Numerical simulation of oxidative conversion of methane to synthesis gas in a reversed flow reactor

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A numerical model for the POX steam-oxygen conversion of methane to synthesis gas in a reversed flow non-premixed filtration combustion reactor with a reversed flow of steam-methane mixture and a continuous supply of oxygen to the reactor center is considered. The calculation was carried out for the oxygen/methane molar ratio 0.47 and steam/methane 0.5, i.e., in the parametric region close to the limit for the feasibility of the scheme. Various modes of initiation and control of flow reverse are considered, and dependences of the combustion temperature and the composition of products on the characteristics of the process are obtained. Comparison of the established cyclic mode of conversion with the predictions of the equilibrium model shows that kinetic constraints lead to a higher combustion temperature and incomplete conversion of methane. At high temperatures, the conversion proceeds via initial soot formation during the pyrolysis of methane and the subsequent reaction of soot with steam.

Texto integral

Acesso é fechado

Sobre autores

S. Kostenko

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Science

Autor responsável pela correspondência
Email: kostsv@icp.ac.ru
Rússia, Chernogolovka

A. Ivanova

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Science

Email: kostsv@icp.ac.ru
Rússia, Chernogolovka

A. Karnaukh

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Science

Email: kostsv@icp.ac.ru
Rússia, Chernogolovka

E. Polianczyk

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Science

Email: kostsv@icp.ac.ru
Rússia, Chernogolovka

Bibliografia

  1. І.А. Makaryan, I.V. Sedov, A.V. Nikitin, V.S. Arutyunov, Nauchnyy zhurnal RGO 24(1), 50 (2020) (in Russian).
  2. Ѕ.М. Aldoshin, V.Ѕ. Arutyunov, V.І. Savchenko, І.V. Sedov, A.V. Nikitin, І. G. Fokin, Russ. Ј. Phys. Chem. В 15(3), 498–505 (2021). https://doi.org/10.31857
  3. А.N. Zagoruiko Current Topics in Catalysis. 10, 113 (2012).
  4. V. Arutyunov, Reviews in Chemical Engineering 37(1), 99 (2021). https://doi.org/10.1515/revce-2018-0057
  5. М.А. Mujeebu, Applied Energy. 173, 210 (2016). https://doi.org/10.1016/j.apenergy.2016.04.018
  6. Ѕ.І. Fut›ko, Ѕ.А. Zhdanok, Chemistry of filtration combustion of gases. Belaruskaya Navuka, Minsk (2004) (in Russian).
  7. R.Ј. Kee, F.М. Rupley, Е. Meeks, & Ј.А. Miller, CHEMKIN-III: А FORTRAN chemical kinetics package for the analysis of gas-phase chemical and plasma kinetics № SAND-96-8216 // 1996. Sandia National Lab(SNL-СА). Livermore. СА (United States).
  8. G.Р. Smith, D.М. Golden, М. Frenklach, N.W Moriarty, В. Eiteneer, М. Goldenberg, GRI3.0 mesh. Gas Research Institute, Chicago, IL. http://www.me.berke1ey.edu/gri mech.
  9. D. Goodwin, Н.К. Moffat, R.L. Speth, Cantera: an Object-Oriented Software Toolkit for Cheшical Kinetics, Thermodynamics, and Transport Processes, 2019. Version 2.5.0. www.cantera.org.
  10. А.А. Konnov, http://hornepages.vub.ac.be/akonnov.
  11. К.Ј. Hughes, Т. Turanyi, A.R. Clague, М.Ј. Pilling, Int. J. Chem. Kinet. 33, 513(2001). https://doi.org/10.1002/kin.1048
  12. F. Fotovat, М. Rahimpour, Inter. Ј. of Hydrogen Energy, 46(37), 19312(2021). https://doi.org/10.1016/j.ijhydene.2021.03.098
  13. A.A. Karnaukh, A.N. Ivanova, Khim. Fiz. 23(9), 13 (2004) (in Russian).
  14. S.S. Kostenko, E.V. Polianczyk, A.A. Karnaukh, A.N. Ivanova, G.B. Manelis, Khiin. Fiz. 25(5), 53 (2006) (in Russian).
  15. S.O. Dorofeenko, A.A. Zhirnov, E.V. Po1ianczyk, E.A. Salgansky, Patent № RU 2574464 (2016).
  16. S.O. Dorofeenko, E.V. Polianczyk, Chem. Eng. J. 292, 183 (2016). https://doi.org/10.1016/j.cej.2016.02.013
  17. E.V. Polianczyk, S.O. Dorofeenko, Inter. J. of Hydrogen Energy, 44(8), 4079 (2019). https://doi.org/10.1016/j.ijhydene.2018.12.117
  18. E.A. Salgansky, M.V. Tsvetkov, A.Yu. Zaichenko, D.N. Podlesniy, I.V. Sedov, Russ. J. Phys. Chem. B 15(6), 969–976 (2021).
  19. S.S. Kostenko, A.N. Ivanova, A.A. Kamaukh, E.V. Polianczyk, Chemical Engineering and Processing: Process Intensification, 122, 473 (2017). https://doi.org/10.1016/j.cep.2017.05.014
  20. S.O. Dorofeenko, E.V. Polianczyk, Russ. J. Phys. Chem. B 16(2), 242–252 (2022).
  21. M. Fierro, P. Requena, E. Salgansky, M. Toledo, Chem. Engineering J., 425, 1385 (2021). https://doi.org/10.1016/j.cej.2021.130178
  22. C.J. Sung, B. Li, and C.K. Law, Proc. 27-th Symposium (Intern.) on Combust. Pittsburgh: The Combust. Institute, 1523 (1998). https://www.princeton.edu/ cklaw/kinetics/s1w001/
  23. F. Westky, J.T. Herron, R.F. Hampson, W.G. Mallard, MD NIST Standard Reference Gaithersburg: Database 17. 1994.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Distribution of gas temperature (K), soot concentration (mol/m3) and spatial distribution along the reactor axis x (m) of the flows Gi (mol/m2/s) of the main reactants (СH4, O2, H2O) and products (H2, CO, С2Н2). The arrow shows the direction of the gas flow. a – Variant 1.1 in the 2nd half-cycle of flow circulation. The curves on the two upper graphs are shown at different moments in time: 1 – 158, 2 – 163, 3 – 213, 4 – 412 s; on the lower graph – the flows at the time of 373 s. b – Variant 1.2 in the 2nd half-cycle of flow circulation. The curves on the two upper graphs at different moments in time: 1 – 254, 2 – 274, 3 – 374, 4 – 506 s; flows on the lower graph at time 374 s. c – Option 1.3. Curves on the two upper graphs at different times before switching the gas flow direction: 1 – 3761, 2 – 4236, 3 – 4693, 4 – 5069, 5 – 5427, 6 – 5727 s; soot concentration at times: 1 – 5527, 2 – 5700, 3 – 5727 s. Flows on the lower graph at time 5527 s.

Baixar (470KB)
3. Fig. 2. Dependences of the change over time t (c) of the fluxes Gi (mol/m2/c) at the reactor outlet for reactants CH4, O2, H2O and products H2, CO, C2H2 for different calculation options: 1.1 and 1.2 (a), 1.3 (b), 2.1 and 2.2 (c), 3.1 and 3.2 (d) – over several cycles.

Baixar (374KB)
4. Fig. 3. Dependence of the change in the average value of Ts (K) over time (s) for different calculation options. The numbers near the curves are the calculation options in Table 1.

Baixar (15KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024