Influence of mechanical activation and impurity gas release on the macrokinetics of combustion and the product structure in the Ti–C–B system for pressed compacts and granulated mixtures

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The influence of mechanical activation of the system 100−x(Ti+C)+x(Ti+2B) on the character of combustion of samples with different macrostructure: pressed compacts with relative density of 0.53-0.6 and bulk density granules of 0.6–1.6 mm size has been investigated. It was found that mechanical activation of powders leads to a gradual decrease in the combustion rate of pressed samples with increasing Ti+2B content in the mixtures (a descending dependence), and increasing Ti+2B content in compacts from nonactivated powders leads to an increase in the combustion rate (an ascending dependence). The obtained results contradict the theoretical ideas about the influence of mechanical activation on the combustion process, according to which the combustion rate should increase. One of the important factors influencing the change in the combustion rate is the release of impurity gases. For the first time the influence of mechanical activation on the character of combustion of granular mixtures was experimentally determined. It was found that the combustion rates of granular mixtures are higher than those of powder mixtures for all the compositions studied. It is shown that granulated mixtures from activated powder have a combustion rate on average 3 times higher compared to granules from nonactivated powder, and the dependence of the combustion rate on the mass content of Ti+2B has a local minimum, which is probably related to the peculiarities of the mechanical activation process.

Full Text

Restricted Access

About the authors

D. S. Vasilyev

Merzhanov Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences

Author for correspondence.
Email: d.s.vasilyev@mail.ru
Russian Federation, Chernogolovka

B. S. Seplyarskii

Merzhanov Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences

Email: seplb1@mail.ru
Russian Federation, Chernogolovka

N. A. Kochetov

Merzhanov Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences

Email: d.s.vasilyev@mail.ru
Russian Federation, Chernogolovka

References

  1. A.G. Merzhanov, A.S. Mukasyan, Solid flame combustion. Moscow: Torus Press, (2007).
  2. E.A. Levashov, A.S. Mukasyan, A.S. Rogachev, et al., Int. Mater. Rev. 62, 4 (2017). https://doi.org/10.1080/09506608.2016.1243291
  3. H.H. Nersisyan, J.H. Lee, J.R. Ding, et al., Prog. Energy Combust. Sci. 63, (2017). https://doi.org/10.1016/j.pecs.2017.07.002
  4. K. Morsi, J. Mater. Sci. 47, 1 (2012). https://doi.org/10.1007/s13632-013-0071-y
  5. E.A. Levashov, V.I. Kosayanin, L.M. Krukova, et al., Surf. Coat. Technol. 92, 1–2 (1997). https://doi.org/10.1016/S0257-8972(96)03083-6
  6. F. Yang, Q. Qin, T. Shi, et al., Ceram. Int. 45, 4 (2019). https://doi.org/10.1016/j.ceramint.2018.11.096
  7. D. Vallauri, I.A. Adrian, A. Chrysanthou, J. Eur. Ceram. 28, 8 (2008). https://doi.org/10.1016/j.jeurceramsoc.2007.11.011
  8. Y. Zhang, B. Wang, B. Dong, et al., Tribol. Lett. 71, 84 (2023). https://doi.org/10.1007/s11249-023-01756-x
  9. N. Pugacheva, D. Kryuchkov, T. Bykova, et al., Materials. 16, 8 (2023). https://doi.org/10.3390/ma16083204
  10. M. Ziemnicka-Sylwester, Materials. 6, 5 (2013). https://doi.org/10.3390/ma6051903
  11. Y.F. Yang, H.Y. Wang, Y.H. Liang et al., Mater. Sci. Eng. A. 445–446, 15 (2007). https://doi.org/10.1016/j.msea.2006.09.062
  12. N.M. Rubtsov, B.S. Seplyarskii, M.I. Alymov, Ignition and Wave Processes in Combustion of Solids. Springer International Publishing AG, Cham. Switzerland, (2017).
  13. N.A. Kochetov, B.S. Seplyarsky, Russ. J. Phys. Chem. B. 16 1 (2022). https://doi.org/10.1134/S1990793122010079
  14. V.N. Nikogosov, G.A. Nersesyan, V.A. Sherbakov, et al., Int. J. Self-Propag. High-Temp. Synth. 8, 3 (1999).
  15. A.A. Belyaev, B.S. Ermolaev, Russ. J. Phys. Chem. B 17, (2023). https://doi.org/10.1134/S199079312304022X
  16. B.S. Seplyarsky, N.I. Abzalov, R.A. Kochetkov, et al. Russ. J. Phys. Chem. B 15, 2 (2021). https://doi.org/10.1134/s199079312102010x
  17. B.S. Seplyarsky R.A. Kochetkov, T.G. Lisina, Combust. Explos. Shock Waves. 55, 3 (2019). https://doi.org/10.1134/S0010508219030079
  18. A.S. Rogachev, Russ. Chem. Rev. 88, 9 (2019). https://doi.org/10.1070/RCR4884
  19. M.A. Korchagin, Combust. Explos. Shock Waves. 51, (2015). https://doi.org/10.1134/S0010508215050093
  20. N.A. Kochetov, B.S. Seplyarsky, Russ. J. Phys. Chem. B 14, 5 (2020). https://doi.org/10.1134/S199079312005005X
  21. A. Matveev, V. Promakhov, P. Nikitin, et al., Materials. 15, 7 (2022). https://doi.org/10.3390/ma15072668
  22. M.A. Korchagin, A.I. Gavrilov, V.E. Zarko, et al., Combust. Explos. Shock Waves. 53, 6 (2017). https://doi.org/10.1134/S0010508217060077
  23. N.A. Kochetov, Combust. Explos. Shock Waves. 58, 2 (2022). https://doi.org/10.1134/S0010508222020058
  24. N.A. Kochetov, B.S. Seplyarskii, A.S. Shchukin, Combust. Explos. Shock Waves. 55, (2019). https://doi.org/10.1134/S0010508219030080
  25. F. Maglia, U. Anselmi-Tamburini, C. Deidda et al., J. Mater. Sci. 39, (2004). https://doi.org/10.1023/b:jmsc.0000039215.28545.2f
  26. Y.V. Bogatov, V.A. Shcherbakov, Russ. J. Non-Ferr. 62, (2021). https://doi.org/10.3103/S1061386223030032
  27. N. A. Kochetov, S. G. Vadchenko, Combust. Explos. Shock Waves. 51, (2015). https://doi.org/10.1134/S0010508215040103
  28. N.A. Kochetov, A.E. Sytschev, Mater. Chem. Phys. 257, (2021). https://doi.org/10.1016/j.matchemphys.2020.123727
  29. A.P. Aldushin, T.M. Martemyanova, A.G. Merzhanov et al., Combust. Explos. Shock Waves. 8, 2 (1972). https://doi.org/10.1007/BF00740444
  30. B.S. Seplyarskii, Dokl. Phys. Chem. 396, (2004). https://doi.org/10.1023/B:DOPC.0000033505.34075.0a
  31. B.S. Seplyarskii, R.A. Kochetkov, Int. J. Self-Propag. High-Temp. Synth. 26, 2 (2017). https://doi.org/10.3103/S106138621702011X
  32. S. Vorotilo, V. Kiryukhantsev-Korneev, B.S. Seplyarskii, et al., Crystals. 10, 5 (2020). https://doi.org/10.3390/cryst10050412
  33. B.S. Seplyarskii, R.A. Kochetkov, T.G. Lisina, et al., Combust. Explos. Shock Waves. 57, 1 (2021). https://doi.org/10.1134/S001050822101007X
  34. B.S. Seplyarskii, R.A. Kochetkov, T.G. Lisina, et al. Combust. Explos. Shock Waves. 57, (2021). https://doi.org/10.15372/FGV20210308

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Schematic diagram of the experimental setup: 1 – argon cylinder, 2 – argon flow sensors, 3 – gas pressure sensors, 4 – gas switch (I – nitrogen, II – argon, III – supply shut off), 5 – tungsten spiral, 6 – charge, 7 – substrate, 8 – digital video camera, 9 – personal computer for recording data from sensors and video camera.

Download (29KB)
3. Fig. 2. Dependence of the combustion rate of pressed compacts on the mass content of Ti+2B before (1) and after MA (2).

Download (13KB)
4. Fig. 3. Typical X-ray diffraction patterns of combustion products: 1 – (Ti+C), 2 – 20(Ti+2B), 3 – 40(Ti+2B), 4 – 60(Ti+2B), 5 – 80(Ti+2B), 6 – (Ti+2B).

Download (20KB)
5. Fig. 4. SEM images of the original titanium powder (a) and the MA mixture of composition 60(Ti+2B) (b, c).

Download (96KB)
6. Fig. 5. X-ray diffraction patterns of products of the composition (Ti+2B) after MA for 5 min (1) of the combustion product of a pressed sample (Ti+2B) from an unactivated batch (2), and of the combustion product of a granulated sample (Ti+2B) from an unactivated batch (3).

Download (16KB)
7. Fig. 6. a – Combustion products of pressed compacts from the initial mixtures: 1 – (Ti+C), 2 – 20(Ti+2B), 3 – 40(Ti+2B), 4 – 60(Ti+2B), 5 – 80(Ti+2B), 6 –(Ti+2B); b – combustion products of pressed compacts from MA mixtures: 1 – (Ti+C), 2 – 20(Ti+2B), 3 – 40(Ti+2B), 4 – 60(Ti+2B), 5 – 80(Ti+2B).

Download (30KB)
8. Fig. 7. Dependence of the combustion rate of granulated mixtures on the mass content of Ti+2B before (1) and after MA (2).

Download (15KB)
9. Fig. 8. a – Combustion products of granulated samples from non-activated mixtures: 1 – (Ti+C), 2 – 20(Ti+2B), 3 – 40(Ti+2B), 4 – 60(Ti+2B), 5 – 80(Ti+2B), 6 – (Ti+2B); b – from activated mixtures: 1 – (Ti+C), 2 – 20(Ti+2B), 3 – 40(Ti+2B), 4 – 60(Ti+2B), 5 – 80(Ti+2B), 6 – 90(Ti+2B)

Download (49KB)

Copyright (c) 2024 Russian Academy of Sciences