Acceleration ability of the mixtures of explosives with positive and negative oxygen balance

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The possibilities of increasing the acceleration ability (AA) of energetic materials due to creation of compositions combining high explosives (HE) with positive and negative oxygen balance are analyzed. For calculations, three relatively new compounds were selected as HE-oxidizers: 3,6-dinitro-1,4-bis(trinitromethyl)-1,4-dihydropyrazolo[4,3-c]pyrazole; 4,4′5,5′-tetranitro-2,2′-bis(trinitromethyl)-2Н,2′Н-3,3′-bipyrazole; 2-dinitromethyl-5-nitrotetrazole. HMX and CL-20 performed the function of HE-fuel. From the calculations it follows that the AA of HMX increases markedly with the addition of mentioned oxidizers, and the introduction of oxidizers into the composition with CL-20 leads to a slight increase in AA.

Толық мәтін

Рұқсат жабық

Авторлар туралы

M. Makhov

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: mmn13makhov@yandex.ru
Ресей, Moscow

Әдебиет тізімі

  1. S.G. Andreev, A.V. Babkin, F.A. Baum, et al., Physics of Explosion, Ed. by L.P. Orlenko (Fizmatlit, Moscow, 2002), Vol. 1 [in Russian].
  2. Methods for studying the properties of materials under intense dynamic loads. Ed. by M.V. Zhernokletov (RFNC-VNIIF, Sarov, 2003) [in Russian].
  3. D.R Hardesty and J. E. Kennedy, Combust. Flame 28, 45 (1977).
  4. H. Hornberg, Propell. Explos. Pyrotech. 11, 23 (1986).
  5. M. Finger., E. Lee., F.H. Helm, et al., in Proceedings of the 6th International Symposium on Detonation, ONR ACR-221 (Office of Naval Res., Arlington, 1976), p. 710.
  6. R.W. Gurney, Report BRL 405, Army Ballistic Research Laboratories (Aberdeen Proving Ground, MD, USA, 1943).
  7. M.J. Kamlet and M. Finger, Combust. Flame 34, 213 (1979).
  8. A. Koch, N. Arnold, and M. Estermann, Propell., Explos., Pyrotech. 27 (6), 365 (2002). https://doi.org/10.1002/prep.200290007
  9. J.-F. Danel and L. Kazandjian, Propell., Explos., Pyrotech. 29 (5), 314 (2004). https://doi.org/10.1002/prep.200400060
  10. M.N. Makhov, in Combustion and Explosion, Ed. S.M. Frolov (Torus Press, Moscow, 2008), No. 1, p. 93 [in Russian].
  11. M.N. Makhov, Gorenie Vzryv 8 (2), 256 (2015).
  12. V.Yu. Davydov and A. S. Gubin, Russ. J. Phys. Chem. B 5 (3), 491 (2011). https://doi.org/10.1134/S1990793111030183
  13. M.F. Gogulya, M.N. Makhov, M.A. Brazhnikov, et al., Combust., Explos., Shock Waves 44, 198 (2008).
  14. M.N. Makhov, Russ. J. Phys. Chem. B 12 (2), 258 (2018). https://doi.org/10.1134/S1990793118020203
  15. M.N. Makhov and V.I. Arkhipov, Russ. J. Phys. Chem. B 2 (4), 602 (2008).
  16. M.N. Makhov, Gorenie Vzryv 16 (2), 110 (2023). https://doi.org/10.30826/CE23160209
  17. M.N. Makhov and V.I. Arkhipov, Fiz. Goreniya Vzryva 25 (3), 87 (1989).
  18. M.N. Makhov, M.F. Gogulya, A.Yu. Dolgoborodov, et al., Fiz. Goreniya Vzryva 40 (4), 96 (2004).
  19. L.N. Akimova, G.T. Afanas¢ev, V.G. Shchetinin, and V.I. Pepekin, Khim. Fizika. 21 (3), 93 (2002).
  20. A.V. Dubovik, Russ. J. Phys. Chem. B 15 (4), 696 (2021). https://doi.org/10.1134/S1990793121040151
  21. A.V. Dubovik, Russ. J. Phys. Chem. B 16 (2), 260 (2022). https://doi.org/10.1134/S1990793122020051
  22. A.V. Dubovik, Russ. J. Phys. Chem. B 17(2), 369 (2023). https://doi.org/10.1134/S1990793123020057
  23. G.M. Nazin, B.L. Korsunskiy, A.I. Kazakov, A.V. Nabatova, and N.G. Samoylenko, Russ. J. Phys. Chem. B 17 (2), 406 (2023). https://doi.org/10.1134/S1990793123020124
  24. V.I. Arkhipov, M.N. Makhov, and V.I. Pepekin, Khim. Fizika. 12 (12), 1640 (1993).
  25. Energy condensed systems, 3rd ed. Ed. by B.P. Zhukov (Yanus-K, Moscow, 2000) [in Russian].
  26. R.L. Sympson, P.A. Urtiew, D.L. Ornellas, et al., Propell., Explos., Pyrotech. 22 (5), 249 (1997).
  27. Ya.O. Inozemtsev, A.V. Inozemtsev, M.N. Makhov, A.B. Vorob¢ev, and Yu.N. Matyushin, Russ. J. Phys. Chem. B 54 (6), 1005 (2021). https://doi.org/10.1134/S1990793121060178
  28. K. Mohammad, V. Thaltiri, N. Kommu, and A.A. Vargeese, Chem. Commun. 56, 12945 (2020). https://doi.org/10.1039/D0CC05704E
  29. I.N. Zyuzin, I.Yu. Gudkova, and D.A. Lempert, Russ. J. Phys. Chem. B 16 (5), 902 (2022). https://doi.org/10.1134/S1990793122060240
  30. I.L. Dalinger, K.Yu. Suponitsky, T.K. Shkineva, D.B. Lempert, and A.B. Sheremetev, J. Mater. Chem. A 6 (30), 14780 (2018). https://doi.org/10.1039/C8TA05179H
  31. X.X. Zhao, S.H. Li, Y. Wang, et al., J. Mater. Chem. A 4 (15), 5495 (2016). https://doi.org/10.1039/C6TA01501H
  32. I.N. Zyuzin, I.Yu. Gudkova, and D.A. Lempert, Russ. J. Phys. Chem. B 14 (5), 804 (2020). https://doi.org/10.1134/S1990793120050140

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Relative plate velocity (h) depending on the mass fraction of the explosive oxidizer in the binary composition with octogen (b); solid lines are binary mixtures, dashed lines are compositions with the addition of 12.5% ​​Al. Explosive oxidizers: 1 – BTNEN, 2 – GNF, 3 – ADNA, 4 – DNG. Symbols are experimental values ​​for the BTNEN/octogen composition.

Жүктеу (22KB)
3. Fig. 2. Volumetric value of TV (Qr) depending on the mass fraction of explosive oxidizer in a binary composition with octogen (b); the digital designations are the same as in Fig. 1.

Жүктеу (15KB)
4. Fig. 3. Relative plate velocity (h) depending on the mass fraction of the substance ADNA in a binary composition with explosives (g); explosives: 1 – CL-20, 2 – octogen, 3 – TNT; solid lines – binary mixtures, dashed lines – compositions with the addition of 12.5% ​​Al.

Жүктеу (17KB)
5. Fig. 4. Relative plate velocity (h) depending on the mass fraction of the explosive oxidizer in a binary composition with octogen (b); solid lines are binary mixtures, dashed lines are compositions with the addition of 12.5% ​​Al. Roman numerals correspond to different explosive oxidizers (see text for designations).

Жүктеу (20KB)
6. Fig. 5. Relative plate velocity (h) depending on the KB of the binary composition with octogen (W). The digital designations are the same as in Fig. 4.

Жүктеу (16KB)
7. Fig. 6. Relative plate velocity (h) depending on the mass fraction of explosive oxidizer in a binary composition with CL-20 (b); solid lines are binary mixtures, dashed lines are compositions with the addition of 12.5% ​​Al. The digital designations are the same as in Figs. 4 and 5.

Жүктеу (17KB)
8. Scheme 1.

Жүктеу (20KB)

© Russian Academy of Sciences, 2024