Influence of europium chelate on the chemiluminescence kinetics during free-radical oxidation of lipid samples of vegetable origin

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The chemically inert luminophore, chemiluminescence enhancer 1,10-phenanthroline-tris(thenoyl-trifluoroacetonate) of trivalent europium, increases the intensity of the light emission by an order of magnitude during the initiated oxidation of lipid samples of vegetable origin (sunflower oil). The introduction of the light enhance r into the chemiluminescence system leads to altering the kinetic profile, removing characteristic peaks on the kinetic curves at the end of the induction period of the oxidation process, but without changing the induction period itself. With the mathematical computer modeling based on a kinetic scheme of 23 elementary reactions, it was shown that the observed kinetic behavior can be rationalized by a disproportionate increase in quantum yields of chemiluminescence derived from different electronically excited products (light emitters) formed during the oxidation process.

Full Text

Restricted Access

About the authors

V. V. Naumov

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Email: avt_2003@mail.ru
Russian Federation, Moscow

G. F. Fedorova

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Email: avt_2003@mail.ru
Russian Federation, Moscow

T. L. Veprintsev

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Email: avt_2003@mail.ru
Russian Federation, Moscow

O. I. Yablonskaya

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Email: avt_2003@mail.ru
Russian Federation, Moscow

A. V. Trofimov

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences; Moscow Institute of Physics and Technology (National Research University)

Author for correspondence.
Email: avt_2003@mail.ru
Russian Federation, Moscow; Dolgoprudny

References

  1. R.F. Vassil’ev, In: Progress in Reaction Kinetics (G. Porter, Ed.). V. 4. Pergamon Press. Oxford. 1967. P. 305.
  2. W. Adam, G. Cilento (Eds), Chemical and Biological Generation of Excited States. Academic Press. New York. 1982.
  3. W. Adam, A.V. Trofimov, In: The Chemistry of Peroxides (Z. Rappoport, Ed.). V. 2. Part 2. Patai Series: The Chemistry of Functional Groups. 2006. John Wiley & Sons Ltd.. Chichester. Chapter 15. P. 1171.
  4. R.F. Vasil’ev, A.V. Trofimov, Yu.B. Tsaplev, Russ. Chem. Rev. 79, 77 (2010). https://doi.org/10.1070/RC2010v079n02ABEH004064
  5. Yu.B. Tsaplev, A.V. Trofimov, Russ Chem Bull 72, 73 (2023). https://doi.org/10.1007/s11172-023-3715-3
  6. G.F. Fedorova, V.A. Menshov, A.V. Trofimov, et al., Photochem. Photobiol. 93, 579 (2017). https://doi.org/10.1111/php.12689
  7. G.F. Fedorova, V.A. Menshov, A.V. Trofimov, R.F. Vasil’ev, Analyst 134, 2128 (2009). https://doi.org/10.1039/B905059K
  8. I.F. Rusina, T.L. Veprintsev, R.F. Vasil’ev, Russ. J. Phys. Chem. B. 16 (1), 50 (2022). https://doi.org/10.1134/S1990793122010274
  9. V.A. Menshov, V.D. Kancheva, O.I. Yablonskaya, A.V. Trofimov, Russ. J. Phys. Chem. 15 (1), 108 (2021). https://doi.org/10.1134/S1990793121010231
  10. V.V. Naumov, A.V. Trofimov, G.F. Fedorova, et al., Int. J. Mol. Sci. 24, 8486 (2023). https://doi.org/10.3390/ijms24108486
  11. I.V. Zhigacheva, I.F. Rusina, N.I. Krikunova, et al., Int. J. Mol. Sci. 24, 13172 (2023). https://doi.org/10.3390/ijms241713172
  12. S. Saha, L. Saso, A.V. Trofimov, O.I. Yablonskaya, Biomedicines. 11, 1377 (2023). https://doi.org/10.3390/biomedicines11051377
  13. R. Balansky, S. La Maestra, V.D. Kancheva, et al., Food Chem. Toxicol. 155, 112383 (2021). https://doi.org/10.1016/j.fct.2021.112383
  14. W.F. Razumov, Russ. J. Phys. Chem. B 17 (1), 36 (2023). https://doi.org/10.1134/S199079312301027X
  15. M.A. Kolyvanova, M.A. Klimovich, O.V. Dement’eva, et al., Russ. J. Phys. Chem. B 17 (1), 206 (2023). https://doi.org/10.1134/S1990793123010062
  16. M.A. Yakovlevaa A.Sh. Radchenko, A.A. Kostyukov et al., Russian Journal of Physical Chemistry B. 16 (1), 90 (2022). https://doi.org/10.1134/S199079312201033X
  17. I. Volodyaev, A. Trofimov, Yu.A. Vladimirov // In: Ultra-Weak Photon Emission from Biological Systems (I. Volodyaev, E. van Wijk, M. Cifra, Yu.A. Vladimirov, Eds.). 2023. Springer Nature Switzerland AG. Cham. 2023. P. 131. https://doi.org/10.1007/978-3-031-39078-4_10
  18. R.F. Vassil’ev, Nature 196, 668 (1962). https://doi.org/10.1038/196668a0
  19. R.F. Vassil’ev, Nature 200, 773 (1963). https://doi.org/10.1038/200773b0
  20. G.F. Fedorova, A.V. Trofimov, R.F. Vasil’ev, T.L. Veprintsev, ARKIVOC № 8, 163 (2007). https://doi.org/10.1002/chin.200709275
  21. R.F. Vasil’ev, V.D. Kancheva, V.V. Naumov, et al., Russ. J. Phys. Chem. B 14 (3), 479–482 (2020). https://doi.org/10.1134/S1990793120030264
  22. V.Ya. Shlyapintokh, O.N. Karpukhin, L.M. Postnikov, et al., Chemiluminescence Techniques in Chemical Reactions, New York: Consultants Bureau, 1968.
  23. V.A. Belyakov, R.F. Vasil’ev, G.F. Fedorova, Kinetics and Catalysis 45, 329 (2004). https://doi.org/10.1023/B:KICA.0000032165.13080.c6
  24. R.F. Vasil’ev, T.L. Veprintsev, L.S. Dolmatova, et al., Kinetics and Catalysis 55, 148 (2014). https://doi.org/10.1134/S0023158414020153
  25. J.P. Van Hook, A.V. Tobolsky, J. Am. Chem. Soc. 880 779 (1958). https://doi.org/10.1021/ja01537a006
  26. V.D. Kancheva, M.A. Dettori, D. Fabbri, et al., Antioxidants 10, 624 (2021). https://doi.org/10.3390/antiox10040624
  27. G. Vasvari, E.M. Kuramshin, S. Holly, et al., J. Phys. Chem. 92, 3810 (1988). https://doi.org/10.1021/j100324a026
  28. W.R. Dawson, J.L. Kropp, M.W. Windsor, J. Chem. Phys. 45, 2410 (1966). https://doi.org/10.1063/1.1727955
  29. P.D. Wildes, E.H. White, J. Am. Chem. Soc. 93, 6286 (1971). https://doi.org/10.1021/ja00752a058
  30. V.V. Naumov, G.F. Fedorova, R.F. Vasil’ev, et al., Russ. J. Phys. Chem. B 15 (1), 6 (2021). https://doi.org/10.1134/S1990793121010243
  31. G.F. Fedorova, V.A. Lapina, V.A. Menshov, et al., Photochem. Photobiol. 95, 780 (2019). https://doi.org/10.1111/php.13058
  32. V.A. Belyakov, R.F. Vasil’ev, Photochem. Photobiol. 11, 179 (1970). https://doi.org/10.1111/j.1751-1097.1970.tb05986.x
  33. P. Mendes, Comput. Appl. Biosci. 9, 563 (1993).
  34. P. Mendes, Trends Biochem. Sci. 22. 361 (1997). https://doi.org/10.1016/s0968-0004(97)01103-1
  35. P. Mendes, D.B. Kell, Bioinformatics 14, 869 (1998). https://doi.org/10.1093/bioinformatics/14.10.869
  36. S. Hoops, S. Sahle, R. Gauges, et al., Bioinformatics 22, 3067 (2006). https://doi.org/10.1093/bioinformatics/btl485
  37. E.T Denisov, Liquid-Phase Reaction Rate Constants, Springer New York, New York. 2012.
  38. E.T. Denisov, V.V. Azatyan, Inhibition of Chain Reactions, CRC Press, Boca Raton, 2000.
  39. E.T. Denisov, I.B. Afanas’ev Oxidation and Antioxidants in Organic Chemistry and Biology. CRC Press, Boca Raton, 2005.
  40. V.A. Belyakov, T.V. Filippova, S.Yu. Zasedatelev, E.A. Blyumberg, Bull. Acad. Sci. USSR Div. Chem. Sci. 28, 1381 (1979).
  41. V.A. Belyakov, R.F. Vasil’ev, G.F. Fedorova, Russ. Chem. Bull. 32, 2429 (1983). https://doi.org/10.1007/BF00954469
  42. G.S. Timmins, R.E. Dos Santos, A.C Whitwood, et al., Chem. Res. Toxicol. 10, 1090 (1997). https://doi.org/10.1021/tx970075p
  43. G.L. Sharipov, V.P. Kazakov, G.A. Tolstikov, Chemistry and Chemiluminescence of 1,2-Dioxetanes (in Russian), Nauka, Moscow, 1990.
  44. W. Adam, A. Beinhauer, H. Hauer, In: Handbook of Organic Photochemistry, V. 2 (J.C Scaiano (Ed.), CRC Press, Boca Raton, 1989. P. 271.
  45. A.V. Trofimov, R.F. Vasil’ev, K. Mielke, W. Adam, Photochem. Photobiol. 62, 35 (1995). https://doi.org/10.1111/j.1751-1097.1995.tb05235.x
  46. V.A. Roginskii, Kinetics and Catalysis 31, 475 (1990).
  47. N. Yanishlieva, A. Popov, Rev. Franc. Corps Gras. 20, 11 (1973).

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Kinetics of the intensity (J) of chemiluminescence during the initiated oxidation of sunflower oil in the presence of europium chelate (1, 2) and without it (3, 4). Oil concentration is 2% (1, 3) and 4% (2, 4) by volume.

Download (22KB)
3. Fig. 2. Scheme of formation of dioxetane (D) during disproportionation of peroxide radicals.

Download (20KB)
4. Fig. 3. Model kinetic curves of the intensity (J) of chemiluminescence in the presence of europium chelate (7, 8) and without it (1–6) during initiated oxidation of 2% (1, 3, 5, 7) and 4% (2, 4, 6, 8) solutions of vegetable oil in chlorobenzene and quantum yields ηi (in rel. units) of reactions (16), (17), (18), (19), (20), (23), related as: 31 : 4 : 4 : 4 : 4 : : 2.1 104 (1, 2); 135 : 7 : 7 : 7 : 7 : 3.3 104 (3, 4); 1000 : 1 : 1 : : 1 : 1: 0.5 104 (5, 6); 500 : 500 : 250 : 850 : 50 : 25 104 (7, 8).

Download (29KB)
5. Fig. 4. Changes in concentrations (C) of peroxide radicals (∙ 108 M) in computer mathematical modeling of the oxidation kinetics of 2% (2, 3, 5) and 4% (1, 4, 6) solutions of sunflower oil in chlorobenzene; 1, 2 – [ROO˙]; 3, 4 – [yOO˙]; 5, 6 – [H3COO˙].

Download (28KB)
6. Fig. 5. Model kinetics of the formation of dioxetanes (C = 107 [D] M) during the initiated oxidation of 2% (1) and 4% (2) solutions of vegetable oil in chlorobenzene.

Download (17KB)

Copyright (c) 2024 Russian Academy of Sciences