. Sci. Technol. 191(2), 197-207 (2019). https://doi.org/10.1080/00102202.2018.1453728
- C. Nicoli, P. Haldenwang, B. Denet, Combust. Theor. Model. 21(4), 630-645 (2017). https://doi.org/10.1080/13647830.2017.1279756
- M. Matalon, Annu. Rev. Fluid Mech. 39(1), 163-191 (2007). https://doi.org/10.1146/annurev.fluid.38.050304. 092153
- I.S. Yakovenko, A.D. Kiverin, Int. J. Hydrogen Energy 46(1), 1259-1272 (2021). https://doi.org/10.1016/j.ijhydene.2020.09.234
- I.S. Yakovenko, I.S. Medvedkov, A.D. Kiverin, Russian Journal of Physical Chemistry B 16(2), 294–299 (2022). https://doi.org/10.1134/S1990793122020142
- D.T. Sheppard Spray Characteristics of Fire Sprinklers, National Institute of Standards and Technology, NIST GCR 02-838 (2002).
- A.M. Tereza, G.L. Agafonov, E.K. Anderzhanov, A.S. Betev, S.P. Medvedev, S.V. Khomik, Russian Journal of Physical Chemistry B 16(4), 686–692 (2022). https://doi.org/10.1134/S1990793122040297
- R.G. Rehm, H.R. Baum, Journal of Research of the National Bureau of Standards, 83(3), 297-308 (1978). https://doi.org/10.6028/jres.083.019
- K. McGrattan, R. McDermott, S. Hostikka, et. al. Fire Dynamics Simulator Technical Reference Guide Volume 1: Mathematical Model, Tech. Rep. NIST Special Publication 1018-1, U.S. Department of Commerce, National Institute of Standards and Technology, Gaithersburg, MD (2019). https://doi.org/10.6028/NIST.SP.1018
- C.T. Crowe, J.D. Schwarzkopf, M. Sommerfeld, Y. Tsuji Multiphase flows with droplets and particles. 2nd ed. Boca Raton, FL (USA): CRC Press, 2012. ISBN 978-0-4291-0639-2
- N.P. Cheremisinoff Gas-liquid flows. Encyclopedia of fluid mechanics. 1st ed., vol. 3. Houston, TX (USA): Gulf Publishing, 1986. ISBN 0-87201-515-7
- A. Keromnes, W.K. Metcalfe, K.A. Heufer et al., Combust. Flame. 160, 995-1011. (2013). https://doi.org/10.1016/j.combustflame.2013.01.001.
- NRG computational package for reactive flows modeling. https://github.com/yakovenko-ivan/NRG
- A.M. Tereza, G.L. Agafonov, E.K. Anderzhanov, A.S. Betev, S.P. Medvedev, S.V. Khomik, T. T. Cherepanova Russian Journal of Physical Chemistry B 17(4), 974–978 (2023). https://doi.org/10.1134/S1990793123040309
- A.M. Tereza, G.L. Agafonov, E.K. Anderzhanov, A.S. Betev, S. P. Medvedev, S. V. Khomik, T. T. Cherepanova Russian Journal of Physical Chemistry B 17(2), 425–432 (2023). https://doi.org/10.1134/S1990793123020173
- R.V. Fursenko, K.L. Pan, S.S. Minaev Phys. Rev. E. 78, 056301 (2008). https://doi.org/10.1103/PhysRevE.78.056301
- F. Creta, N. Fogla, M. Matalon Combust. Theor. Model. 15(2), 267-298 (2011) https://doi.org/10.1080/13647830.2010.538722
Arquivos suplementares
