Temperature dependence of the yield of products of cool-flame oxidation of propane in the region of negative temperature coefficient

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The possibility of a cool-flame oxidation of propane-oxygen mixtures of the composition C3H8:O2 = from 1:3 to 1:1, which is accompanied by the phenomenon of a region of negative temperature reaction rate coefficient (NTC), has been experimentally demonstrated. An increase in the C3H8:O2 ratio (enrichment of the mixture with propane) leads to an expansion of the temperature range for the existence of the cool-flame oxidation regime and shifts the NTC region towards higher temperatures. Cool-flame oxidation of propane is accompanied by the formation of a number of popular petrochemical products (olefins, oxygenates, propylene oxide), the relative yield of which can be controlled by changing the composition of the mixture and the oxidation temperature.

Full Text

Restricted Access

About the authors

M. J. Pogosyan

Nalbandian Institute of Chemical Physics Academy of Sciences of the Republic of Armenia

Email: v_arutyunov@mail.ru
Armenia, Yerevan

N. M. Pogosyan

Nalbandian Institute of Chemical Physics Academy of Sciences of the Republic of Armenia

Email: v_arutyunov@mail.ru
Armenia, Yerevan

S. D. Arsentiev

Nalbandian Institute of Chemical Physics Academy of Sciences of the Republic of Armenia

Email: v_arutyunov@mail.ru
Armenia, Yerevan

L. N. Strekova

Semenov Federal Research Center for Chemical Physics Russian Academy of Sciences

Email: v_arutyunov@mail.ru
Russian Federation, Moscow

V. S. Arutyunov

Semenov Federal Research Center for Chemical Physics Russian Academy of Sciences

Author for correspondence.
Email: v_arutyunov@mail.ru
Russian Federation, Moscow

References

  1. N.M. Poghosyan, M.Dj. Poghosyan, O.V. Shapovalova et al. Technologiacal Combustion. Eds. S.M. Aldoshin, M.I. Alimov, V.S. Arutyunov et al. 2018. Moscow. Russian Academy of Sciences. P. 114. ISBN 978-5-907036-38-3. https://doi.org/10.31857/S9785907036383000005
  2. V.Ya. Shtern. Oxidation of Hydrocarbons, Pergamon Press, Oxford, London, New York, 1964. 720 P. eBook ISBN: 9781483185071
  3. Ya.Yu. Stepanskii, G.S. Yablonskii, V.I. Bykov. Combustion, Explosion and Shock Waves 18(1), 4 (1982). https://doi.org/10.1007/BF00783930
  4. V.S. Arutyunov, V.Ya. Basevich, V.I. Vedeneev, O.V. Sokolov, Kinetics and Catalysis 36, 458 (1995).
  5. P.S. Ghukasyan, A.A. Mantashyan, R.A. Sayadyan. Combustion, Explosion, and Shock Waves 12(5), 789 (1976).
  6. Yu.V. Kiselev. “Investigation of reactions of cold-flame oxidation of hydrocarbons in order to create a new express analyzer of detonation resistance of gasoline” // dissertation of the Candidate of Technical Sciences. Moscow 2006. specialty of the Higher Attestation Commission of the Russian Federation 05.17.2007.
  7. Unusual “cool flames” discovered aboard International Space Station. https://beta.nsf.gov/news/unusual-cool-flames-discovered-aboard-international-space-station
  8. Jie Liu, Ruiguang Yu, Biao Ma // ACS Omega 5, 16448 (2020). http://pubs.acs.org/journal/acsodf
  9. A.A. Belyaev, A.V. Arutyunov, V.S. Arutyunov. Combustion and explosion 15(4), 19 (2022). https://doi.org/10.30826/CE22150403
  10. I. Bashkirtseva, E. Slepukhina. “Variability of complex oscillatory regimes in the stochastic model of cold-flame combustion of a hydrocarbon mixture” // Phil. Trans. R. Soc. A 380, 20200314 (2022). https://doi.org/10.1098/rsta.2020.0314
  11. Kuang C. Lin, Chuang-Te Chiu. Fuel 203, 102 (2017). http://dx.doi.org/10.1016/j.fuel.2017.04.064
  12. N.M. Poghosyan, M.Dj. Poghosyan, S.D. Arsentiev, L.N. Strekova, L.A. Tavadyan et al. Russian Journal of Physical Chemistry B 9(2), 231 (2015). https://doi.org/10.1134/S199079311502027X
  13. A.S. Palankoeva, A.A. Belyaev, V.S. Arutyunov. Russ. J. Phys. Chem. B. 16(3), 399 (2022). https://doi.org/10.1134/S1990793122030204
  14. M.G. Bryukov, A.A. Belyaev, A.A. Zakharov, V.S. Arutyunov, Kinetics and Catalysis 63(6), 653 (2022). https://doi.org/10.1134/S0023158422060039
  15. S.D. Arsentev, L.A. Tavadyan, M.G. Bryukov, A.S. Palankoeva, A.A. Belyaev et al., Russ. J. Phys. Chem. B 16(6), 1019 (2022). https://doi.org/10.1134/S1990793122060021
  16. A.H. Davtyan, Z.H. Manukyan, S.D. Arsentev, L.A. Tavadyan, V.S. Arutyunov. Russ. J. Phys. Chem. B. 17(2), 336 (2023). https://doi.org/10.31857/S0207401X23040052
  17. N.M. Poghosyan, M.Dj. Poghosyan, L.N. Strekova, L.A. Tavadyan, V.S. Arutyunov. Russian Journal of Physical Chemistry B 9(2), 218 (2015).
  18. S.D. Arsentev, A.H. Davtyan, Z.H. Manukyan, L.A. Tavadyan, L.N. Strekova, V.S. Arutyunov. Russ. J. Phys. Chem. B 18(1), 125 (2024). https://doi.org/10.1134/S1990793124010020
  19. N.M. Poghosyan, M.Dj. Poghosyan, S.D. Arsentev, L.N. Strekova, V.S. Arutyunov. Russ. J. Phys. Chem. B. 17(5). 1130 (2023). https://doi.org/10.1134/S1990793123050081
  20. N.M. Poghosyan, M.Dj. Poghosyan, A.H. Davtyan, S.D. Arsentev, L.N. Strekova et al. Russ. J. Phys. Chem. B. 18(3) 745 (2024). https://doi.org/10.1134/S1990793124700040
  21. M. Carlier, L.-R. Sochet. Comb. Flame 33(1–4), 1 (1978). https://doi.org/10.1016/0010-2180(78)90039-1
  22. A.A. Mantashyan, P.S. Ghukasyan. DAN USSR 234(2), 379 (1977).
  23. M.J. Pogosyan, R.K. Aliev, A.A. Mantashyn. React. Kinet. Cat. Lett. 27(2). 437 (1985).
  24. T.R. Simonyan, A.A. Mantashyan. Kinet. Cat. Lett. 17(3–4), 319 (1981).

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Dependence of the change in partial pressure of propane on temperature in mixtures of C3H8: O2 of different compositions: 1 – 1: 1; 2 – 1: 2; 3 – 1: 3.

Download (29KB)
3. Fig. 2. Dependence of the partial pressure of ethylene (1 ′, 2 ′, 3 ′) and propylene (1, 2, 3) on temperature in C3H8: O2 mixtures of different compositions: 1, 1 ′ – 1:1; 2, 2 ′ – 1:2; 3, 3 ′ – 1:3.

Download (38KB)
4. Fig. 3. Dependence of the partial pressure of formaldehyde (1, 2, 3) and acetaldehyde (1 ′, 2 ′, 3 ′) at the reactor outlet on the temperature in C3H8: O2 mixtures of different compositions: 1, 1 ′ – 1 : 1; 2, 2 ′ – 1 : 2; 3, 3 ′ – 1 : 3.

Download (42KB)
5. Fig. 4. Dependence of the partial pressure of methanol at the reactor outlet on the temperature in C3H8: O2 mixtures of different compositions: 1 – 1: 1; 2 – 1: 2; 3 – 1: 3.

Download (33KB)

Copyright (c) 2025 Russian Academy of Sciences