Temperature dependence of the yield of products of cool-flame oxidation of propane in the region of negative temperature coefficient
- Authors: Pogosyan M.J.1, Pogosyan N.M.1, Arsentiev S.D.1, Strekova L.N.2, Arutyunov V.S.2
-
Affiliations:
- Nalbandian Institute of Chemical Physics Academy of Sciences of the Republic of Armenia
- Semenov Federal Research Center for Chemical Physics Russian Academy of Sciences
- Issue: Vol 44, No 2 (2025)
- Pages: 73-79
- Section: Combustion, explosion and shock waves
- URL: https://cijournal.ru/0207-401X/article/view/681128
- DOI: https://doi.org/10.31857/S0207401X25020072
- ID: 681128
Cite item
Abstract
The possibility of a cool-flame oxidation of propane-oxygen mixtures of the composition C3H8:O2 = from 1:3 to 1:1, which is accompanied by the phenomenon of a region of negative temperature reaction rate coefficient (NTC), has been experimentally demonstrated. An increase in the C3H8:O2 ratio (enrichment of the mixture with propane) leads to an expansion of the temperature range for the existence of the cool-flame oxidation regime and shifts the NTC region towards higher temperatures. Cool-flame oxidation of propane is accompanied by the formation of a number of popular petrochemical products (olefins, oxygenates, propylene oxide), the relative yield of which can be controlled by changing the composition of the mixture and the oxidation temperature.
Full Text

About the authors
M. J. Pogosyan
Nalbandian Institute of Chemical Physics Academy of Sciences of the Republic of Armenia
Email: v_arutyunov@mail.ru
Armenia, Yerevan
N. M. Pogosyan
Nalbandian Institute of Chemical Physics Academy of Sciences of the Republic of Armenia
Email: v_arutyunov@mail.ru
Armenia, Yerevan
S. D. Arsentiev
Nalbandian Institute of Chemical Physics Academy of Sciences of the Republic of Armenia
Email: v_arutyunov@mail.ru
Armenia, Yerevan
L. N. Strekova
Semenov Federal Research Center for Chemical Physics Russian Academy of Sciences
Email: v_arutyunov@mail.ru
Russian Federation, Moscow
V. S. Arutyunov
Semenov Federal Research Center for Chemical Physics Russian Academy of Sciences
Author for correspondence.
Email: v_arutyunov@mail.ru
Russian Federation, Moscow
References
- N.M. Poghosyan, M.Dj. Poghosyan, O.V. Shapovalova et al. Technologiacal Combustion. Eds. S.M. Aldoshin, M.I. Alimov, V.S. Arutyunov et al. 2018. Moscow. Russian Academy of Sciences. P. 114. ISBN 978-5-907036-38-3. https://doi.org/10.31857/S9785907036383000005
- V.Ya. Shtern. Oxidation of Hydrocarbons, Pergamon Press, Oxford, London, New York, 1964. 720 P. eBook ISBN: 9781483185071
- Ya.Yu. Stepanskii, G.S. Yablonskii, V.I. Bykov. Combustion, Explosion and Shock Waves 18(1), 4 (1982). https://doi.org/10.1007/BF00783930
- V.S. Arutyunov, V.Ya. Basevich, V.I. Vedeneev, O.V. Sokolov, Kinetics and Catalysis 36, 458 (1995).
- P.S. Ghukasyan, A.A. Mantashyan, R.A. Sayadyan. Combustion, Explosion, and Shock Waves 12(5), 789 (1976).
- Yu.V. Kiselev. “Investigation of reactions of cold-flame oxidation of hydrocarbons in order to create a new express analyzer of detonation resistance of gasoline” // dissertation of the Candidate of Technical Sciences. Moscow 2006. specialty of the Higher Attestation Commission of the Russian Federation 05.17.2007.
- Unusual “cool flames” discovered aboard International Space Station. https://beta.nsf.gov/news/unusual-cool-flames-discovered-aboard-international-space-station
- Jie Liu, Ruiguang Yu, Biao Ma // ACS Omega 5, 16448 (2020). http://pubs.acs.org/journal/acsodf
- A.A. Belyaev, A.V. Arutyunov, V.S. Arutyunov. Combustion and explosion 15(4), 19 (2022). https://doi.org/10.30826/CE22150403
- I. Bashkirtseva, E. Slepukhina. “Variability of complex oscillatory regimes in the stochastic model of cold-flame combustion of a hydrocarbon mixture” // Phil. Trans. R. Soc. A 380, 20200314 (2022). https://doi.org/10.1098/rsta.2020.0314
- Kuang C. Lin, Chuang-Te Chiu. Fuel 203, 102 (2017). http://dx.doi.org/10.1016/j.fuel.2017.04.064
- N.M. Poghosyan, M.Dj. Poghosyan, S.D. Arsentiev, L.N. Strekova, L.A. Tavadyan et al. Russian Journal of Physical Chemistry B 9(2), 231 (2015). https://doi.org/10.1134/S199079311502027X
- A.S. Palankoeva, A.A. Belyaev, V.S. Arutyunov. Russ. J. Phys. Chem. B. 16(3), 399 (2022). https://doi.org/10.1134/S1990793122030204
- M.G. Bryukov, A.A. Belyaev, A.A. Zakharov, V.S. Arutyunov, Kinetics and Catalysis 63(6), 653 (2022). https://doi.org/10.1134/S0023158422060039
- S.D. Arsentev, L.A. Tavadyan, M.G. Bryukov, A.S. Palankoeva, A.A. Belyaev et al., Russ. J. Phys. Chem. B 16(6), 1019 (2022). https://doi.org/10.1134/S1990793122060021
- A.H. Davtyan, Z.H. Manukyan, S.D. Arsentev, L.A. Tavadyan, V.S. Arutyunov. Russ. J. Phys. Chem. B. 17(2), 336 (2023). https://doi.org/10.31857/S0207401X23040052
- N.M. Poghosyan, M.Dj. Poghosyan, L.N. Strekova, L.A. Tavadyan, V.S. Arutyunov. Russian Journal of Physical Chemistry B 9(2), 218 (2015).
- S.D. Arsentev, A.H. Davtyan, Z.H. Manukyan, L.A. Tavadyan, L.N. Strekova, V.S. Arutyunov. Russ. J. Phys. Chem. B 18(1), 125 (2024). https://doi.org/10.1134/S1990793124010020
- N.M. Poghosyan, M.Dj. Poghosyan, S.D. Arsentev, L.N. Strekova, V.S. Arutyunov. Russ. J. Phys. Chem. B. 17(5). 1130 (2023). https://doi.org/10.1134/S1990793123050081
- N.M. Poghosyan, M.Dj. Poghosyan, A.H. Davtyan, S.D. Arsentev, L.N. Strekova et al. Russ. J. Phys. Chem. B. 18(3) 745 (2024). https://doi.org/10.1134/S1990793124700040
- M. Carlier, L.-R. Sochet. Comb. Flame 33(1–4), 1 (1978). https://doi.org/10.1016/0010-2180(78)90039-1
- A.A. Mantashyan, P.S. Ghukasyan. DAN USSR 234(2), 379 (1977).
- M.J. Pogosyan, R.K. Aliev, A.A. Mantashyn. React. Kinet. Cat. Lett. 27(2). 437 (1985).
- T.R. Simonyan, A.A. Mantashyan. Kinet. Cat. Lett. 17(3–4), 319 (1981).
Supplementary files
